首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bile acid composition and content in the intestine and gallbladder of newborn and fetal rabbits were investigated. Unlike the circumstances in adult rabbits, the bile acids were conjugated with both taurine and glycine. The major bile acids of the fetus and newborn rabbit were cholic acid, chenodeoxycholic acid, and deoxycholic acid. This is different from the known bile acid composition of adult rabbits, in which deoxycholic acid is the major bile acid (> 80%). The proportion of chenodeoxycholic acid was higher in the fetal than in the newborn tissues. The total bile acid pool in the newborn was higher than in the fetus. In the fetus, large proportions of bile acids (60.9%) were associated with the gallbladder fraction, whereas in the newborn the bulk of the bile acids were found with the intestinal fraction (64.4%),  相似文献   

2.
Rat liver peroxisomes have been found to oxidize 26-hydroxycholesterol, the product of cholesterol C-26 hydroxylation to 3 beta-hydroxy-5-cholenoic acid. Peroxisomes were purified by differential and equilibrium density centrifugation in a steep linear metrizamide gradient to greater than 95% purity. Purity of peroxisomes was determined by measurement of specific marker enzymes. The activities of cytochrome oxidase (a mitochondrial marker) and acid phosphatase (a lysosomal marker) in the purified peroxisome fractions were below the level of detection. Esterase activity indicated a 2-4% microsomal contamination. Subsequent to incubation of peroxisomes with [16,22-3H]-26-hydroxycholesterol, the reaction products were extracted, methylated, acetylated, and subjected to thin-layer, high pressure liquid, and gas-liquid chromatographic analyses. 3 beta-Hydroxy-5-cholenoic acid was the major identifiable metabolite of 26-hydroxycholesterol. Incubations of pure microsomal fractions (greater than 99%) with 26-hydroxycholesterol under the same conditions demonstrated that the production of 3 beta-hydroxy-5-cholenoic acid by peroxisomes was not attributable to microsomal contamination. This study demonstrates that peroxisomes participate in the side-chain oxidation of intermediates in bile acid synthesis.  相似文献   

3.
The in vitro metabolism of [3H estradiol-17β-by the uterus was studied in non-pregnant, prenant (day 30-term) and post-parturant guinea pigs. Following incubation of tissue sections for one hour is Krebs-Ringer phosphate buffer, five major metabolites could be extracted from the medium or tissue depending upon age of gestation: estrone-3-glucuronide, estrone-3-sulfate, estradiol-3-glucuronide and estradiol-3-sulfate. Both sulfated estrogens were detected at each age of gestation studied, whereas the glucuronides, mainly of estrone, were not detected until approximately day 50. Thereafter, as term (day 65–70) was approached, their percentage contribution to total radioactivity increased at the expense of estradiol and the sulfates. Following parturition, total metabolites of estradiol rapidly decreased, particularly the glucuronides. No conjugates were detected in uteri from nonpregnant guinea pigs. In addition, no conjugates were found in the pre-partum mouse, rat and hamster or in human endometrium obtained immediately after birth. The data suggest that, in the guinea pig, a biochemical factor in the termination of normal pregnancy is the control of tissue levels of active estrogen (estradiol) by conjugation with glucuronic acid.  相似文献   

4.
5.
Type 3 17β-hydroxysteroid dehydrogenase (17β-HSD), a key steroidogenic enzyme, transforms 4-androstene-3,17-dione (Δ4-dione) into testosterone. In order to produce potential inhibitors, we performed solid-phase synthesis of model libraries of 3β-peptido-3α-hydroxy-5α-androstan-17-ones with 1, 2, or 3 levels of molecular diversity, obtaining good overall yields (23–58%) and a high average purity (86%, without any purification steps) using the Leznoff's acetal linker. The libraries were rapidly synthesized in a parallel format and the generated compounds were tested as inhibitors of type 3 17β-HSD. Potent inhibitors were identified from these model libraries, especially six members of the level 3 library having at least one phenyl group. One of them, the 3β-(N-heptanoyl- -phenylalanine- -leucine-aminomethyl)-3α-hydroxy-5α-androstan-17-one (42) inhibited the enzyme with an IC50 value of 227 nM, which is twice as potent as the natural substrate Δ4-dione when used itself as an inhibitor. Using the proliferation of androgen-sensitive (AR+) Shionogi cells as model of androgenicity, the compound 42 induced only a slight proliferation at 1 μM (less than previously reported type 3 17β-HSD inhibitors) and, interestingly, no proliferation at 0.1 μM.  相似文献   

6.
Conversion of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) to the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) is performed by a few species of intestinal bacteria in the genus Clostridium through a multistep biochemical pathway that removes a 7α‐hydroxyl group. The rate‐determining enzyme in this pathway is bile acid 7α‐dehydratase (baiE). In this study, crystal structures of apo‐BaiE and its putative product‐bound [3‐oxo‐Δ4,6‐lithocholyl‐Coenzyme A (CoA)] complex are reported. BaiE is a trimer with a twisted α + β barrel fold with similarity to the Nuclear Transport Factor 2 (NTF2) superfamily. Tyr30, Asp35, and His83 form a catalytic triad that is conserved across this family. Site‐directed mutagenesis of BaiE from Clostridium scindens VPI 12708 confirm that these residues are essential for catalysis and also the importance of other conserved residues, Tyr54 and Arg146, which are involved in substrate binding and affect catalytic turnover. Steady‐state kinetic studies reveal that the BaiE homologs are able to turn over 3‐oxo‐Δ4‐bile acid and CoA‐conjugated 3‐oxo‐Δ4‐bile acid substrates with comparable efficiency questioning the role of CoA‐conjugation in the bile acid metabolism pathway. Proteins 2016; 84:316–331. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
The chemical synthesis, nuclear magnetic resonance, and mass spectrometric characteristics of the first C-4 hydroxylated bile acid analogues are described. The data definitively confirm, for the first time, the identity of 3 alpha,4 beta,7 alpha-trihydroxy-5 beta-cholanoic acid in human fetal gallbladder bile. In addition, 3 alpha,4 beta,7 alpha-12 alpha-tetrahydroxy-5 beta-cholanoic was identified in the feces from healthy newborn infants many days after birth, indicating a hepatic origin for C-4 hydroxylation of bile acids. To our knowledge bile acids hydroxylated at the C-4 position of the steroid nucleus have never been previously recognized in any mammalian species. The finding of this novel bile acid which accounts for 5-15% of the total biliary bile acids in early gestation indicates that C-4 hydroxylation is a unique and important metabolic pathway in early human development.  相似文献   

8.
Treatment of 19-[oxygenated]-androst-4-ene-3,17-dione with Mn(AcO)3 and ClCH2COOH in benzene gave epimeric mixtures of the corresponding 2ξ-chloroacetates and 2ξ-acetates. The products were processed to give the title compound. For the synthesis of the 2-18O analog, ClCH2C18OOH was used, which was prepared from ClCH2COCl.  相似文献   

9.
10.
The rates of the acid-catalyzed decarboxylation and amide hydrolysis of α-ketoglutaramic acid, the keto analog of glutamine, were investigated and the products of the reactions were characterized. In strong acid at 100°C, amide hydrolysis and decarboxylation occur with about equal facility, yielding α-ketoglutaric acid and 5-hydroxy-2-pyrrolidone, respectively. 5-Hydroxy-2-pyrrolidone undergoes further amide hydrolysis so that the products of complete acid hydrolysis of α-ketoglutaramic acid are ammonia (100%), carbon dioxide (50%), and approximately equal yields (50%) of α-ketoglutaric acid and succinic semialdehyde (β-formylpropionic acid). At increasing pH values, the relative rate of decarboxylation to amide hydrolysis of α-ketoglutaramic acid increases, such that, at pH values of 2 or greater, decarboxylation occurs almost exclusively. The decarboxylation product 5-hydroxy-2-pyrrolidone, was characterized chromatographically and by its infrared and pmr spectra; the compound may be regarded as the cyclized form of succinamic semialdehyde. A mechanism for the competing amide hydrolysis and decarboxylation reactions is proposed, and the potential biological significance of the decarboxylation pathway is discussed.  相似文献   

11.
The complexity of gonadal steroid hormone actions is reflected in their broad and diverse effects on a host of integrated systems including reproductive physiology, sexual behavior, stress responses, immune function, cognition, and neural protection. Understanding the specific contributions of androgens and estrogens in neurons that mediate these important biological processes is central to the study of neuroendocrinology. Of particular interest in recent years has been the biological role of androgen metabolites. The goal of this review is to highlight recent data delineating the specific brain targets for the dihydrotestosterone metabolite, 5α-androstane, 3β,17β-diol (3β-Diol). Studies using both in vitro and in vivo approaches provide compelling evidence that 3β-Diol is an important modulator of the stress response mediated by the hypothalmo–pituitary–adrenal axis. Furthermore, the actions of 3β-Diol are mediated by estrogen receptors, and not androgen receptors, often through a canonical estrogen response element in the promoter of a given target gene. These novel findings compel us to re-evaluate the interpretation of past studies and the design of future experiments aimed at elucidating the specific effects of androgen receptor signaling pathways.  相似文献   

12.
We drained the amniotic fluid surrounding guinea pig fetuses between days 45 and 65 of gestation (term is 67 days). The fetuses were delivered by Cesarean section and the impact of prolonged oligohydramnios on lung growth, maturation and postnatal ventilatory pattern was measured. Untouched littermate fetuses served as controls. Neither fetal body, liver nor brain weights were significantly affected by the experimental situation. When expressed in percent of control values, lung weight (63%), lung/body weight ratio (70%), lung volume (67%), total lung DNA content (63%) and lung DNA per gram of fetal weight (71%) were all significantly less following amniotic fluid drainage, confirming the diagnosis of lung hypoplasia. Disaturated phosphatidylcholine content per gram of lung tissue and total lung glycogen content were not affected by the procedure, indicating that the maturity of the hypoplastic lungs was not delayed. When measured 4 to 6 hours after birth, tidal volume was significantly less (62%) and respiratory frequency was significantly more (137%); however, minute ventilation per unit of body weight was not significantly changed. This animal model of sublethal lung hypoplasia could become useful to study the potential for, and the kinetics of, postnatal catch-up lung growth about which little is known.  相似文献   

13.
Intravenous administration of 26-hydroxycholesterol to the rabbit with a bile fistula yielded cholic acid in proportions (84 and 86%) not significantly different from that derived from cholesterol. By contrast, the naturally occurring C27 bile acid 3 beta-hydroxy-5-cholestenoic acid yielded not more than 8% cholic acid. Thus initial 26-hydroxylation of cholesterol followed by 7-alpha-hydroxylation can provide sufficient amounts of cholic acid to be considered a quantitatively significant pathway for bile acid synthesis, and in addition it is the only pathway that can be the source of the circulating levels of C24 and C27 monohydroxy bile acids.  相似文献   

14.
Trihydroxy and tetrahydroxy bile acid metabolites substituted at the C-1 or C-6 position were studied using the urine, serum and liver tissue from sixteen patients with cholestatic liver diseases. Following extraction, isolation and hydrolysis, bile acids were converted into the dimethylethylsilyl derivatives and assayed by capillary gas chromatography—mass spectrometry. Five 1β-hydroxylated bile acids, viz. 1β,3α,12α-trihydroxy-, 1β,3α,7β-trihydroxy-1, 1β,3α,7α,12α-tetrahydroxy-5β-cholanoic acids and an epimer of the first compound, and two 6α-hydroxylated bile acids, viz. 3α,6α,7α-trihydroxy-, 3α,6α,7α,12α-tetrahydroxy-5β-cholanoic acids, were completely or partially identified. Large amounts of 1β-hydroxylated and 6α-hydroxylated bile acids were found in the urine, whereas only trace amounts were detected in the serum and liver tissue. These findings indicate that altered metabolism, such as 1β- or 6α-hydroxylation of bile acids, is enhanced in cholestasis, and that the resulting hydroxylated metabolites are eliminated in the urine.  相似文献   

15.
One of the hallmarks of cells undergoing mitotic division is their rounded morphology and reduced adhesion to the substratum. We have studied and compared the attachment of interphase and mitotic cells to substrata coated with fibronectin and vitronectin. We have found that adhesion of mitotic cells, as compared to interphase cells, is significantly reduced to fibronectin, but is higher to vitronectin. These results correlate well with the expression of α5β1 and αVβ3 integrins, the respective receptors for fibronectin and vitronectin, on the cell surface. Mitotic cells show higher levels of αVβ3 and very low levels of α5β1 proteins on the cell surface as compared to interphase cells. This difference in the levels of these integrins also reflects in the total amounts of fibronectin and vitronectin present on the cell surface of these cells. We have further shown, by flow cytometry, that binding of vitronectin, or the synthetic peptide-GRGDSP-, causes an increase in the intracellular levels of Ca2− in mitotic cells, but no change is seen in the interphase cells. Binding of fibronectin to either of these cells fails to elicit any response. One interesting feature of our results is that the levels of total, i.e., cytoplasmic plus membrane bound, α5β1 and αVβ3 integrins of mitotic and interphase cells remain the same, thus implying an alteration in the distribution of integrin chains between the plasma membrane and the cytoplasm during the conversion of interphase cells into the mitotic phase. © 1996 Wiley-Liss, Inc.  相似文献   

16.
17.
A minor C27 sterol, glaucasterol, was isolated from the soft coral Based on the spectroscopic evidence and the correlation to cholestanol and 26-nor-27-homocholestanol, its structure was proposed to be 24ξ, 25ξ-24,26-cyclocholesta-5,22E-dien-3β-ol ( ), the first example of a natural C27 sterol having a cyclopropane ring in the side chain.  相似文献   

18.
  • We recently discovered that β‐aminobutyric acid (BABA), a molecule known for its ability to prime defences in plants, is a natural plant metabolite. However, the role played by endogenous BABA in plants is currently unknown. In this study we investigated the systemic accumulation of BABA during pathogen infection, levels of BABA during plant growth and development and analysed mutants possibly involved in BABA transport or regulation.
  • BABA was quantified by LC‐MS using an improved method adapted from a previously published protocol. Systemic accumulation of BABA was determined by analysing non‐infected leaves and roots after localised infections with Plectosphaerella cucumerina or Pseudomonas syringae pv. tomato (Pst) DC3000 avrRpt2. The levels of BABA were also quantified in different plant tissues and organs during normal plant growth, and in leaves during senescence. Mutants affecting amino acid transport (aap6, aap3, prot1 and gat1), γ‐aminobutyric acid levels (pop2) and senescence/defence (cpr5‐2) were analysed.
  • BABA was found to accumulate only locally after bacterial or fungal infection, with no detectable increase in non‐infected systemic plant parts. In leaves, BABA content increased during natural and induced senescence. Reproductive organs had the highest levels of BABA, and the mutant cpr5‐2 produced constitutively high levels of BABA.
  • Synthetic BABA is highly mobile in the receiving plant, whereas endogenous BABA appears to be produced and accumulated locally in a tissue‐specific way. We discuss a possible role for BABA in age‐related resistance and propose a comprehensive model for endogenous and synthetic BABA.
  相似文献   

19.
In anterior pituitaries from male rats, it appeared that 5α-androstane-3β, 17β-diol was quickly metabolized into 5α-androstane-3β,6α-17β-triol and 5α-androstane-3β,7α, 17β-triol by action of 6α- and 7α-hydroxylases. Hydroxysteroid hydroxylases were located in endoplasmic reticulum and were dependent on NADPH+. Their optimum pH was 8.0, optima temperature, 37°C, and their apparent Km was 2.7 μM. Hydroxylative reactions were not reversible and not modified by gonadectomy. Hydroxylation seemed an efficient control of the pituitary level of 5α-andros-tane-3β, 17β-diol.  相似文献   

20.
The relative synthesis of α-, β-, Gγ- and Aγ-globin chains has been evaluated in single fetal liver bursts, which were grown in methylcellulose cultures, individually labelled with [3H]leucine and then analysed via iso-electric focusing. Well-hemoglobinized bursts demonstrate a homogeneous globin synthetic pattern, characterized by prevalent HbF (+some HbA) synthesis: thus, they apparently originate from a homogeneously programmed population of erythroid burst-forming unit (BFU-E). On day 8–9 of culture, the synthetic pattern in ‘mature’ (i.e., well-hemoglobinized) bursts has been compared with that in simultaneously-grown, ‘immature’ (i.e., poorly-hemoglobinized) colonies. These patterns have been further compared with that in ‘matured’ bursts (identified in situ as immature on day 8–9 and labelled 2–4 days later when matured). The ‘immature’ colonies showed very low levels of relative β-globin synthesis, while the ‘mature’ ones demonstrated a more elevated production of β-chain. Significantly, the ‘matured’ bursts showed a globin chain synthetic pattern similar to that of previously labelled ‘matured’ colonies. It is postulated therefore that in fetal liver (and also in adult marrow) the synthesis of γ-chain is linked to an early differentiation stage of erythroblasts, while β-globin synthesis is largely activated at a more advanced maturation stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号