首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Peptides》1987,8(5):855-861
Tardive dyskinesia, a clinical syndrome, is one of the major side effects of protracted treatment with neuroleptics in schizophrenic patients. Functional supersensitivity of striatal dopamine receptors is believed to contribute to the pathogenesis of schizophrenia and tardive dyskinesia. In a rodent model of neuroleptic-induced dopamine receptor supersensitivity, we investigated the efficacy of structurally modified analogues of PLG to down-regulate the striatal dopamine receptor supersensitivity as determined by alterations in [3H]spiroperidol binding to striatal membranes in vitro. The PLG analogue, L-prolyl-L-leucyl-(+)-thiazolidine-2-carboxamide-HCl, when given at the dose of 10 mg/kg IP for 5 days prior to haloperidol (3 mg/kg IP 21 days) significantly prevented the up-regulation of striatal dopamine receptor supersensitivity, thus demonstrating a prophylactic effect. Two other analogues, L-prolyl-L-leucyl-5-aminomethyltetrazole and L-prolyl-L-leucyl-glycine-dimethylamide at a dose of 10 mg/kg IP when given concurrently with haloperidol for 21 days, suppressed the development of dopamine receptor supersensitivity. None of the analogues tested in the post-haloperidol session reversed the haloperidol-induced increase in the density of striatal dopamine receptors. Active PLG analogues hold promise as potential therapeutic agents for the amelioration of tardive dyskinesia.  相似文献   

2.
Chronic administration of haloperidol induced supersensitivity of the pre- and postsynaptic dopaminergic receptors in rat brain. The response of the presynaptic receptors was determined by an enhanced inhibitory effect of apomorphine on dopamine synthesis after gamma-butyrolactone injection. This change in the receptor function was detected both in the nigrostriatal and mesolimbic pathways. Haloperidol also increased the 3H-spiperone binding sites in striatal membranes, indicating supersensitivity of the postsynaptic receptors. Subsequent prolonged treatment with high doses of L-DOPA/carbidopa resulted in a decrease in 3H-spiperone binding sites, but had no effect on the supersensitive presynaptic receptors. It is suggested that tardive dyskinesia may be a state of both pre- and postsynaptic dopamine receptor supersensitivity and that chronic L-DOPA treatment may have a differential effect on these sites.  相似文献   

3.
H N Bhargava 《Life sciences》1984,34(9):873-879
Chronic intragastric administration of haloperidol (1.5 mg/kg/day) for 21 days followed by a 3-day withdrawal period resulted in the development of enhanced locomotor activity response to apomorphine, and an increase in the number of binding sites for 3H-spiroperidol in the striatal membranes of the rat brain. Subcutaneous administration of Pro-Leu-Gly-NH2 or cyclo(Leu-Gly) in doses of 2 mg/kg/day given for 3-days after termination of haloperidol treatment inhibited the enhanced response to apomorphine, as well as the increases in the number of 3H-spiroperidol binding sites in the striatum. If indeed, the supersensitivity of striatal dopamine receptors is one of the mechanisms in the development of tardive dyskinesia symptoms, the present results suggest that the above peptides may be helpful in ameliorating some of the symptoms of tardive dyskinesia induced by neuroleptic drugs.  相似文献   

4.
The effect of chronic levodopa-carbidopa administration (200 mg/kg for 21 days) on guinea pigs rendered behaviorally supersensitive by the prior administration of haloperidol (.5 mg/kg for 21 days) was examined. Animals who showed an increased behavioral response to apomorphine after chronic haloperidol administration were treated with levodopa-carbidopa and then apomorphine - induced stereotypy was reexamined. Although the chronic levodopa control groups and the chronic haloperidol control remained supersensitive to the behavioral effect of apomorphine, the haloperidol-levodopa group's behavioral response to apomorphine returned to normal. Both chronic dopaminergic antagonist and agonist administration have been demonstrated to induce heightened apomorphine-induced stereotypy and this has been interpreted as a reflection of altered striatal dopamine receptor site sensitivity. The finding that the serial administration of a chronic dopaminergic antagonist followed by a chronic dopaminergic agonist results in a return to normal of a striatal dopamine receptor-dependent behavior suggests that these chronic treatments affect dopamine receptor sites by different mechanisms of action. Since neuroleptic induced dopaminergic supersensitivity in animals is an accepted model of tardive dyskinesia, levodopa may also reverse dopaminergic supersensitivity in patients and might be a potential therapeutic agent in tardive dyskinesia.  相似文献   

5.
《Life sciences》1995,56(25):PL443-PL447
Since striatal dopamine D2 receptor supersensitivity in the etiology of tardive dyskinesia has been suggested and dopamine D2 receptors are known to inhibit adenylate cyclase activity resulting in a decrease of cyclic adenosine 3′,5′-monophosphate (cAMP) levels, we hypothesized that an increase in cAMP levels ameliorates the condition. In the present study, 21-day haloperidol treatment (1.5 mg/kg I.P.) in rats resulted in an increase in striatal [3H]-spiperone (D2) binding whereas [3H] SCH23390 (D1) binding was unaltered. This haloperidol treatment also induced a significantly increase in the frequency of involuntary chewing movements and tongue protrusions, which are considered as a model of tardive dyskinesia. These dyskinetic movements were suppressed by administration of rolipram (0.5 and 1.0 mg/kg I.P.), an inhibitor of the cAMP phosphodiesterase type IV. The present results suggest that selective cAMP phosphodiesterase type IV inhibitors could be putative therapeutic drugs for tardive dyskinesia.  相似文献   

6.
Prior exposure to neuroleptics augments the severity of apomorphine-induced stereotypy. This is regarded as a manifestation of increased sensitivity of striatal dopaminergic receptors and has been offered as a model of tardive dyskinesia. The purpose of this study was to determine if neuroleptics modify the sensitivity of mesolimbic dopaminergic receptors. Haloperidol or saline was administered to rats for four weeks. There followed a one week withdrawal period in which cannulae were placed bilaterally in the nucleus accumbens. Histological examination confirmed cannulae placement. Animals received 0, 1.0, 2.5, 5.0 or 10 μg of dopamine through both cannulae beginning eight days after the discontinuation of haloperidol or saline. Locomotor activity was measured in photocell-equipped cages. Animals with a prior exposure to haloperidol had significantly more locomotor activity than control animals. These results indicate that, in the rat, haloperidol can produce a supersensitive dopaminergic mesolimbic receptor.  相似文献   

7.
Choline chloride in animal models of tardive dyskinesia   总被引:2,自引:0,他引:2  
Rats treated chronically with haloperidol show evidence of supersensitive dopamine receptors by increased stereotypy when challenged with apomorphine. When such animals are treated acutely with choline chloride at the time of challenge, no changes in stereotypy were observed. Chronic treatment, either during or after induction of supersensitivity, mitigated stereotypy after challenge. This model of dopaminergic supersensitivity is pertinent to the development of tardive dyskinesia in man after treatment with neuroleptic drugs. Our results with choline chloride in the animal model are consistent with their therapeutic action in tardive dyskinesia.  相似文献   

8.
Acute administration of neuroleptic drugs causes blockade of cerebral dopamine receptors. It has been discovered that chronic administration of neuroleptic drugs may have different effects on cerebral dopamine systems. Initial antagonism of dopamine mediated behaviour, such as stereotypy, disappears and may be replaced by supersensitivity to dopamine agonists. Changes also occur in biochemical indices of dopamine receptors, such as in the number and affinity of specific binding sites identified by 3H-ligands labelling D-2 receptors, and in dopamine-stimulated adenylate cyclase activity. All these changes occur obviously in the striatum in response to chronic administration of a range of neuroleptic drugs. Lesser changes take place in the mesolimbic dopamine system. What happens in the mesocortical dopamine pathways is unknown. The consequence of such adaptive responses to chronic neuroleptic therapy may be of importance to understanding of tardive dyskinesia and schizophrenia.  相似文献   

9.
The desensitizing effects of MIF and lithium in respect to supersensitive striatal DA receptors in rats with unilateral lesion of the nigro-striatal pathway by 6-hydroxydopamine were revealed. Two groups of 6-hydroxydopamine-denervated rats were selected by their qualitative responsiveness to apomorphine-induced rotational behavior. It was found, that MIF and lithium (subchronic administration) did not modify behavioral supersensitivity in the highly sensitive group which showed two-peak rotational pattern in response to 0.05 mg/kg apomorphine, which was converted into a single-peak rotational pattern by haloperidol. On the contrary, administration of MIF and lithium for 21 days inhibited the apomorphine-induced rotations to 54 and 65% respectively in the less supersensitive group, which showed a single peak rotational pattern to apomorphine. Moreover, haloperidol showed the high antagonistic potency in these animals. These results suggest, that MIF and lithium might not exert desensitizing effects in the presence of high degree of supersensitivity of the striatal DA receptors, which is probably involved, for example, in the phenomenon of persistent tardive dyskinesia.  相似文献   

10.
P Muller  P Seeman 《Life sciences》1977,21(12):1751-1758
Since long-term neuroleptic therapy is known to alter brain dopaminergic sensitivity, we tested the effects of chronic haloperidol administration (10 mg/kg/day for over 3 weeks) on the amount of the dopamine receptors (using 3H-apomorphine and 3H-haloperidol) in various regions of the rat brain. To test whether the changes in dopamine receptors were selectively produced, we also assayed acetylcholine receptors (with 3H-quinuclidinyl benzilate or 3H-QNB), alpha-noradrenergic receptors (with 3H-WB-4101), 3H-serotonin receptors and 3H-naloxone receptors.The specific binding of 3H-haloperidol increased significantly by 34% in the striatum and by 45% in the mesolimbic region after long-term haloperidol. The specific binding of 3H-apomorphine also increased significantly by 77% in the striatum and 55% in the mesolimbic area. Although there was a small significant increase of 20% in specific 3H-serotonin binding in the striatum, no such increment occurred in the hippocampus or the cerebral cortex. No significantly different binding occurred for the other 3H-ligands in these brain regions except for a 13% increase in alpha-noradrenergic binding in the cerebral cortex. These results indicate that long-term haloperidol treatment produces rather selective increases in dopamine/neuroleptic receptors, without much change in 4 other types of receptors. Such relatively selective increments in these receptors may be the basis of dopaminergic supersensitivity (e.g. tardive dyskinesia) after long-term haloperidol.  相似文献   

11.
1. Nicotine, an important pharmacological component of cigarette smoke, is known to have significant effects on central nervous system (CNS) dopaminergic function. Although acute doses of nicotine have been shown to facilitate dopamine release, recent data indicate that chronic nicotine treatment may actually decrease CNS dopamine turnover in the striatum. 2. A number of epidemiological investigations have demonstrated that individuals who are or who have been smokers are less likely to develop idiopathic Parkinson's disease (a disorder involving a deficit in nigrostriatal dopaminergic neurotransmission). In addition, there is preliminary evidence that individuals with tardive dyskinesia (a hyperkinetic movement disorder observed in some cases of chronic neuroleptic treatment and thought by some to be associated with striatal dopamine receptor supersensitivity) are more likely to be smokers. 3. A unitary hypothesis is presented, proposing that smoking in early adult life may decrease CNS catecholamine turnover, thereby protecting against free radical formation from catecholamine oxidation that in turn damages striatal neurons. These individuals are thereby "protected" from the later development of Parkinson's disease. In this hypothetical scheme, individuals who are given neuroleptics and who also are smokers may develop a greater degree of dopamine receptor supersensitivity due to combined receptor blockade by neuroleptics and a decrease in CNS dopamine turnover caused by nicotine, resulting in an increased prevalence of tardive dyskinesia in this group.  相似文献   

12.
A frequent side effect in the long-term treatment of schizophrenia with the dopamine D2 antagonist haloperidol (HAL) is the appearance of tardive dyskinesia or, in animals, of repetitive involuntary vacuous chewing movements (VCMs). In rats, chronic HAL-induced or D1 receptor-stimulated VCMs are suppressed by D1 antagonists, suggesting that this behavioral supersensitivity is mediated by D1 receptors. The goal of this study was to investigate in vivo the possible relationship between D1 receptor binding and D1-mediated behavioral supersensitivity, after subchronic HAL treatments. D1 agonist R-SKF 82957 and antagonist SCH 23390, both labeled with carbon-11, were used to assess in vivo D1 receptor binding. Rats were treated with HAL (1.5 mg/kg, i.p.) or vehicle for 21 days, followed by a 4 day washout period. No significant difference was found in the regional brain binding of either radioligand. D1 receptor-mediated behaviors including VCMs, grooming, and rearing were measured in control or HAL-treated rats. VCMs were significantly increased in HAL-treated rats, suggesting D1 receptor stimulation and possibly receptor supersensitivity. This study failed to link the purported D1 receptor-mediated behaviors with in vivo receptor binding measures of R-[11C]SKF 82957 or [11C]SCH 23390 in rat brain regions.  相似文献   

13.
Electrophysiological and pharmacological analysis of L-Dopa-induced dyskinesia and tardive dyskinesia (L.DD) due to neuroleptics was performed on 12 patients with Parkinson's disease and on 12 others with psychotic diseases. This analysis included the examination of spinal reflexes, monosynaptic H reflex, polysynaptic cutaneous reflex of the lower limb, muscular responses to passive movement [stretch reflex and shortening reaction (SR)] and the study of the motor response to a dopaminergic stimulus (I.V. injection of Piribedil (PBD), a dopamine agonist). There was no difference in EMG activity between L.DD and TD. Three EMG patterns can be distinguished: anarchic discharge pattern (ADA), tonic grouping discharge pattern (AST) and rhythmic burst pattern (ABR). PBD effects indicate a possible relationship between the EMG patterns and the sensitivity level of the motor dopamine receptors. During L-Dopa dyskinesia and tardive dyskinesia, the same changes in spinal reflexes were observed. Muscle tone tested by muscular responses to passive movement (shortening and myotatic reaction) was normal. Monosynaptic excitability explored by H/M ratio was within the normal range. In contrast, the polysynaptic nociceptive reflex was increased in every case. In Parkinsonian patients with L-Dopa dyskinesia, this pattern of the spinal reflexes was significantly different in comparison to the rigid phase. Intravenous infusion of PBD suppressed tremor and provoked the occurrence of dyskinetic activity in Parkinsonian patients with L-Dopa dyskinesia during the rigid phase. During the dyskinetic phase, as in tardive dyskinesia, PBD increases these phenomena and changes EMG activity in rhythmic pattern. It is suggested that L-Dopa dyskinesia and tardive dyskinesia can be determined by testing EMG activity, spinal reflexes and dopaminergic reactivity. There is evidence to suggest that the various types of involuntary abnormal movement represent a single entity, and that dopamine receptor supersensitivity may be involved.  相似文献   

14.
A high striatum: cerebellum ratio of 77Br-p-bromospiperone (77Br-BrSp) was observed in rat brain following tail vein injection of the drug. Striatal 77Br-BrSp was stereospecifically displaced by the isomers of flupenthixol. After chronic haloperidol administration striatal dopamine receptor supersensitivity was demonstrated both by increased 3H-spiperone binding to striatal membranes in vitro and by increased striatal 77Br-BrSp content. These results confirm and extend previous findings and enhance interest in the use of 77Br-BrSp for the in vivo assessment of central dopamine receptors in man.  相似文献   

15.
The effects of chronic administration of quinacrine, a phospholipase A2 inhibitor, on striatal homovanillic acid (HVA) levels and behavioral sensitivity to challenge with a dopamine agonist were examined in rats. Moreover, the ability of chronic phospholipase A2 inhibition to modulate the behavioral supersensitivity and striatal HVA reduction induced by chronic haloperidol administration was also examined. Daily intraperitoneal injection of quinacrine resulted in a significant reduction of striatal HVA levels. Coadministration of haloperidol with quinacrine in this paradigm caused a more profound reduction of striatal HVA levels than either drug administered alone. That this effect of combined administration is not simply due to postsynaptic effects of quinacrine on dopamine receptor sensitivity is suggested by the fact that behavioral supersensitivity was not induced by quinacrine alone nor was the behavioral supersensitivity induced by the quinacrinehaloperidol combination greater than that induced by chronic haloperidol administration alone. There were no effects of any treatment condition on striatal levels of serotonin (5-HT) or 5-hydroxyindoleacetic acid (5-HIAA). These data implicate phospholipase A2 activity in the regulation of dopaminergic transmission.  相似文献   

16.
The effects of a prolonged treatment with cyclo (Leu-Gly) and/or haloperidol on biochemical parameters indicative of striatal dopamine target cell supersensitivity have been investigated in the rat. When given acutely, cyclo (Leu-Gly) (2 mg/kg sc) did not affect striatal homovanillic acid, dihydroxyphenylacetic acid and acetylcholine levels both under basal conditions or after acute haloperidol (1 mg/kg ip) treatment. When given concomitantly with haloperidol (infused by means of osmotic minipumps at a rate of 2.5 μg/h sc) for 14 days, cyclo (Leu-Gly) (2 mg/kg sc once daily) failed to prevent the fall of striatal dopamine metabolites observed 2 days following withdrawal and the tolerance to the elevation of dopamine metabolites which occurs in response to challenge with the neuroleptic during withdrawal. Prolonged treatment with cyclo (Leu-Gly) also failed to affect the tolerance to the decrease of striatal acetylcholine levels which occurs under chronic haloperidol treatment. These data suggest that the mechanism whereby cyclo (Leu-Gly) inhibits the development of neuroleptic-induced dopaminergic supersensitivity does not involve an action of the peptide on nigro-striatal dopaminergic and striatal cholinergic neurons and is probably exerted distally to both dopaminergic and cholinergic synapses.  相似文献   

17.
In the present experimental paradigm, we examine the effect of L-prolyl-L-leucyl-glycinamide (PLG) co-administration with haloperidol on vacuous chewing movements (VCM) in rats-a model of tardive dyskinesia (TD) in humans. We examined the dose dependent induction of VCM through both injected and orally administered PLG (MIF-1). Our results show significant levels of VCM attenuation (P<0.05) in rats treated with 10mg/kg of PLG. Doses of 1 and 100mg/kg were ineffective. Reductions were present in both orally treated and injected rats. We also examined the therapeutic effect of a peptidomimetic of PLG-PAOPA. PAOPA was able to produce similar behavioral effects to PLG at a dose, which was 100-fold lower than the effective dose of PLG. These results suggest that PLG may play a role in D2 receptor expression and function, as well as providing a therapy for neuroleptic induced TD.  相似文献   

18.
Ott MC  Costain WJ  Mishra RK  Johnson RL 《Peptides》2000,21(2):301-308
Acute treatment of rats with haloperidol results in a rapid and transient increase in striatal c-fos mRNA and Fos immunoreactivity. The induction of immediate early genes by haloperidol may be involved in the development of extrapyramidal side effects. L-Prolyl-L-leucyl-glycinamide (PLG, or MIF-1) has been observed to antagonize the development of haloperidol-induced D(2) receptor supersensitivity in rats. We investigated the modulatory effects of PLG on haloperidol-induced c-fos and Fos protein expression in the rat striatum. We report that coadministration of either PLG or the potent analog of PLG, 3(R)-[(2(S)-pyrrolidylcarbonyl)amino]-2-oxo-1-pyrrolidineacetam ide (PAOPA), attenuated haloperidol-induced c-fos and Fos expression. Haloperidol induced [2 mg/kg, intraperitoneally (i.p.)] c-fos and Fos expression by 500% and 100%, respectively. These responses were attenuated by 170% and 75%, respectively, when coadministered with PLG (20 mg/kg, i.p.) or by 79% by PAOPA (10 microg/kg, i.p.).  相似文献   

19.
Loss of mitochondrial membrane integrity and consequent release of apoptogenic factors may be involved in mediating striatal neurodegeneration after prolonged treatment with the typical antipsychotic drug haloperidol. Apoptosis-inducing factor (AIF), an intramitochondrial protein, may have a large influence on mediating haloperidol-induced striatal neuron destruction. Translocation of this protein from mitochondria to the nucleus promotes cell death independently of the caspase cascade. To examine how AIF may contribute to haloperidol-induced apoptosis, AIF translocation was observed in three haloperidol treatment paradigms. SH-SY5Y cells were treated with both haloperidol and clozapine and examined for AIF immunofluorescence. Immunohistochemistry was also performed on human striatal sections obtained from the Stanley Foundation Neuropathology Consortium and on rat brain sections following 28 days of antipsychotic drug treatment. In the cellular model haloperidol, but not clozapine treatment increased the nuclear AIF immunofluorescent signal and decreased cell viability. Corollary to these findings, striatal sections from patients who had taken haloperidol and rats who were administered haloperidol both had an elevated nuclear AIF signal. The results provide novel evidence implicating the involvement of AIF in haloperidol-associated apoptosis and its relevance to the development of typical antipsychotic drug-related adverse effects such as tardive dyskinesia.  相似文献   

20.
H Lal 《Life sciences》1975,17(4):483-495
Acute systematic administration of narcotic analgesics increases the firing rate of nerve cells in the zona compacta of the substantia nigra, causes an increase in the rate of dopamine turnover in striatal and mesolimbic areas of the brain, stimulates prolactin release, inhibits brain self-stimulation and discriminated shock-avoidance, blocks cardiovascular effects of systemically injected dopamine, blocks aggression as well as compulsive jumping in mice treated with DOPA and amphetamine, antagonizes stereotypy induced by apomorphine or amphetamine, and blocks apomorphine-induced vomiting in dogs. Chronic administration of narcotic analgesics results in withdrawal signs upon the cessation of the drug administration. These signs include, tolerance to the increase in striatal dopamine turnover caused by narcotic analgesics or haloperidol, aggressive behaviors which are further stimulated by directly or indirectly acting dopamine-receptor agonists and are blocked by dopamine-receptor blockers, facilitation of recovery from the “lateral hypothalamic syndrome”, an increase in basal levels of striatal adenylate cyclase which shows greater sensitivity to dopamine, and, an enhanced sensitivity to apomorphine-induced reduction of dopamine turnover. It is therefore, concluded that acute administration of narcotic drugs results in an inhibition of dopamine-receptor activity while chronic administration of these drugs results in an increased response of these dopamine receptors to dopamine agonists. Recent experiments on the interaction of other drugs with narcotic analgesics suggest that, unlike the direct action of neuroleptics on the dopamine receptors, the narcotic action on dopamine receptors is indirect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号