首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro, the transport of [14C]pantothenic acid into and from the isolated rabbit choroid plexus, an anatomical locus of the blood-CSF barrier, and brain slices was studied. The choroid plexus accumulated [14C]pantothenic acid from the medium against a concentration gradient, although at low concentrations (less than 1 microM) there was substantial intracellular phosphorylation and binding of the [14C]pantothenic acid. The saturable accumulation process in choroid plexus was inhibited by probenecid and caproic acid but not by nicotinic acid or by weak bases. The accumulation process was markedly inhibited by N-ethylmaleimide, poly-L-lysine (which blocks sodium transport), and low temperatures. [14C]Pantothenic acid was readily released from choroid plexus by a temperature-dependent process. Brain slices also accumulated and, at low concentrations, phosphorylated [14C]pantothenic acid from the medium by a temperature-, probenecid-, and N-ethylmaleimide-sensitive saturable process. However, unlike choroid plexus, brain slices did not concentrate free pantothenic acid and [14C]pantothenic acid accumulation was not sensitive to poly-L-lysine. [14C]Pantothenic acid was readily released from brain slices by a temperature-sensitive process. These results are consistent with the view that [14C]pantothenic acid enters the isolated choroid plexus and brain slices by active transport and facilitated diffusion, respectively.  相似文献   

2.
The biosynthetic pathway of an unusual amino acyl [(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl (AHP)] moiety which is contained in bestatin has been studied by testing the incorporation of potential precursors. L-[U-14C]-Phenylalanine, L-[U-14C]leucine, and [U-14C]acetic acid were efficiently incorporated into bestatin, but the radioactivity of L-[1-14C]phenylalanine, [1-14C]glyoxylic acid, and [14C]oxalic acid were not incorporated. Incorporation of acetic acid into 1- and 2-carbon of the AHP moiety was confirmed by incorporation of [13C]acetic acid. Thus, the AHP moiety was shown to be biosynthesized from L-phenylalanine and two carbon atoms of acetic acid, accompanied by decarboxylation of the phenylalanine.  相似文献   

3.
Transport and metabolism of pantothenic acid by rat kidney   总被引:1,自引:0,他引:1  
Transport of [14C]pantothenic acid was studied using brush-border membrane vesicles prepared from rat kidney. In the presence of a Na+ gradient an accumulation of pantothenic acid 3-fold above equilibrium was observed. The Km and Vmax found were 7.30 microM and 23.8 pmol/mg protein per min, respectively. Isolated perfused rat kidneys were employed to study excretion of pantothenic acid at various concentrations in the perfusate. At physiological plasma concentrations, the filtered pantothenic acid was largely reabsorbed by the active process observed in the vesicles. At higher concentrations, pantothenic acid was found to undergo tubular secretion. Penicillin inhibited this secretory process indicating that both compounds share a secretory mechanism. Live animal studies indicated that the only compound excreted after injection of [14C]pantothenic acid was free pantothenic acid. After 1 week only 38% of the administered dose was excreted in the urine, indicating that effective conservation was taking place in the whole animal.  相似文献   

4.
Saccharomyces cerevisiae cells incubated with D-glucose (D-Glc), D-galactose or D-mannose (D-Man) synthesised D-erythroascorbic acid (D-EAA) but not L-ascorbic acid (L-AA). Accumulation of D-EAA was observed in cells incubated with D-arabinose (D-Ara) whilst accumulation of L-AA occurred in cells incubated with L-galactose (L-Gal), L-galactono-1,4-lactone and L-gulono-1,4-lactone. When S. cerevisiae cells were incubated with D-[U-(14)C]Glc, D-[U-(14)C]Man or L-[1-(14)C]Gal, incorporation of radioactivity into L-AA was observed only with L-[1-(14)C]Gal. Pre-incubation of yeast cells with D-Ara substantially reduced the incorporation of L-[1-(14)C]Gal into L-AA. Our results indicate that, under appropriate conditions, yeast cells can synthesise L-AA via the pathway naturally used for D-EAA biosynthesis.  相似文献   

5.
Acivicin inhibits gamma-glutamyl transpeptidase activity in human keratinocytes in culture. Treatment of these cells with acivicin produces a decrease in the uptake of L-[U-14C]alanine, 2-amino-[1-14C]-isobutyrate, L-[U-14C]leucine and 1-aminocyclopentane-1-[14C]carboxylate. D-[U-14C]glucose uptake is not affected by the presence of acivicin. These results support, for the first time in vitro, the hypothesis that the gamma-glutamyl cycle may be involved in amino acid uptake by human cells.  相似文献   

6.
A fractionation procedure has been developed which permits the isolation of 1 to 2 mg of homarine from a single shrimp. This procedure was used to show that homarine is endogenously synthesized by Penaeus duorarum in the free unbound form, and to study the metabolic precursors involved. Injected DL-[14C]tryptophan was not converted to [14C]homarine. However, [6-14C]quinolinic acid, a known catabolite of tryptophan, is an effective precursor. [2-14C]Acetate and [U-14C]glycerol are effectively converted to [14C]homarine while [14C]bicarbonate is poorly utilized. The injection of L-[U-14C]aspartate resulted in labeled homarine, but the quantity converted was less than expected. Since [14C]glycerol is an effective precursor there is a possibility that quinolinic acid may be formed in P. duorarum by a condensation similar to that of glyceraldehyde 3-phosphate with aspartic acid or a closely related metabolite. It is suggested that decarboxylation of quinolinic acid gives rise to picolinic acid which is methylated to yield homarine. L-[methyl-14C]Methionine efficiently provides the N-methyl carbon presumably via S-adenosylmethionine.  相似文献   

7.
1. A method is described for the synthesis of L-[U-14C]cysteic acid from L-[U-14C] cysteine hydrochloride and for its subsequent utilisation as a substrate for cysteic acid decarboxylase activity in liver and brain. 2. The enzyme determination relies on the entrapment of radio-labelled carbon dioxide in Hyamine hydroxide. 3. The assay is sensitive, reliable and convenient and is particularly suitable for measuring the activity of the decarboxylase in crude enzyme preparations.  相似文献   

8.
Axenic Pistia stratiotes L. plants were pulse-chase labeled with [14C]oxalic acid, L[1-14C]ascorbic acid, L-6-14C]ascorbic acid, D-[1-14C]erythorbic acid, L-[1-14C]galactose, or [1-14C]glycolate. Specific radioactivities of L-ascorbic acid (AsA), free oxalic acid (OxA) and calcium oxalate (CaOx) in labeled plants were compared. Samples of leaf tissue were fixed for microautoradiography and examined by confocal microscopy. Results demonstrate a biosynthetic role for AsA as precursor of OxA and its crystalline deposition product, CaOx, in idioblast cells of P. stratiotes and support the recent discovery of Wheeler, Jones and Smirnoff (Wheeler, G.L., Jones M.A., & Smirnoff, N. (1998). The biosynthetic pathway of vitamin C in higher plants. Nature, 393, 365-369) that L-galactose is a key intermediate in the conversion of D-glucose to AsA in plants. D-[1-14C]erythorbic acid (a diastereomeric analog of AsA) is utilized also by P. stratiotes as a precursor of OxA and its calcium salt deposition product in idioblasts. Labeled OxA is rapidly incorporated into CaOx in idioblasts, but microautoradiography shows there is also significant incorporation of carbon from OxA into other components of growing cells, contrary to the dogma that OxA is a relatively stable end product of metabolism. Glycolate is a poor substrate for synthesis of OxA and CaOx formation, further establishing AsA as th immediate precursor in the synthesis of OxA used for calcium precipitation in crystal idioblasts.  相似文献   

9.
The effects of fructose on the oxidation of [1-(14)C]palmitate in a rat liver mitochondria-high speed supernatant system have been investigated. This model system permitted study of the direct effects of fructose and the metabolism of fructose on fatty acid oxidation in the near absence of fatty acid esterification. Fructose inhibited the utilization of albumin-bound [1-(14)C] palmitate in the mitochondria-supernatant system, but did not affect fatty acid utilization by isolated liver mitochondria. Although fructose decreased the ATP content in the mitochondrial-supernatant system, the level of ATP throughout the incubation period was sufficient for maximal fatty acid activation. Fructose decreased the conversion of [1-(14)C]palmitate to 14CO2 and depressed the formation of total labeled oxidation products (14CO2 + 14C-labeled ketone bodies) in this system. The results suggest that fructose metabolism inhibited fatty acid oxidation in the mitochondria-supernatant system by competitive substrate oxidation and thereby decreased utilization of the added [1-(14)C]palmitate. The ihibition of L-[L-(14)C]palmitoylcarnitine oxidation, fructose was in all respects similar to its inhibition of palmitate oxidation, indicating that the site of fructose interaction was within the beta-oxidation sequence. These observations support the concept (Ontko, J.A. [1972] J. Biol. Chem. 247, 1788-1800) that the reciprocal changes in esterification and oxidation of palmitate caused by fructose in liver cells are primarily mediated via inhibitory effects on long-chain fatty acid oxidation.  相似文献   

10.
The biosynthetic origin of the carbon skeleton of 3-ethylidene-L-azetidine-2-carboxylic acid (polyoximic acid) is described. This unique cyclic amino acid is the C terminus of the nucleoside peptide antibiotics, the polyoxins, elaborated by Streptomyces cacaoi var, asoensis. In vivo experiments show that 14-C from [1-14-C]isoleucine, [U-14-C]isoleucine, [1-14-C]methionine, [U-14-C]methionine, [U-14-C]threonine, and [1-14-C]glutamate is incorporated into polyoximic acid; however, 14-C from [5-14-C]glutamate and [methyl-14-C]methionine is not incorporated. The distribution of 14-C in polyoximic acid clearly shows that the intact carbon skeleton of L-isoleucine is utilized directly. The incorporation of 14-C from [U-14-C]methionine, [U-14-C]threonine, and [1-14-CA1glutamate into polyoximic acid occurred only after their conversion to isoleucine via 2-ketobutyrate. A scheme is presented in which either of the two beta-unsaturated amino acids isolated from Bankera fuligineoalba, L-2-amino-3-hydroxymethyl-3-pentenoic acid or L-2-amino-3-formyl-3-penetenoic acid, is regarded as a possible intermediate amino acid between isoleucine and polyoximic acid.  相似文献   

11.
Radiochemical synthesis of L-[guanidinooxy-14C]canavanine   总被引:2,自引:0,他引:2  
The initial reaction in this three-step procedure for the radiochemical synthesis of L-[guanidinooxy-14C]canavanine involved the formation of barium [14C]cyanamide by reacting Ba14CO3 with ammonia at 950 degrees C. Barium [14C]cyanamide was converted to radioactive O-methylisourea, a guanidinating agent. L-[guanidinooxy-14C]Canavanine was formed by the reaction between the copper salt of L-canaline and [14C]O-methylisourea under alkaline conditions. The labeled canavanine was racemically pure as determined by enzyme-mediated hydrolysis. Reverse-phase HPLC and a novel colorimetric assay for cyanamide were used to quantify the reaction products. An overall yield for L-[guanidinooxy-14C]canavanine of approximately 25% was obtained.  相似文献   

12.
In addition to producing the antibiotic thienamycin, Streptomyces cattleya accumulates large amounts of oxalic acid during the course of a fermentation. Washed cell suspensions were utilized to determine the specific incorporation of carbon-14 into oxalate from a number of labeled organic and amino acids. L-[U-14C]aspartate proved to be the best precursor, whereas only a small percentage of label from [1,5-14C]citrate was found in oxalate. Cell-free extracts catalyzed the formation of [14C]oxalate and [14C]acetate from L-[U-14C]aspartate. When L-[4-14C]aspartate was the substrate only [14C]acetate was formed. The cell-free extracts were found to contain oxalacetate acetylhydrolase (EC 3.7.1.1), the enzyme that catalyzes the hydrolysis of oxalacetate to oxalate and acetate. The enzyme is constitutive and is analogous to enzymes in fungi that produce oxalate from oxalacetate. Properties of the crude enzyme were examined.  相似文献   

13.
The biosynthetic pathway from D-glucose to L-(+)-tartaric acid(TA) in detached leaves of the bean, Phaseolus vulgaris L.,was studied in three cultivars, two of which were known to containTA and one of which lacked TA, with the aid of several putativeradiolabeled intermediates, namely D-[l-14C]glucose, D-[6-14C]glucose,D-[U-14C]glucose, D-[U-14C]gluconate, L-[U-14C]-ascorbic acid,L-[l-l4C]idonate, D-xylo-5-[U-14C]hexulosonate, D-xylo-5-[l-14C]hexulosonate,D-xylo-5-[6-l4C]hexulosonate and L-[U-l4C]threonate. D-[U-14C]Glucoseand D-[U-l4C]gluconate were converted to TA with low isotopicyield but this yield was further reduced when leaf tissues weresupplied with unlabeled D-gluconate or D-xylo-5-hexulosonate.D-xylo-5-[U-14C]Hexulosonate and D-xylo-5-[l-14C]hexulosonatewere good precursors of TA. D-xylo-5-[6-14C]Hexulosonate didnot furnish 14C to TA. Addition of a metabolic product of D-xylo-5-hexulosonate(which was labeled by D-xylo-5-[l-14C]hexulosonate but not byD-xylo-5-[6-14C]hexulosonate) to leaves labeled with D-xylo-5-[l-14C]hexulosonatedoubled the incorporation of 14C into TA. L-[U-14C]Ascorbicacid, L-[l-14C]idonate and L-[U-14C]threonate failed to producelabeled TA. A metabolic scheme to accommodate these observationsis presented. (Received October 21, 1988; Accepted March 29, 1989)  相似文献   

14.
The tracers 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine (6-[18F]fluoro-L-DOPA) and L-[14C]DOPA were injected simultaneously into rhesus monkeys, and the time course of their metabolites was measured in the striatum and in the occipital and frontal cortices. In the striatum, 6-[18F]fluoro-L-DOPA was metabolized to 6-[18F]fluorodopamine, 3,4-dihydroxy-6-[18F]fluorophenylacetic acid, and 6-[18F]fluorohomovanillic acid. The metabolite pattern was qualitatively similar to that of L-[14C]DOPA. 6-[18F]Fluorodopamine was synthesized faster than [14C]dopamine. In the frontal cortex, the major metabolite was also 6-[18F]fluorodopamine or [14C]dopamine. In the occipital cortex, the major metabolite was 3-O-methyl-6-[18F]fluoro-L-DOPA. On the basis of these data, the images obtained with 6-[18F]fluoro-L-DOPA and positron emission tomography in humans can now be interpreted in neurochemical terms.  相似文献   

15.
Arphamenine A was synthesized in a cell-free system obtained from the arphamenine-producing strain, Chromobacterium violaceum BMG361-CF4. L-[14C]-phenylalanine was converted to beta-phenylpyruvic acid by phenylalanine amino-transferase obtained from the 10,000 x g supernatant (S10 fraction). [14C]-Benzylmalic acid was synthesized from beta-phenylpyruvic acid with [14C]-acetyl-CoA in the S10 fraction. [14C]-Benzylsuccinic acid was formed from beta-phenylpyruvic acid with [14C]-acetyl-CoA and ATP in this fraction, as was [14C]-arphamenine A from benzylsuccinic acid and L-[14C]-arginine. Thus, the pathway of arphamenine A biosynthesis was confirmed by the cell-free biosynthesis of this antibiotic.  相似文献   

16.
Rhodobacter sphaeroides, which produces diacylglyceryl-N,N,N-trimethylhomoserine (DGTS) under phosphate-limiting conditions, was incubated with L-[1-14C]- and L-[methyl-14C]methionine in pulse and pulse-chase experiments. The label was incorporated specifically into the polar part of DGTS and of three other compounds. One of them (compound 3) could be identified as diacylglyceryl-N,N-dimethylhomoserine by cochromatography with a reference obtained semisynthetically from DGTS. It was labelled when using L-[1-14C]- as well as L-[methyl-14C]methionine as a precursor and was converted to DGTS when incubated with the DGTS-forming eukaryotic alga Ochromonas danica (Chrysophyceae). Of the other two compounds labelled with L-[1-14C]methionine, compound 2 was also labelled with L-[methyl-14C]methionine whereas compound 1 was not, suggesting that these two intermediates are the corresponding N-methyl and nonmethylated lipids, respectively. The methyltransferase inhibitor 3'-deazaadenosine enhanced the amounts of compounds 1 to 3 but decreased the amount of DGTS. It is concluded that in R. sphaeroides, DGTS is synthesized by the same pathway as in eukaryotic organisms and that the N methylation is the terminal step in this process and occurs on the preformed lipid. Since the phosphatidylcholine-deficient mutant CHB20, lacking the phosphatidylcholine-forming N-methyltransferase was able to synthesize DGTS, one or several separate N-methyltransferases are suggested to be responsible for the synthesis of DGTS.  相似文献   

17.
The metabolic pathway by which L-[14C1]phenylalanine, L-[14C1]tyrosine, L-[14C1]tryptophan, and L-[14C1]ascorbic acid are converted to [14C]oxalate have been investigated in the male rate. Only [14C]oxalate was detected in the urine of rats injected with L-[14C1]ascorbic acid, but [14C]-labeled oxalate, glycolate, glyoxylate, glycolaldehyde, glycine, and serine were recovered from the [14C1]-labeled aromatic amino acids. DL-Phenyllactate, an inhibitor of glycolic acid oxidase and glycolic acid dehydrogenase, reduced the amount of [14C]oxalate recovered in the urine of rats given the [14C1]-labeled aromatic amino acids, but increased the amount of [14C]glycolate formed from L-[14C1]-phenylalanine and L-[14C1]tyrosine and the amount of [14C]glycolate produced from [14C1]tryptophan. Based on the [14C]labeled intermediates identified and the relative distribution of the radioactivity, it is postulated that phenylalanine and tyrosine are converted to oxalate via glycolate which is oxidized directly to oxalate by glycolic acid dehydrogenase. Tryptophan is metabolized via glyxylate which is oxidized directly to oxalate by glycolic acid oxidase. Neither glycolate, glyoxylate, glycolic acid oxidase or glycolic acid dehydrogenase are involved in the formation of oxalate from ascorbic acid.  相似文献   

18.
5-Keto-D-[1-14C]gluconic acid, the most effective precursorof L(+)tartaric acid among all labeled compounds which haveever been tested in grapes, was found to be a good precursorof L(+)tartaric acid in a species of Pelargonium. The synthesisof labeled L(+)tartaric acid from D-[1-14C]glucose in Pelargoniumwas remarkably depressed when a 0.5% solution of D-gluconateor 5-keto-D-gluconate was administered continuously to leavestogether with D-[1-14C]glucose. Our results provide strong evidence that D-[1-14C]glucose ismetabolized in Pelargonium to give labeled L(+)tartaric acidvia (probably D-gluconic acid and) 5-keto-D-gluconic acid withoutpassing through L-ascorbic acid. Labeled L-idonic acid was found in young leaves of Pelargoniumwhich had been labeled with L-[U-14C]ascorbic acid. The synthesisof the labeled L-idonic acid increased when a 0.1% solutionof L-threonate was administered continuously to leaves togetherwith L-[U-14C]ascorbic acid. Specifically labeled compounds, recognized as the members ofthe synthetic pathway for L(+)tartaric acid from L-ascorbicacid via L-idonic acid in grapes, were administered to youngleaves of Pelargonium. Each compound (2-keto-L-[U-14C]idonicacid, L-[U-14C]idonic acid, 5-keto-D-[1-14C]gluconic acid and5-keto-D-[6-14C]gluconic acid) was partly metabolized, as ingrapes. The metabolic pathway starting from L-ascorbic acidto L(+)tartaric acid via L-idonic acid, however, did not actuallycontribute to the synthesis of L(+)tartaric acid in Pelargoniumprobably because the activity of each metabolic step was muchlower than that observed in grapes. (Received May 28, 1984; Accepted July 30, 1984)  相似文献   

19.
Sodium-dependent lysine flux across bullfrog alveolar epithelium   总被引:2,自引:0,他引:2  
Amino acid transport across the alveolar epithelial barrier was studied by measuring radiolabeled lysine fluxes across bullfrog lungs in an Ussing chamber. In the absence of a transmural electrical gradient, L-[14C]lysine was instilled into the upstream reservoir and the rate of appearance of the radiolabel in the downstream reservoir was determined. Two lungs from the same animal were used simultaneously to determine tracer fluxes both into and out of the alveolar bath. Results showed that the radiolabel flux measured in the alveolar to the pleural direction was greater than that measured in the opposite direction in the presence of sodium in the bathing fluids. The net flux of L-[14C]lysine was saturable with [Na+], with an apparent transport coefficient (Kt) of 28 mM for Na+. Hill analysis of [14C]lysine flux vs. [Na+] indicated a coupling ratio of 1:1 between sodium and radiolabeled L-lysine. Total L-lysine flux as a function of [L-lysine] was also saturable, with Kt of 7.3 mM for L-lysine. Ouabain significantly decreased absorptive (alveolar-to-pleural) radiolabel flux, while slightly increasing the flux observed in the opposite direction. L-leucine completely inhibited absorptive net flux of L-[14C]lysine. alpha-Methylaminoisobutyric acid (MeAIB), on the other hand, only slightly reduced net flux of L-[14C]lysine from the control value. The presence of a net absorptive, Na+-dependent amino acid flux across the alveolar epithelial barrier indicates that the tissue is capable of removing amino acids and sodium from the alveolar fluid by a coupled cotransport mechanism, which may be important for both protein metabolism and fluid balance by alveolar epithelium.  相似文献   

20.
Oxidative determination of 14C-labeled 2-oxo acids   总被引:2,自引:0,他引:2  
A simple and rapid assay for the determination of 1-14C- or U-14C-labeled 2-oxo acids is described. It is based on the selective and complete oxidation of the carboxyl group to 14CO2. Preceding purification procedures are not necessary. In rat hindlimb perfusion studies, the procedure was used to develop an indirect method for the estimation of the intracellular dilution of [1-14C]pyruvate and to determine the relationship between the transamination and decarboxylation rates of leucine in the perfused tissue by the use of tracer doses of L-[1-14C]leucine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号