首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Biochemical transformation of Ltk- cells with the herpes simplex virus thymidine kinase (tk) gene resulted in numerous TK+ colonies that survived selection in hypoxanthine-aminopterin-thymidine medium. Many of these TK+ cell lines switched phenotypes and reverted to the TK- state. In this report, we describe the biological and biochemical characteristics of three TK- revertant lines. One (K1B5) transiently expressed TK in the presence of bromodeoxyuridine, which selects for the TK- phenotype. Another TK- sibling (K1B6n) expressed TK only after removal from bromodeoxyuridine-containing medium. The last variant (K1B6me) lost the ability to switch to the TK+ phenotype, although it maintained the herpes simplex virus sequences coding for TK. Loss of the ability of K1B6me cells to express TK was correlated with extensive methylation of the sequence recognized by the restriction endonuclease HpaII (pCpCpGpG). After these cells were treated with 5-azacytidine, they regained the ability to clone in hypoxanthine-aminopterin-thymidine medium and reexpressed virus tk mRNA and enzyme. In addition, the HpaII sites that were previously shown to be refractile to enzyme digestion were converted to a sensitive state, demonstrating that they were no longer methylated.  相似文献   

2.
We constructed lambda recombinants containing the Harvey murine sarcoma virus genome and the thymidine kinase (tk) gene of herpes simplex virus type 1 linked to each other. The tk gene was located in a position downstream from both the long terminal repeat and the src gene of Harvey murine sarcoma virus. The DNAs of the lambda recombinants were used to transfect NIH3T3 mouse fibroblasts in order to obtain Harvey murine sarcoma virus DNA-induced foci of transformed cells. The transformed foci were superinfected with a helper-independent retrovirus, and new individual retrovirus were isolated from the superinfected foci. The new viruses could induce focus formation on NIH3T3 cells and could convert NIH3T3(TK-) cells into TK+ cells by carrying the herpes simplex virus type 1 tk gene into the TK- cells. From virus-infected cells, we isolated nonproducer foci on NIH3T3 cells and TK+ transformants on NIH3T3(TK-) cells containing one such new viral genome coding for the dual properties. The new retroviral sequence in the nonproducer cells could be rescued into virus particles at high titers by superinfection with a helper-independent retrovirus. A hybridization analysis indicated that the recombinant virus contained both the Harvey murine sarcoma virus src sequence and the tk gene sequence in a single RNA species approximately 4.9 kilobases long. We concluded that retroviruses can be used as true vectors for genes other than genes that lead to oncogenesis.  相似文献   

3.
4.
We describe a novel expression vector, pBK TK-1, that persists episomally in human cells that can be shuttled into bacteria. This vector includes sequences from BK virus (BKV), the thymidine kinase (TK) gene of herpes simplex virus type 1, and plasmid pML-1. TK+-transformed HeLa and 143 B cells contained predominantly full-length episomes. There were typically 20 to 40 (HeLa) and 75 to 120 143 B vector copies per cell, although some 143 B transformants contained hundreds. Low-molecular-weight DNA from TK+-transformed cells introduced into Escherichia coli were recovered as plasmids that were indistinguishable from the input vector. Removal of selective pressure had no apparent effect upon the episomal status of pBK TK-1 molecules in TK+-transformed cells. BKV T antigen may play a role in episomal replication of pBK TK-1 since this viral protein was expressed in TK+ transformants and since a plasmid that contained only the BKV origin of replication was highly amplified in BKV-transformed human cells that synthesize BKV T antigen.  相似文献   

5.
We investigated the feasibility of using retroviruses as vectors for transferring DNA sequences into animal cells. The thymidine kinase (tk) gene of herpes simplex virus was chosen as a convenient model. The internal BamHI fragments of a DNA clone of Moloney leukemia virus (MLV) were replaced with a purified BamHI DNA segment containing the tk gene. Chimeric genomes were created carrying the tk insert in both orientations relative to the MLV sequence. Each was transfected into TK- cells along with MLV helper virus, and TK+ colonies were obtained by selection in the presence of hypoxanthine, aminopterin, and thymidine (HAT). Virus collected from TK+-transformed, MLV producer cells passed the TK+ phenotype to TK- cells. Nonproducer cells were isolated, and TK+ transducing virus was subsequently rescued from them. The chimeric virus showed single-hit kinetics in infections. Virion and cellular RNA and cellular DNA from infected cells were all shown to contain sequences which hybridized to both MLV- and tk-specific probes. The sizes of these sequences were consistent with those predicted for the chimeric virus. In all respects studied, the chimeric MLV-tk virus behaved like known replication-defective retroviruses. These experiments suggest great general applicability of retroviruses as eucaryotic vectors.  相似文献   

6.
Transactivation of a late herpes simplex virus promoter.   总被引:19,自引:3,他引:16  
  相似文献   

7.
Recombinant TK- vaccinia viruses containing the pBR322 sequence inserted in either orientation within the coding sequence of the viral thymidine kinase gene were constructed. They were characterized by genomic analysis, hybridization studies, reversion to wild-type virus by in vivo recombination, and rescue from their genomes of plasmids which contained all or parts of the pBR322 sequence. TK- cells were infected with one of these recombinant viruses and then transfected with pools of chimeric plasmids composed of a cloned herpes simplex virus thymidine kinase gene which contained upstream inserts of different vaccinia DNA fragments prepared by restriction or sonication. Recombination between homologous pBR322 sequences within infected cells generated selectable recombinant viruses in which expression of the herpes simplex virus thymidine kinase gene was promoted by the upstream vaccinia insert. These viruses were characterized by genomic analysis, hybridization, and in vivo or in vitro phosphorylation of (5-[125I]deoxycytidine as a specific assay for the expressed herpes simplex virus thymidine kinase. Vaccinia DNA inserts were isolated conveniently for transfer to bacteria by rescuing appropriate plasmids from the genome of recombinant viruses. The sequence of 100 nucleotides adjacent to the upstream region of the herpes simplex virus gene was determined in nine different inserts measuring 0.17 to 1.07 kilobase pairs.  相似文献   

8.
9.
Infection of trigeminal ganglion by herpes simplex virus (HSV) thymidine kinase-negative (TK-) mutants was investigated in mixed infection studies in mice. Mice were corneally inoculated with TK- HSV alone or with mixtures of TK- HSV-TK+ HSV. When inoculated alone, an arabinosylthymine-selected HSV type 1 TK- mutant and a HSV type 2 TK- deletion mutant infected mouse ocular tissues but rarely infected ganglion tissues. However, both TK- mutants readily infected ganglion tissues when they were inoculated in mixtures with TK+ HSV. By means of mixed infection studies, it was demonstrated that TK- HSV could readily establish acute and latent ganglion infections. It was thought that the frequent infection of trigeminal ganglion tissue by both TK- mutants after mixed TK(-)-TK+ HSV infection was the result of in vivo complementation. After mixed TK(-)-TK+ HSV infection and subsequent cultivation of ganglion explants in arabinosylthymine, results supported the conclusion that when TK- was present in ganglia it was in the same neurons that contained TK+ HSV.  相似文献   

10.
It is well-known that viral thymidine kinase (TK) expression is important for the maximum demonstration of virulence of herpes simplex virus (HSV). In this study, we have investigated interactions of a TK- mutant of virulent HSV type 2 (HSV-2) (syn+) and a nonneuroinvasive HSV-1 (syn) in mice. When the mice were inoculated with each virus alone in their rear footpads, no mice were killed even after infection with high doses of viruses (greater than 10(6) PFU per mouse), whereas 100% of the mice died when inoculated with 10(5) PFU of a 1:1 mixture of HSV-2 TK- mutant and nonneuroinvasive HSV-1. The 1:1 mixture exhibited even more virulence than the parental HSV-2; the mean survival time of coinfected mice was significantly shorter than that of mice inoculated with 10(5) PFU of the virulent HSV-2. We have also examined the genotypes and phenotypes of viruses isolated from the central nervous system of coinfected mice. Of 50 isolates, 7 were judged to be recombinants from their restriction endonuclease cleavage patterns, but all were nonneuroinvasive. In addition, all syn+ viruses (23 clones) tested were found to have TK- phenotypes, indicating that the majority of viruses present in the central nervous system were TK- viruses, since about 90% of viruses detected in spinal cords and brains exhibited syn+ phenotypes. These results strongly suggest that the lethal invasion of the central nervous system by HSV-2 TK- and nonneuroinvasive HSV-1 was the consequence of in vivo complementation between the two viruses.  相似文献   

11.
DNA-mediated gene transformation of mouse Ltk-aprt-hprt-cells was used to obtain stable, doubly selected transformants simultaneously expressing herpes virus thymidine kinase (TK) and mammalian adenine phosphoribosyltransferase (APRT). Cotransformants occurred at a frequency of 5 X 10(-6), a similar frequency for the transfer of the aprt marker has been previously observed. Isozyme and Southern blot analysis show that the TK and APRT expressed in these transformants resulted from gene transfer. For one stable cotransformant, [3H]thymidine [( 3H]TdR) selection against TK activity resulted in the loss of APRT activity as well, suggesting that these genes had become genetically linked together. Similarly selection against APRT expression resulted in the loss of a subset of the transferred herpes simplex virus tk genes. 5-Bromodeoxyuridine (BUdR) selected TK- variants differed from [3H]TdR selected TK- variants, in that they retained tk genes. However, BUdR-selected variants expressed full levels of APRT. Therefore, even though the transferred tk and aprt genes had become genetically linked together, they were, in this case, independently expressed since these cells were phenotypically TK- and APRT+.  相似文献   

12.
From 6 clones of Chinese hamster cells varying in the rate of the loss of transformant phenotype and containing a thymidine kinase gene (tk-gene) of Herpes simplex virus type 1 (HSV1), 25 subclones negative in thymidine kinase (TK-) were isolated on a medium with 50 micrograms/ml 5-bromodeoxyuridine (BrdU). A study was made of the frequency of spontaneous reversions to the TK+ phenotype in cell populations of BrdU-resistant subclones, and of the transforming activity (upon transformation of TK- cells of A238 clone to the TK+ phenotype) of DNA preparations from a row BrdU-resistant subclones. In 7 of 11 BrdU-resistant subclones the TK- phenotype is associated with changes reducing significantly the transforming activity of DNA. Some of these alterations are stable and undergo no spontaneous reversion, while the other ones are unstable, being reversed or suppressed at a high frequency. BrdU-resistant subclones produced from clones more stable in transformant phenotype are on the whole more stable in the TK- phenotype than BrdU-resistant subclones from the clones with the high rate of the loss of the TK+ phenotype.  相似文献   

13.
Genetic variation was studied in several mouse L cell lines containing tandemly repeated herpes simplex virus thymidine kinase (TK) genes introduced by DNA-mediated gene transfer. Variants were obtained after alternate positive and negative selection for TK expression. Three classes of molecular alteration are described. One class consisted of a concerted wave of hypermethylation affecting many sites in all or nearly all of the TK genes. This resulted in genetically stable TK- variants. Of five TK+ transformants from independent transfer experiments, only one, named HM, showed this class of methylation. Hypermethylation was a reproducible phenomenon in HM, yielding TK- variants after selection with either bromodeoxyuridine or acycloguanosine [Acyclovir or 9-(2-hydroxyethy-oxymethyl)guanine]. A second class of alteration consisted of methylation affecting some, but not all, genes in the cluster. This happened in all TK+ (HAT [hypoxanthine-aminopterin-thymidine]-resistant) cell lines investigated, and this second class of methylation was incapable of generating TK- variants. Neither type of methylation was accompanied by genomic rearrangements. The third class of molecular alteration was found among TK+ (HAT-resistant) back revertants of hypermethylated HM TK- derivatives. It consisted of a 10-fold amplification of the hypermethylated TK genes. Demethylation of hypermethylated HM variants was not observed. Thus, hypermethylation in this system can be compensated for by amplification but cannot be reversed.  相似文献   

14.
The contribution of the herpes simplex virus type 1 (HSV-1)-encoded uracil DNA glycosylase (UNG), thymidine kinase (TK), and dUTPase to the relative mutant frequency (RMF) of the virus in cultured murine cells was examined. A panel of HSV-1 mutants that lacked singly or doubly the UNG, TK, or dUTPase activity were generated by disruption of the enzyme coding regions with the Escherichia coli beta-galactosidase (beta-gal) gene in strain 17syn+. To establish a baseline RMF of strain 17syn+, the beta-gal gene was inserted into the UL3 locus. In all of the viruses, the beta-gal insert served as a phenotypic marker of RMF. A mutant plaque was identified by the lack of beta-gal activity and, in selected cases, positive in situ hybridization for beta-gal sequences. Replication kinetics in NIH 3T3 cells demonstrated that all of the mutants replicated efficiently, generating stocks with equivalent titers. Two independently generated UL3-beta-gal viruses were examined and established a baseline RMF of approximately 0.5% in both NIH 3T3 and LM TK- cells. Loss of dUTPase activity resulted in viruses with fivefold-increased RMFs, indicating that the HSV-1 dUTPase has an antimutator function. The RMF observed for the tk- viruses was reduced as much as 40-fold (RMF of 0.02%), suggesting that the viral TK is a mutator activity. The RMF of two independent UNG- viruses showed no significant difference from the baseline RMF in limited passage; however, following successive passage, the data suggested that UNG activity serves as an antimutator. These results have implications for the natural history of HSV and the development of antiviral therapies.  相似文献   

15.
The protoplast fusion technique of Schaffner (W. Schaffner, Proc. Natl. Acad. Sci. U.S.A. 77:2163-2167, 1980) has been adapted to introduce cloned herpes simplex virus genes into cultured mammalian cells. The technique involves digesting bacterial cell walls with lysozyme to produce protoplasts and then fusing the protoplasts to mammalian cells by treatment with polyethylene glycol. For monitoring transfer, protoplasts were labeled with the fluorescent dye fluorescein isothiocyanate before fusion. After fusion, greater than 50% of the mammalian cells were fluorescent, demonstrating that bacterial material was transferred with high frequency. Transfer of plasmid pBR325 occurred at frequencies of 1 to 2%, as measured by in situ hybridization. Fusion transfer of a chimeric plasmid consisting of the herpes simplex virus type 1 (strain KOS) EcoRI fragment F in pBR325 resulted in expression of some viral genomic sequences in about 5% of the mammalian cells, as detected by indirect immunofluorescence. One Ltk- cell in 300 to 500 was transformed to the TK+ phenotype after fusion with protoplasts carrying the chimeric plasmid pX1, which consists of pBR322 and the BamHI fragment coding for the herpes simplex virus type 1 thymidine kinase gene.  相似文献   

16.
Transfection experiments with HSV 1 in which one uses herpes simplex virus (HSV) thymidine kinase (TK) as a selectable prototrophic marker yield two classes of transformed cells: stable and unstable. In this report, we test the hypothesis that the stability phenotype can be explained by virus genome integration into a recipient cell chromosome. The method of analysis is by means of somatic cell genetics. We have isolated a series of microcell hybrids between a TK- Chinese hamster cell line and a transformed mouse cell line expressing the TK encoded by HSV 1. Several of the hybrid lines contain a single murine chromosome and express only the viral TK. Karyotypic analysis of these hybrids and of TK- derivatives generated by BrdUrd counterselection reveals that the TK+ phenotype is correlated with the presence of the terminal portion of the long arm of a specific murine chromosome. Results of extensive isozyme analyses of the hybrids and their TK- segregants fully corroborate the karyologic data. The results are consistent with the hypothesis that the viral tk gene is covalently integrated into this chromosomal region which itself does not appear to carry the endogenous murine tk locus. Other more complicated models are discussed. Our findings also show that somatic cell genetics can be used to localize viral integration sites in host chromosomes with high resolution.  相似文献   

17.
Dominant phenotypic marker cell culture selection systems were evaluated for the recovery of thymidine kinase positive (TK+), thymidine kinase negative (TK-), and neomycin phosphotransferase II positive (NPT II+) viruses. From 1 to 100 pfu of each marker-positive virus was diluted into 10(6) pfu of marker-negative background virus prior to selection. All three selection systems recovered 100 or fewer pfu of marked virus from the background population (10(-4) fractional level). In some instances, 1 to 10 pfu of marked virus were recovered (10(-5)-10(-6) fractional levels). TK+ and NPT II+ selections yielded nearly pure marker positive virus (98.8% and 99.5% respectively). Populations surviving TK- selection were significantly less pure (58.7%, P less than 0.05). Purity of recovered viruses was independent of the initial fractional level of marker-positive virus. The use of TK+, TK-, and NPT II+ selection systems is discussed in the context of purity testing and environmental surveillance of recombinant DNA viral vaccines.  相似文献   

18.
A study was made of the effect of an DNA methylation inhibitor 5-azacytidine (azaC) on the frequency of reversion to a thymidine kinase-positive (TK+) phenotype in 5-bromodeoxy-uridine (BrdU)-resistant subclones obtained from clones of Chinese hamster cells transformed by thymidine kinase gene (tk-gene) of Herpes simplex virus type 1 (HSV1). It is shown that in 8 of 15 BrdU-resistant subclones azaC increases 2-1000-fold the frequency of reversion to TK+ phenotype. Variations in the inducibility of reversions to TK+ phenotype indicate that the DNA methylation associated with TK- phenotype affects but differently tk gene of HSV1. Cultivation of TK+ cells of transformant clones in the presence of azaC may lead to stabilization (or decrease in the rate of the loss) of TK+ phenotype, or may not influence the stability of transformant phenotype. The reaction of TK+ cells of transformant clones depends both on genetically determined rate of the loss of TK+ phenotype, and on the structure of transforming DNA introduced to cells. A conclusion is drawn that the TK- phenotype of transformant clone cells arises due to processes which are not associated with methylation of tk gene of HSV1 in spite of the fact that such a methylation may later stabilize significantly the TK- phenotype.  相似文献   

19.
20.
Deoxythymidine kinase activities were induced in HeLa TK- (deoxythymidine kinase-deficient) cells infected with either herpes simplex virus type I or herpes simplex virus type II. The herpes simplex virus type I-induced enzyme was found in the cytoplasmic and nuclear fractions of the infected cells, whereas the herpes simplex type II-induced deoxythymidine kinase could only be found in the cytoplasm. Herpes simplex virus type I and II specific deoxythymidine kinases were purified by affinity column chromatography. Both purified deoxythymidine kinases retained the deoxycytidine kinase activity present in the crude preparation. The purified herpes simplex virus type I deoxythymidine kinase had a different mobility on electrophoresis, but the same sedimentation rate on a glycerol gradient as the corresponding unpurified enzyme, whereas the purified herpes simplex virus type II deoxythymidine kinase had the same mobility and sedimentation rate as the corresponding unpurified enzyme. In the presence of Mg2+ATP and dithiothreitol, herpes simplex virus type II deoxythymidine kinase was more stable than herpes simplex virus type I deoxythymidine kinase at both 45 degrees and 4 degrees. The deoxycytidine kinase activity present in the purified preparations was inactivated at the same rate as the deoxythymidine kinase activity. In the presence of the other substrate, deoxythymidine, herpes simplex virus type I deoxythymidine kinase was more stable than herpes simplex virus type II kinase. The purified herpes simplex virus type I and II deoxythymidine kinase had different activation energies when Mg2+ATP and deoxythymidine were used as substrates, but showed the same sensitivity toward ammonium sulfate inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号