首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously demonstrated that adenosine (Ado) reverses the stimulatory effect of angiotensin II (Ang II) on Na(+)-ATPase activity via the A(2A) receptor. In this work, the molecular mechanism involved in Ado-induced shutdown in the signaling pathway triggered by 10(-8)M Ang II was investigated. It was observed that: (1) both 10(-12)M PMA (a PKC activator) and 5x10(-8)M U73122 (an inhibitor of PI-PLCbeta) prevent the reversion effect induced by 10(-6)M Ado (only observed in the presence of 10(-6)M DPCPX (an A(1) receptor antagonist)) on Ang II-stimulated Na(+)-ATPase and PKC activities; (2) Ang II-stimulated PKC activity was reversed by 10(-6)M forskolin (an adenylyl cyclase activator) or 10(-8)M PKA inhibitory peptide and 10(-8)M DMPX (an A(2) receptor-selective antagonist). Considering that PMA prevents the inhibitory effect of Ado on Ang II-stimulated Na(+)-ATPase and PKC activities, it is likely that the PMA-induced effect, i.e. PKC activation, is downstream of the target for Ado-induced reversion of Ang II stimulation of Na(+)-ATPase activity. We investigated the hypothesis that PI-PLCbeta could be the target for Ado-induced PKA activation. Our data demonstrate that Ang II-stimulated PI-PLCbeta activity was reversed by Ado or 10(-7)M cAMP; the reversibility of the Ado-induced effect was prevented by either DMPX or PKA inhibitory peptide. These data demonstrate that Ado-induced PKA activation reduces Ang II-induced stimulation of PI-PLCbeta.  相似文献   

2.
We showed previously that angiotensin-(1-7) [Ang-(1-7)] reversed stimulation of proximal tubule Na+-ATPase promoted by angiotensin II (Ang II) through a d-ala7-Ang-(1-7) (A779)-sensitive receptor. Here we investigated the signaling pathway coupled to this receptor. According to our data, Ang-(1-7) produces a MAS-mediated reversal of Ang II-stimulated Na+-ATPase by a Gs/PKA pathway because: (1) the Ang-(1-7) effect is reversed by GDPβS, an inhibitor of trimeric G protein and Gs polyclonal antibody. Cholera toxin, an activator of Gs protein, mimicked it; (2) in the presence of Ang II, Ang-(1-7) increased the PKA activity 10-fold; (3) the peptide inhibitor of PKA blocked the Ang-(1-7) effect on Ang II-stimulated Na+-ATPase; (4) Ang-(1-7) reverses the Ang II-stimulated PKC activity; (5) cAMP mimicked the Ang-(1-7) effect on the Ang II-stimulated Na+-ATPase. Our results provide new understanding about the signaling mechanisms coupled to MAS receptor-mediated renal Ang-(1-7) effects.  相似文献   

3.
We have investigated signaling pathways leading to angiotensin II (Ang II) activation of mitogen-activated protein kinase (MAPK) in hepatocytes. MAPK activation by Ang II was abolished by the Ang II type 1 (AT1) receptor antagonist losartan, but not by the Ang II type 2 (AT2) receptor antagonist PD123319. Ang II (100 nM) induced a rapid phosphorylation of Src (peak approximately 2 min) and focal adhesion kinase (FAK, peak approximately 5 min) followed by a decrease to basal levels in 30 min. An increased association between FAK and Src in response to Ang II was detected after 1 min, which declined to basal levels after 30 min. Treatment with the Src kinase inhibitor PP-1 inhibited FAK phosphorylation. Downregulation of PKC, intracellular Ca2+ chelator BAPTA or inhibitors of PKC, Src kinase, MAPK kinase (MEK), Ca2+/calmodulin dependent protein kinase, phosphatidylinositol 3-kinase all blocked Ang II-induced MAPK phosphorylation. In contrast to other cells, there was no evidence for the role of EGF receptor transactivation in the activation of MAPK by Ang II. However, PDGF receptor phosphorylation is involved in the Ang II stimulated MAPK activation. Furthermore, Src/FAK and Ca/CaM kinase activation serve as potential links between the Ang II receptor and MAPK activation. These studies offer insight into the signaling network upstream of MAPK activation by AT1 receptor in hepatocytes.  相似文献   

4.
Intracellular signal transduction pathways involved in ATP release evoked by angiotensin II (Ang II) were investigated in cultured guinea pig Taenia coli smooth muscle cells. Ang II (0.3-1 microM) elicited substantial release of ATP from the cells, but not from a human fibroblast cell line. However, Ang II even at 10 microM failed to cause a leakage of lactate dehydrogenase (LDH) from the smooth muscle cells. The release of ATP by Ang II was suppressed by 10 microM SC52458, an AT1 receptor antagonist, not by 10 microM PD123319, an AT2 receptor antagonist. The evoked release of ATP was almost completely inhibited in the presence of 10 microM U73122, a phospholipase C inhibitor, and 0.5 microM thapsigargin, a Ca2+-ATPase inhibitor. Furthermore, the release was hampered by 50 microM BAPTA/AM, an intracellular Ca2+ chelator, but not by 0.1 microM nifedipine, a voltage gated Ca2+ channel inhibitor. The basal release of ATP was increased by BAPTA/AM, but was reduced by U-73122. Ang II enhanced instantaneously inositol(1,4,5)trisphosphate (Ins(1,4,5)P3) accumulation in the cells. The enhancing effect was perfectly antagonized by SC52458. These findings suggest that intracellular Ca2+ signals activated via stimulation of Ins(1,4,5)P3 receptor are involved in the release of ATP evoked by Ang II.  相似文献   

5.
It has been clearly established that mitogen-activated protein kinases (MAPKS) are important mediators of angiotensin II (Ang II) signaling via AT1 receptors in the vasculature. However, evidence for a role of these kinases in changes of Ang II-induced vasoconstriction in obesity is still lacking. Here we sought to determine whether vascular MAPKs are differentially activated by Ang II in obese animals. The role of AT2 receptors was also evaluated. Male monosodium glutamate-induced obese (obese) and non-obese Wistar rats (control) were used. The circulating concentrations of Ang I and Ang II, determined by HPLC, were increased in obese rats. Ang II-induced isometric contraction was decreased in endothelium-intact resistance mesenteric arteries from obese compared with control rats and exhibited a retarded AT1 receptor antagonist response. Blocking of AT2 receptors and inhibition of either endothelial nitric oxide synthase (eNOS) or extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) restored Ang II-induced contraction in obese rats. Western blot analysis revealed increased protein expression of AT2 receptors in arteries from obese rats. Basal and Ang II-induced ERK1/2 phosphorylation was also increased in obese rats. Blockade of either AT1 or AT2 receptors corrected the increased ERK1/2 phosphorylation in arteries from obese rats to levels observed in control preparations. Phosphorylation of eNOS was increased in obese rats. Incubation with the ERK1/2 inhibitor before Ang II stimulation did not affect eNOS phosphorylation in control rats; however, it corrected the increased phosphorylation of eNOS in obese rats. These results clearly demonstrate that enhanced AT2 receptor and ERK1/2-induced, NO-mediated vasodilation reduces Ang II-induced contraction in an endothelium-dependent manner in obese rats.  相似文献   

6.
We have previously shown that A10 vascular smooth muscle cells (VSMC) exposed to angiotensin II (Ang?II) exhibited overexpression of Giα proteins. In the present study, we examined the involvement of different signaling pathways in regulating Ang II induced enhanced expression of Giα proteins in VSMC by using pharmacological inhibitors. Ang II induced increased expression of Giα proteins in A10 VSMC was markedly attenuated by actinomycin D, losartan (an AT(1) receptor antagonist), dibutyryl cAMP, phospholipase C (PLC) inhibitor U73122, protein kinase C (PKC) inhibitors staurosporine and GP109203X, but not by PD123319 (an AT(2) receptor antagonist). In addition, BAPTA-AM and TMB-8 (chelators of intracellular Ca(2+)); and nifedipine (a blocker of L-type Ca(2+) channels) significantly inhibited Ang II induced enhanced expression of Giα proteins. On the other hand, extracellular Ca(2+) chelation using EGTA did not affect the Ang II evoked enhanced levels of Giα proteins. Furthermore, pretreatment of A10 VSMC with calmidazolium (an inhibitor of calmodulin), or KN93 (an inhibitor of CaM kinase), or genistein (an inhibitor of protein tyrosine kinase, PTK), also attenuated the increased levels of Giα proteins induced by Ang?II. These results suggest that Ang II induced enhanced expression of Giα proteins may be regulated by different signaling pathways through AT(1) receptors in A10 VSMC.  相似文献   

7.
Ye H  Bi HR  Lü CL  Tang XB  Zhu DL 《生理学报》2005,57(5):612-618
15-羟二十碳四烯酸(15-hydroxyeicosatetraenoic acid,15-HETE)在低氧性肺血管收缩中起着重要作用,低氧肺动脉高压下调内皮型。氧化氮合酶(endothelial nitric oxide synthase,eNOS),使一氧化氮(nitric oxide,NO)的产量下降,但目前尚无关于15-HETE与eNOS/NO相互作用研究的报道。我们通过Wistar大鼠肺动脉环张力、牛肺动脉内皮细胞NO产量、总eNOS表达及eNOS磷酸化测定等方法对15-HETE与eNOS/NO的相互作用进行研究。首先分离人鼠肺动脉,分为eNOS抑制剂L-NAME组(0.1mmol/L)、去缸管内皮组与内皮完整组,用15-HETE作用夫鼠离体肺动脉环,测定肺动脉张力。结果表明,L-NAME组、去除内皮组与内皮完整组分别比较,15-HETE对血管的收缩作用增强,且都有统计学意义(P〈0.05)。培养牛肺动脉内皮细胞,分别用15-HETE、15-脂氧酶(15-lipoxygenase,15-LO)抑制剂[(cinnamyl 3,4-dihydroxy-[alpha]-cyanocinnamate,CDC)和(nordihydroguiairetic acid,YDGA)]处理细胞,通过Greiss方法检测亚硝酸盐含量,间接测定NO产量,与对照组比较,1μmol/L 15-HETE明显降低肺动脉内皮细胞NO水平(P〈0.05),10μmol/L CDC和0.1mmol/L NDGA显著增加NO水平(分别是P〈0.05,P〈0.01);通过Western blot检测不同时间(5,10,15,20,30,60min)eNOS的表达情况,结果显示,15-HETE的不同作用时间,没有引起eNOS表达的明显不同;用苏氨酸495位点磷酸化eNOS(Thr495)抗体进行免疫沉淀,再用总eNOS抗体和15-LO抗体通过Western blot检测磷酸化型含量,问接测定eNOS活性,结果表明15-HETE增强Thr495磷酸化型eNOS含量。由于Thr495为eNOS抑制性磷酸化位点,因此15-HETE降低eNOS活性。这些数据表明:15-HETE的缩血管作用有eNOS/NO参与,15-HETE可以通过磷酸化Thr495位点降低eNOS活性,并且首次发现磷酸化eNOS(Thr495)和15-LO之间存在蛋白质相互作用。  相似文献   

8.
PI3K (phosphoinositide 3-kinase) activity is involved in Ang (angiotensin) II-stimulated VSMC (vascular smooth muscle cell) growth and hypertrophy. In the present study, we demonstrate that the inhibition of PI3K in VSMCs by expression of a dominant-negative p85alpha mutant lacking the p110-binding domain (Deltap85), or by treatment of cells with LY294002, inhibited Ang II-stimulated PAI-1 (plasminogen activator inhibitor-1) mRNA expression. Using a GST (glutathione S-transferase) fusion protein containing the p85 N-terminal SH2 (Src homology 2) domain as 'bait' followed by MS/MS (tandem MS), we identified a 70 kDa fragment of the p70 PDGFR-beta (platelet-derived growth factor receptor-beta) as a signalling adapter that is phosphorylated and recruits the p85 subunit of PI3K after Ang II stimulation of AT1 (Ang II subtype 1) receptors on VSMCs. This fragment of the PDGFR-beta, which has a truncation of its extracellular domain, accounted for approx. 15% of the total PDGFR-beta detected in VSMCs with an antibody against its cytoplasmic domain. Stimulation of VSMCs with Ang II increased tyrosine-phosphorylation of p70 PDGFR-beta at Tyr751 and Tyr1021 and increased its binding to p85. PDGF also induced phosphorylation of p70 PDGFR-beta, a response inhibited by the PDGF tyrosine kinase selective inhibitor, AG1296. By contrast, Ang II-induced phosphorylation of the 70 kDa receptor was not affected by AG1296. Ang II-stimulated phosphorylation of the p70 PDGFR-beta was blocked by the AT1 receptor antagonist, candesartan (CV 11974) and was partially inhibited by PP2 {4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine}, an Src family kinase inhibitor. Our result suggests that the p70 PDGFR-beta functions as an adapter that recruits PI3K to the membrane upon AT1 receptor stimulation.  相似文献   

9.
Exogenous insulin therapy improves endothelial function in insulin resistant patients, indirectly indicating that nitric oxide synthase activity and NO production may be impaired. Insulin stimulates production of NO by activating a signaling pathway including insulin receptor substrate-1, phosphatidylinositol-3-kinase and protein kinase B (PKB/Akt). Angiotensin II type I (AT1) receptor-evoked oxidative stress is implicated in the inactivation of NO, impairing endothelium-dependent vasodilatation. Blocking the actions of Angiotensin II with an AT1 receptor antagonist (Losartan), has beneficial effects in patients with insulin resistance or type 2 diabetes mellitus. This study investigated whether elevated Angiotensin II influences myocardial insulin resistance, insulin signaling and NO production in a rat model of diet-induced obesity (DIO) by antagonizing the actions of the AT1 receptor with Losartan. Isolated, perfused hearts, Western blotting and flow-cytometric methods were utilized to determine myocardial function, expression and phosphorylation of key proteins and NO production, respectively. Results showed that hearts from DIO rats are insulin resistant (higher serine phosphorylation of IRS-1, lower insulin-stimulated phosphorylation of PKB/Akt and eNOS, lower NO production) and had poorer functional recovery and larger infarct development after ischaemia/reperfusion. Losartan improved the impaired functional recovery, and NO production and enhanced eNOS expression and phosphorylation and reduced infarct size in hearts from the DIO animals. Data obtained from Losartan treatment also revealed that Angiotensin II signaling modulates myocardial PKB/Akt expression. We conclude that Angiotensin II signaling exacerbates inhibition of NO production in insulin resistance and that this can be improved by AT1 antagonism.  相似文献   

10.
Angiotensin II (Ang II) increases intracellular calcium concentration ([Ca2+]i) in both normal and cancerous human breast cells in primary culture. Maximal [Ca2+]i increase is obtained using 100nM Ang II in both cell types; in cancerous breast cells, [Ca2+]i increase (delta[Ca2+]i) is 135+/-10nM, while in normal breast cells it reaches 65+/-5 nM (P<0.0001). In both cell types, Ang II evokes a Ca2+ transient peak mediated by thapsigargin (TG) sensitive stores; neither Ca2+ entry through L-type membrane channels or capacitative Ca2+ entry are involved. Type I Ang II receptor subtype (AT1) mediates Ang II-dependent [Ca2+]i increase, since losartan, an AT1 inhibitor, blunted [Ca2+]i increase induced by Ang II in a dose-dependent manner, while CGP 4221A, an AT2 inhibitor, does not. Phospholipase C (PLC) is involved in this signaling mechanism, as U73122, a PLC inhibitor, decreases Ang II-dependent [Ca2+]i transient peak in a dose-dependent mode.Thus, the present study provides new information about Ca2+ signaling pathways mediated through AT1 in breast cells in which no data were yet available.  相似文献   

11.
This study investigates the signaling pathway involved in inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) release caused by Staphylococcus aureus lipoteichoic acid (LTA) in RAW 264.7 macrophages. A phosphatidylcholine-phospholipase C (PC-PLC) inhibitor (D-609) and a phosphatidylinositol-phospholipase C (PI-PLC) inhibitor (U-73122) attenuated LTA-induced iNOS expression and NO release. Two PKC inhibitors (Go 6976 and Ro 31-8220), an NF-kappaB inhibitor (pyrrolidine dithiocarbamate; PDTC), and long-term (24 h) 12-phorbol-13-myristate acetate (PMA) treatment each also inhibited LTA-induced iNOS expression and NO release. Treatment of cells with LTA caused an increase in PKC activity; this stimulatory effect was inhibited by D-609, U-73122, or Ro 31-8220. Stimulation of cells with LTA caused IkappaB-alpha phosphorylation and IkappaB-alpha degradation in the cytosol, and translocation of p65 and p50 NF-kappaB from the cytosol to the nucleus. Treatment of cells with LTA caused NF-kappaB activation by detecting the formation of NF-kappaB-specific DNA-protein complexes in the nucleus; this effect was inhibited by Go 6976, Ro 31-8220, long-term PMA treatment, PDTC, L-1-tosylamido-2-phenylethyl chloromethyl ketone (TPCK), and calpain inhibitor I. These results suggest that LTA might activate PC-PLC and PI-PLC to induce PKC activation, which in turn initiates NF-kappaB activation, and finally induces iNOS expression and NO release in RAW 264.7 macrophages.  相似文献   

12.
Aberrant fibroblast migration in response to fibrogenic peptides plays a significant role in keloid pathogenesis. Angiotensin II (Ang II) is an octapeptide hormone recently implicated as a mediator of organ fibrosis and cutaneous repair. Ang II promotes cell migration but its role in keloid fibroblast phenotypic behavior has not been studied. We investigated Ang II signaling in keloid fibroblast behavior as a potential mechanism of disease. Primary human keloid fibroblasts were stimulated to migrate in the presence of Ang II and Ang II receptor 1 (AT?), Ang II receptor 2 (AT?) or nonmuscle myosin II (NMM II) antagonists. Keloid and the surrounding normal dermis were immunostained for NMM IIA, NMM IIB, AT? and AT? expression. Primary human keloid fibroblasts were stimulated to migrate with Ang II and the increased migration was inhibited by the AT? antagonist EMD66684, but not the AT? antagonist PD123319. Inhibition of the promigratory motor protein NMM II by addition of the specific NMM II antagonist blebbistatin inhibited Ang II-stimulated migration. Ang II stimulation of NMM II protein expression was prevented by AT? blockade but not by AT? antagonists. Immunostaining demonstrated increased NMM IIA, NMM IIB and AT? expression in keloid fibroblasts compared with scant staining in normal surrounding dermis. AT? immunostaining was absent in keloid and normal human dermal fibroblasts. These results indicate that Ang II mediates keloid fibroblast migration and possibly pathogenesis through AT? activation and upregulation of NMM II.  相似文献   

13.
Diperoxovanadate (DPV), a potent inhibitor of protein tyrosine phosphatases and activator of tyrosine kinases, alters endothelial barrier function via signaling pathways that are incompletely understood. One potential pathway is Src kinase-mediated tyrosine phosphorylation of proteins such as cortactin that regulate endothelial cell (EC) cytoskeleton assembly. As DPV modulates endothelial cell signaling via protein tyrosine phosphorylation, we determined the role of DPV-induced intracellular free calcium concentration ([Ca2+]i) in activation of Src kinase, cytoskeletal remodeling, and barrier function in bovine pulmonary artery endothelial cells (BPAECs). DPV in a dose- and time-dependent fashion increased [Ca2+]i, which was partially blocked by the calcium channel blockers nifedipine and Gd3+. Treatment of cells with thapsigargin released Ca2+ from the endoplasmic reticulum, and subsequent addition of DPV caused no further change in [Ca2+]i. These data suggest that DPV-induced [Ca2+]i includes Ca release from the endoplasmic reticulum and Ca influx through store-operated calcium entry. Furthermore, DPV induced an increase in protein tyrosine phosphorylation, phosphorylation of Src and cortactin, actin remodeling, and altered transendothelial electrical resistance in BPAECs. These DPV-mediated effects were significantly attenuated by BAPTA (25 microM), a chelator of [Ca2+]i. Immunofluorescence studies reveal that the DPV-mediated colocalization of cortactin with peripheral actin was also prevented by BAPTA. Chelation of extracellular Ca2+ by EGTA had marginal effects on DPV-induced phosphorylation of Src and cortactin; actin stress fibers formation, however, affected EC barrier function. These data suggest that DPV-induced changes in [Ca2+]i regulate endothelial barrier function using signaling pathways that involve Src and cytoskeleton remodeling.  相似文献   

14.
The angiotensin II (Ang II) AT(1A) receptor was tagged at its C terminus with the enhanced green fluorescent protein (EGFP), and the corresponding chimeric cDNA was expressed in HEK-293 cells. This tagged receptor presents wild-type pharmacological and signaling properties and can be immunodetected by Western blotting and immunoprecipitation using EGFP antibodies. Therefore, this EGFP-tagged AT(1A) receptor is the perfect tool for analyzing in parallel the subcellular distributions of the receptor and its interacting G protein and their trafficking using confocal microscopy. Morphological observation of both the fluorescent receptor and its cognate Galphaq/11 protein, identified by indirect immunofluorescence, and the development of a specific software for digital image analysis together allow examination and quantification of the cellular distribution of these proteins before and after the binding of different agonist or antagonist ligands. These observations result in several conclusions: 1) Expression of increasing amounts of the AT(1A) receptor at the cell surface is associated with a progressive recruitment of the cytosolic Galphaq/11 protein at the membrane; 2) Internalization of the EGFP-tagged AT(1A) induced by peptide ligands but not nonpeptide ligands is accompanied by a Galphaq/11 protein intracellular translocation, which presents a similar kinetic pattern but occurs predominantly in a different compartment; and 3) This Galphaq/11 protein cellular translocation is dependent on receptor internalization process, but not G protein coupling and signal transduction mechanisms, as assessed by pharmacological data using agonists and antagonists and the characterization of AT(1A) receptor mutants (D(74)N and Delta329) for which the coupling and internalization functions are modified.  相似文献   

15.
An analysis of the functional role of a diacidic motif (Asp236-Asp237) in the third intracellular loop of the AT1A angiotensin II (Ang II) receptor (AT1-R) revealed that substitution of both amino acids with alanine (DD-AA) or asparagine (DD-NN) residues diminished Ang II-induced receptor phosphorylation in COS-7 cells. However, Ang II-stimulated inositol phosphate production, mitogen-activated protein kinase, and AT1 receptor desensitization and internalization were not significantly impaired. Overexpression of dominant negative G protein-coupled receptor kinase 2 (GRK2)K220M decreased agonist-induced receptor phosphorylation by approximately 40%, but did not further reduce the impaired phosphorylation of DD-AA and DD-NN receptors. Inhibition of protein kinase C by bisindolylmaleimide reduced the phosphorylation of both the wild-type and the DD mutant receptors by approximately 30%. The inhibitory effects of GRK2K220M expression and protein kinase C inhibition by bisindolylmaleimide on agonist-induced phosphorylation were additive for the wild-type AT1-R, but not for the DD mutant receptor. Agonist-induced internalization of the wild-type and DD mutant receptors was similar and was unaltered by coexpression of GRK2K220M. These findings demonstrate that an acidic motif at position 236/237 in the third intracellular loop of the AT1-R is required for optimal Ang II-induced phosphorylation of its carboxyl-terminal tail by GRKs. Furthermore, the properties of the DD mutant receptor suggest that not only Ang II-induced signaling, but also receptor desensitization and internalization, are independent of agonist-induced GRK-mediated phosphorylation of the AT1 receptor.  相似文献   

16.
Angiotensin II (Ang II) acts via its type 1 (AT(1)) receptor in neurons to regulate the activity of multiple intracellular signaling molecules, including intracellular Ca(2+), protein kinase C, phosphatidylinositol 3-kinase (PI3-K), and c-Jun NH(2)-terminal kinase (JNK). The present studies investigated the upstream signaling molecules involved in the Ang II stimulation of activator protein-1 (AP-1) DNA binding in neurons. Treatment of neurons cultured from neonatal rat hypothalamus and brainstem with Ang II (100 nM) showed a time-dependent increase in AP-1 DNA binding and this effect was inhibited by the AT(1) receptor antagonist, losartan (1 microM), the PI3-K inhibitor, LY294002 (10 microM), and the JNK inhibitor, JNK inhibitor II (100 nM). Furthermore, Ang II (100 nM) causes a time-dependent increase in JNK activity which was attenuated by PI3-K inhibition. These data establish, for the first time, a signaling cascade involved in the Ang II activation of AP-1 DNA binding in neurons.  相似文献   

17.
一氧化氮抑制AngⅡ介导的心肌肥大反应的信号机制   总被引:12,自引:0,他引:12  
Liu PQ  Lu W  Pan JY 《生理学报》2002,54(3):213-218
本文主要利用培养的新生大鼠心肌细胞,从细胞学及分子生物学角度研究一氧化氮(NO)信号系统在AngⅡ介导的心肌肥大反应中的作用及机制。实验以心肌细胞蛋白合成速率、心房钠尿肽(ANP)的表达作为心肌肥大反应的指标,以硝酸盐及亚硝酸盐含量反映心肌细胞NO水平,以免疫印迹法测定MKP-1蛋白表达,以RT-PCR测定eNOS mRNA水平。结果发现:(1)L-精氨酸(L-Arg)10,100μmol/L分别增加心肌细胞NO水平16%及31%,L-Arg(100μmol/L)还可增加心肌细胞eNOS mRNA表达,其作用可被NOS抑制剂L-NAME所抑制;(2)L-Arg(100μmol/L)可降低AngⅡ(0.1μmol/L)诱导的心肌细胞ANP mRNA表达水平和蛋白合成速率,而在L-Arg处理之前用针对MKP-1的反义寡核苷酸转染心肌细胞,蛋白合成速率明显增加,可取消L-Arg的抑制作用,甚至超过AngⅡ组;(3)L-Arg(100μmol/L)明显增加MKP-1蛋白表达,比对照组增加225%,NOS抑制剂L-NAME及蛋白激酶G(PKG)抑制剂KT-5823皆可抑制L-Arg诱导的MKP-1蛋白表达,分别抑制88%、83%,而AngⅡ能增加L-Arg诱导的MKP-1的表达,较对照组增加365%,增强了L-Arg的作用。以上结果表明,NO抑制AngⅡ介导心肌肥大反应的机制可能是通过激活PKG,促进MKP-1的表达,从而增加MAPK去磷酸化实现的。  相似文献   

18.
We and others have reported significant expression of the Ang II Type 1 receptor (AT1R) on renal nuclei; thus, the present study assessed the functional pathways and distribution of the intracellular AT1R on isolated nuclei. Ang II (1 nM) stimulated DCF fluorescence, an intranuclear indicator of reactive oxygen species (ROS), while the AT1R antagonist losartan or the NADPH oxidase (NOX) inhibitor DPI abolished the increase in ROS. Dual labeling of nuclei with antibodies against nucleoporin 62 (Nup62) and AT1R or the NADPH oxidase isoform NOX4 revealed complete overlap of the Nup62 and AT1R (99%) by flow cytometry, while NOX4 was present on 65% of nuclei. Treatment of nuclei with a PKC agonist increased ROS while the PKC inhibitor GF109203X or PI3 kinase inhibitor LY294002 abolished Ang II stimulation of ROS. We conclude that the Ang II-AT1R-PKC axis may directly influence nuclear function within the kidney through a redox sensitive pathway.  相似文献   

19.
Liu HQ  Wei XB  Sun R  Cai YW  Lou HY  Wang JW  Chen AF  Zhang XM 《Life sciences》2006,78(12):1293-1298
Microvascular changes in the brain are significant causes of cerebral edema and ischemia injury. A number of studies suggest that angiotensin (Ang) II may be involved in the initiation and regulation of processes occurring in brain ischemia. We recently reported that Ang II injures brain microvascular endothelial cells (BMEC) partially via stimulating intercellular adhesion molecule-1 (ICAM-1) expression. However, the signaling cascade leading to Ang II-induced ICAM-1 expression in BMEC was unclear. The present study tested the hypothesis that Ang II induces ICAM-1 expression via an AT1 receptor/nuclear factor-kappaB (NF-kappaB) pathway in BMEC. Ang II directly stimulated the expression of ICAM-1 mRNA and protein in primary cultured BMEC. Ang II treatment also resulted in the degradation of IkappaBalpha and increase of NF-kappaB p65 subunit in the nucleus as well as the DNA binding activity of nuclear NF-kappaB. These effects were abolished by pretreatment with the selective AT1 receptor antagonists, losartan and compound EXP-2528, or losartan plus the AT2 receptor antagonist PD123319, but not by PD123319 alone. Moreover, there were no significant differences between the losartan and losartan plus PD123319 groups. These findings indicate that Ang II-induced ICAM-1 upregulation in brain microvascular endothelial cells may be mediated via an AT1 receptor/NF-kappaB pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号