首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nature of the hepatic receptors that bind glycoproteins through fucose at the non-reducing termini of oligosaccharides in glycoproteins has been examined by three different approaches. First, the clearance from blood of intravenously injected glycoproteins was examined in mice with the aid of neoglycoproteins of bovine serum albumin (BSA). The clearance of fucosyl-BSA was rapid and was not strongly inhibited by glycoproteins that inhibit clearance mediated by the galactose or the mannose/N-acetylglucosamine receptors of liver. The clearance of Fuc alpha 1,3(Gal beta 1,4)GlcNAc-BSA (where Fuc is fucose) was inhibited weakly by either Fuc-BSA or Gal beta 1,4GlcNAc-BSA but strongly by a mixture of the two neoglycoproteins, suggesting that its clearance was mediated by hepatic galactose receptors as well as by a fucose-binding receptor. Second, the binding of neoglycoproteins to a membrane fraction of mouse liver was examined. Fuc-BSA binding to membranes was Ca2+ dependent but was not inhibited by glycoproteins that would inhibit the galactose or the mannose/N-acetylglucosamine receptors. In addition, the binding of Fuc-BSA and Gal beta 1,4GlcNAc-BSA differed as a function of pH, in accord with binding of Fuc-BSA through fucose-specific hepatic receptors. Finally, the binding of neoglycoproteins to the pure galactose lectin from rat liver was examined. Neither Fuc-BSA nor Fuc alpha 1,2Gal beta 1,4GlcNAc-BSA bound the galactose lectin, although Fuc alpha 1,3(Gal beta-1,4) GlcNAc-BSA bound avidly. Taken together, these studies suggest that a fucose-binding receptor that differs from the galactose and the mannose/N-acetylglucosamine receptors may exist in rat and mouse liver.  相似文献   

2.
The isolation of a rat alveolar macrophage lectin   总被引:3,自引:0,他引:3  
A lectin in rat alveolar macrophage membranes with a high affinity for binding ligands containing L-fucose and N-acetyl-D-glucosamine has been isolated by affinity chromatography on Fuc-BSA-Sepharose (where Fuc is fucosyl and BSA is bovine serum albumin). The lectin was extracted from rat lung homogenates with Triton X-100, absorbed from the extract onto Fuc-BSA-Sepharose in the presence of Ca2+ and eluted by removal of Ca2+. After a second adsorption to and elution from Fuc-BSA-Sepharose, three protein species were detected electrophoretically in fractions that bind Fuc-BSA. One, which was the mannose/N-acetylglucosamine lectin (Mr = 32,000) found earlier in hepatocytes, was removed by adsorption on anti-lectin IgG-Sepharose. Another (Mr = 46,000) was removed by adsorption to Fuc-BSA-Sepharose and elution with galactose. The remaining lectin (Mr = 180,000) bound fucose and N-acetylglucosamine but not galactose. Binding was maximal between pH 6.5 and 9.0 and dependent on Ca2+. Immunocytological analysis with rabbit anti-lectin IgG and fluorescein-labeled goat anti-rabbit IgG revealed the lectin to be in rat alveolar macrophages and nonparenchymal cells of liver. Thus, the lectin appears to be present in macrophages and is likely involved in receptor-mediated endocytosis. It is distinctly different structurally from the hepatocyte lectin with a similar ligand-binding specificity.  相似文献   

3.
Rabbit alveolar macrophages express a plasma-membrane receptor that recognizes glycoprotein ligands bearing terminal mannose, fucose or N-acetylglucosamine residues. Macrophage membranes were washed extensively with buffers containing high salt and mannose or EDTA to remove endogenously bound ligand, before Triton X-100 extraction. The extracts were chromatographed on mannose-Sepharose. Elution with mannose, followed by dialysis and a second mannose-Sepharose step with EDTA elution, produced a preparation that migrated as single protein band of Mr 175,000 on SDS/polyacrylamide-gel electrophoresis. The purified protein binds mannose-BSA (bovine serum albumin) with a dissociation constant of 1.9 X 10(-8) M. Ligand binding is Ca2+ and pH-dependent, with maximal binding at neutral pH and low binding below pH 6.0. The binding of 125I-mannose-BSA is inhibited by ligands bearing high-mannose oligosaccharides, such as mannan or beta-glucuronidase, as well as the monosaccharides mannose, fucose and N-acetylglucosamine. Galactose, galactosylated BSA, glucose and mannose 6-phosphate are non-inhibitory. Amino acid compositional analyses indicate that the receptor contains high concentrations of aspartate/asparagine and glutamate/glutamine, and low amounts of methionine. The carbohydrate composition was studied by lectin overlays of electrophoretically transferred receptor, and the results indicate the presence of N-linked complex and O-linked sialylated oligosaccharides. A protein of Mr 175,000 was immunoprecipitated from radio-iodinated macrophage membranes with an antibody generated against purified rabbit lung mannose receptor.  相似文献   

4.
A lectin with a high affinity for binding ligands through fucose residues has been purified to homogeneity from rat liver. Affinity chromatography of the lectin on fucosyl-bovine serum albumin-agarose is the key step in the purification. Contaminating amounts of a previously described lectin that binds mannose and N-acetylglucosamine are removed from the fucose-binding lectin by either immunoadsorption on anti-mannose/N-acetylglucosamine lectin IgG-agarose or by specific elution of the fucose-binding lectin from fucosyl-bovine serum albumin-agarose. The pure fucose-binding lectin contains two polypeptide subunits with molecular weights of 88,000 and 77,000, respectively, as judged by gel electrophoresis. Peptide maps of the subunits, however, show that they are very similar structurally. In addition, peptide maps show that the fucose lectin is structurally distinct from other rat hepatic lectins. This is supported by the lack of cross-reaction among the different rat liver lectins and their specific antibodies and the inability of specific antibodies to the mannose/N-acetylglucosamine lectin to inhibit the binding of fucosyl-bovine serum albumin by the fucose lectin.  相似文献   

5.
The rat hepatic asialoglycoprotein receptor mediates clearance of galactose- and N-acetylgalactosamine-terminated glycoproteins by endocytosis, binding ligands through a C-type, Ca(2+)-dependent carbohydrate-recognition domain (CRD) at extracellular pH and releasing them at lower pH in endosomes. At physiological Ca(2+) concentrations, the midpoint for ligand release from the CRD of the major subunit of the receptor is pH 7.1. In contrast, the midpoint is pH 5.0 for a galactose-binding derivative of the homologous C-type CRD of serum mannose-binding protein, which would thus not efficiently release ligand at an endosomal pH of 5.4. Site-directed mutagenesis of the CRD from the major subunit of the asialoglycoprotein receptor has been used to identify residues that are essential for efficient release of ligand at endosomal pH. The effects of changes to residues His(256), Asp(266), and Arg(270) singly and in combination indicate that these residues reduce the affinity of the CRD for Ca(2+), so that ligands are released at physiological Ca(2+) concentrations. The proximity of these three residues to the ligand-binding site at Ca(2+) site 2 of the domain suggests that they form a pH-sensitive switch for Ca(2+) and ligand binding. Introduction of histidine and aspartic acid residues into the mannose-binding protein CRD at positions equivalent to His(256) and Asp(266) raises the pH for half-maximal binding of ligand to 6.1. The results, as well as sequence comparisons with other C-type CRDs, confirm the importance of these residues in conferring appropriate pH dependence in this family of domains.  相似文献   

6.
Efficient release of ligands from the Ca(2+)-dependent carbohydrate-recognition domain (CRD) of the hepatic asialoglycoprotein receptor at endosomal pH requires a small set of conserved amino acids that includes a critical histidine residue. When these residues are incorporated at corresponding positions in an homologous galactose-binding derivative of serum mannose-binding protein, the pH dependence of ligand binding becomes more like that of the receptor. The modified CRD displays 40-fold preferential binding to N-acetylgalactosamine compared with galactose, making it a good functional mimic of the asialoglycoprotein receptor. In the crystal structure of the modified CRD bound to N-acetylgalactosamine, the histidine (His(202)) contacts the 2-acetamido methyl group and also participates in a network of interactions involving Asp(212), Arg(216), and Tyr(218) that positions a water molecule in a hydrogen bond with the sugar amide group. These interactions appear to produce the preference for N-acetylgalactosamine over galactose and are also likely to influence the pK(a) of His(202). Protonation of His(202) would disrupt its interaction with an asparagine that serves as a ligand for Ca(2+) and sugar. The structure of the modified CRD without sugar displays several different conformations that may represent structures of intermediates in the release of Ca(2+) and sugar ligands caused by protonation of His(202).  相似文献   

7.
Carbohydrate binding specificity of the galactose-specific, major lectin of mistletoe extract (ML-1) was studied by an inhibition assay using monosaccharides, monosaccharide derivatives, disaccharides, and compounds containing multiple galactosyl terminals. The results indicate that 1) both alpha- and beta-galactosyl residues are recognized equally well; 2) each of the hydroxyl groups of galactose contributes to varying degrees to the binding process, the 4-OH being the most important and the 6-OH the least important hydroxyl group; 3) disaccharide sequences of Gal beta 2Gal and Gal beta 3Gal have much higher affinity than galactose, whereas affinity of all other Gal-disaccharides is only slightly better than galactose; 4) macromolecular ligands having 10 or more terminal galactosyl residues have 500-fold higher affinity than Gal; and 5) a group on ML-1 with pK alpha of 4.8 appears to be involved in the binding of ligand.  相似文献   

8.
A small-scale affinity chromatographic procedure was developed to screen for the presence of fucose and mannose/N-acetylglucosamine-binding lectins in small amounts of rat tissues. Of all tissues examined, only the liver contained the fucose-binding lectin, whereas both liver and blood serum contained the mannose/N-acetylglucosamine lectin. By means of immunocytological methods using antibodies to hepatic lectins, the fucose lectin was shown to be uniquely present in Kupffer cells and absent in all other types of rat macrophages examined. The binding and uptake of different neoglycoproteins by nonparenchymal cell fractions of liver indicated that the fucose-binding lectin was either not responsible for the uptake or that more than one lectin was acting. With the identification of another lectin (Mr = 180,000) by the above screening procedure for hepatic lectins and the results of studies in the following paper (Haltiwanger, R.S., and Hill, R. L. (1986) J. Biol. Chem. 261, 7440-7444) two lectins appear to be involved. A small amount of the hepatic mannose/N-acetylglucosamine lectin was found by the above screening procedure to have a higher affinity for L-fucosyl-bovine serum albumin-Sepharose than the majority of the lectin in hepatocytes. This lectin, called the high affinity form, was purified and its properties examined. On a weight basis the high affinity form bound 7-12 times more ligand than the normal form. Its Ka for L-fucosyl-bovine serum albumin was 2.3 X 10(9) M-1 compared to 3.5 X 10(8) M-1 for the normal form. Moreover, the concentrations of monosaccharides required to inhibit the high affinity form were about 3 times less than those required to inhibit binding of the normal form. The two forms, however, have identical molecular weights (32,000) under reducing and nonreducing conditions, bind anti-lectin antibodies in the same way, and give identical peptide maps after V-8 protease digestion. The structural basis for the different binding affinities of the two forms remains unknown.  相似文献   

9.
The binding site of chicken hepatic lectin   总被引:3,自引:0,他引:3  
The binding site of the chicken hepatic lectin involved in the clearance of N-acetylglucosamine-terminated serum glycoproteins was explored by a competitive binding assay using 3H-labeled agalacto-orosomucoid and various glycoproteins, polysaccharides, monosaccharides, and glycosides as inhibitors. The binding site is relatively small, involving a terminal nonreducing DGlcNAc structure with an equatorial N-acetamido group on carbon 2 and an equatorial hydroxyl group on carbon 4. Among the mono- and oligosaccharides tested, benzyl alpha DGlcNAc was the best inhibitor, being three times as effective as DGlcNAc; and in general, all alpha-anomeric glycosides were better than beta-glycosides. All oligosaccharides with terminal nonreducing beta DGlcNAc have almost the same inhibitory power, whereas those with nonreducing DGlc or DGal were relatively inactive. Among the serum and blood group glycoproteins, a Smith degraded human H substance with several exposed terminal nonreducing beta DGlcNAc residues was the most active and twice as effective as agalacto-orosomucoid and an A substance, Hog 75 10% precipitate. Almost all hog preparations, some with A or with H activity, were equally effective. A glycopeptide with terminal DGlcNAc was twice as active as one with terminal nonreducing DMan and DGlcNAc residues and almost three times as potent as one with terminal nonreducing DGal; a glycopeptide with terminal sialic acid was inactive. The slopes of the inhibition lines differed, reflecting the heterogeneity of the various determinant groups on the glycoproteins.  相似文献   

10.
Affinity chromatography provides a powerful tool for isolation of carbohydrate-binding proteins. However, the choice of the ligand and spacer has an important impact on effectiveness. The influence of several different ligands on qualitative and quantitative aspects of the purification of two beta-galactoside-specific lectins has been evaluated. Sepharose was modified by coupling four types of neoglycoproteins (galactosylated or lactosylated bovine serum albumin with increasing sugar content) and two naturally occurring asialoglycoproteins at similar densities. Carbohydrate ligands at essentially equal density were made accessible to the lectins by seven commonly used methods. The yield of mistletoe lectin was high when lactosylated neoglycoproteins were used for separation. For these resins the sugar incorporation exceeded 10 sugar groups per protein carrier molecule. The yield was similarly high with the asialoglycoproteins and with lactose; the sugar was coupled to the resin as a p-aminophenyl derivative or by means of divinyl sulfone activation. An epoxy group in linkages of galactose or lactose decreased the binding capacity. A quantitatively similar degree of protein yields was obtained for the beta-galactoside-binding protein of bovine heart, although different proteins were obtained when neoglycoproteins were used as ligand. The nature of the affinity ligand in lectin purification can increase the yield and may also influence the profile of the carbohydrate-binding proteins.  相似文献   

11.
Two different mannose-binding proteins (MBP-A and MBP-C), which show 56% sequence identity, are present in rat serum and liver. It has previously been shown that MBP-A binds to a range of monosaccharide-bovine serum albumin conjugates, and that, among oligosaccharide ligands tested, preferential binding is to terminal nonreducing N-acetylglucosamine residues of complex type N-linked oligosaccharides. In order to compare the binding specificity of MBP-C, an expression system has been developed for production of a fragment of this protein which contains the COOH-terminal carbohydrate-recognition domain. After radioiodination, the domain has been used to probe natural glycoproteins, neoglycoproteins, and neoglycolipids. Like MBP-A, MBP-C binds several different monosaccharides conjugated to bovine serum albumin, including mannose, fucose, and N-acetylglucosamine, although binding to the last of these is relatively weaker than observed for MBP-A. The results of binding to natural glycoproteins and to neoglycolipids containing oligosaccharides derived from these proteins are most compatible with the interpretation that MBP-C interacts primarily with the trimannosyl core of complex N-linked oligosaccharides, with additional ligands being terminal fucose and perhaps also peripheral mannose residues of high mannose type oligosaccharides. This binding specificity is thus quite distinct from that of MBP-A. The presence of multiple MBPs with distinct binding specificities in preparations derived from serum and liver explains conflicting conclusions which have been reached about carbohydrate recognition by these proteins.  相似文献   

12.
Ligand binding to the PTH1 receptor is described by a "two-site" model, in which the C-terminal portion of the ligand interacts with the N-terminal domain of the receptor (N interaction), and the N-terminal region of the ligand binds the juxtamembrane domain of the receptor (J interaction). Previous studies have not considered the dynamic nature of receptor conformation in ligand binding and receptor activation. In this study the ligand binding mechanism was compared for the G-protein-coupled (RG) and uncoupled (R) PTH1 receptor conformations. The two-site model was confirmed by demonstration of spatially distinct binding sites for PTH(3-34) and PTH(1-14): PTH(1-14), which binds predominantly to the J domain, only partially inhibited binding of 125I-PTH(3-34); and PTH(3-34), shown to bind predominantly to the N domain, only partially inhibited PTH(1-14)-stimulated cAMP accumulation. To assess the effect of R-G coupling, ligand binding to R was measured by displacement of 125I-PTH(3-34) with 30 microM guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) present, and binding to RG was measured by displacement of 125I-[MAP]PTHrP(1-36) (where MAP is model amphipathic peptide), a new radioligand that binds selectively to RG. Agonists bound with higher affinity to RG than R, whereas antagonists bound similarly to these states. The J interaction was responsible for enhanced agonist binding to RG: residues 1 and 2 were required for increased PTH(1-34) affinity for RG; residue 5 of MAP-PTHrP(1-36) was a determinant of R/RG binding selectivity, and PTH(1-14) bound selectively to RG. The N interaction was insensitive to R-G coupling; PTH(3-34) binding was GTPgammaS-insensitive. Finally, several observations suggest the receptor conformation is more "closed" at RG than R. At the R state, an open conformation is suggested by the simultaneous binding of PTH(1-14) and PTH(3-34). At RG PTH(1-14) better occluded binding of 125I-PTH(3-34) and agonist ligands bound pseudo-irreversibly, suggesting a more closed conformation of this receptor state. The results extend the two-site model to take into account R and RG conformations and suggest a model for differences of receptor conformation between these states.  相似文献   

13.
The parameters of the reaction between a rat alveolar macrophage lectin (Mr = 180,000) and its ligands have been examined. The reaction is dependent on Ca2+ over the optimal pH range for binding. The apparent dissociation constant for fucosyl bovine serum albumin, the standard ligand used in these studies, is 1.4 X 10(-10) M. The ligand binding specificity was determined by measurement of the inhibition of binding of fucosyl bovine serum albumin by various glycoproteins and saccharides. D-Mannose, L-fucose, and N-acetyl-D-glucosamine were the most effective inhibitors, and D-galactose was much poorer. The equatorial hydroxyl groups on the C-3 and C-4 of the mannose ring are important in the lectin-ligand interaction, and the axial hydroxyl group on the C-2 contributes to a lesser extent. Immunocytological studies revealed that the lectin isolated from alveolar macrophages is widely distributed in other rat tissues. Hepatocytes are devoid of the lectin, but hepatic Kupffer cells and endothelial cells contain significant amounts. This was confirmed by isolation of the lectin from liver. Spleen and skeletal muscle also contain lectin, but much smaller amounts were found in brain, kidney, and heart muscle.  相似文献   

14.
We present the results of a series of 10-ns molecular dynamics simulations on Pseudomonas aeruginosa lectin-II (PA-IIL) and its complexes with four different monosaccharides. We compare the saccharide-free, saccharide-occupied, and saccharide- and ion-free forms of the lectin. The results are coupled with analysis of the water density map and calcium coordination. The water density pattern around the binding site in the free lectin molecular dynamics was fitted with that in the X-ray and with the hydroxyl groups of the monosaccharide within the lectin/monosaccharide complexes and the best ligand was predicted based on the best fit. Interestingly, the water density pattern around the binding site in the uncomplexed lectin exactly fitted the O2, O3, and O4 hydroxyl groups of the fucose complex with the lectin. This observation could lead to a hypothesis that the replacement of these three water molecules from the binding site by the monosaccharide decreases the entropy of the complex and increases the entropy of the water molecules, which favors the binding. It suggests that the high density peaks of the solvent around the binding site in the free protein could be the tool to predict hydroxyl group orientation of the sugar in the protein/sugar complexes. The high affinity of PA-IIL binding site is also attributed to the presence of two calcium ions, each of them making five to six coordinations with the protein part and two coordinations with either water or the monosaccharide. When the calcium ions are removed from the simulated system, they are replaced by sodium ions from the solvent. These observations rationalize the high binding affinity of PA-IIL towards fucose.  相似文献   

15.
The genome of Drosophila melanogaster encodes several proteins that are predicted to contain Ca(2+)-dependent, C-type carbohydrate-recognition domains. The CG2958 gene encodes a protein containing 359 amino acid residues. Analysis of the CG2958 sequence suggests that it consists of an N-terminal domain found in other Drosophila proteins, a middle segment that is unique, and a C-terminal C-type carbohydrate-recognition domain. Expression studies show that the full-length protein is a tetramer formed by noncovalent association of disulfide-linked dimers that are linked through cysteine residues in the N-terminal domain. The expressed protein binds to immobilized yeast invertase through the C-terminal carbohydrate-recognition domain. Competition binding studies using monosaccharides demonstrate that CG2958 interacts specifically with fucose and mannose. Fucose binds approximately 5-fold better than mannose. Blotting studies reveal that the best glycoprotein ligands are those that contain N-linked glycans bearing alpha1,3-linked fucose residues. Binding is enhanced by the additional presence of alpha1,6-linked fucose. It has previously been proposed that labeling of the Drosophila neural system by anti-horseradish peroxidase antibodies is a result of the presence of difucosylated N-linked glycans. CG2958 is a potential endogenous receptor for such neural-specific carbohydrate epitopes.  相似文献   

16.
The receptor for alpha 2-macroglobulin-proteinase complexes (alpha 2MR) was purified recently, and its binding of ligand was shown to depend on calcium ions (Moestrup, S. K., and Gliemann, J. (1989) J. Biol. Chem. 264, 15574-15577). This paper shows that the 440-kDa human placental alpha 2MR is a cysteine-rich glycoprotein with high affinity calcium binding sites important for receptor conformation; and the relationship between Ca2+ concentration and receptor function is presented. Autoradiography showed 45Ca2+ binding to the 440-kDa alpha 2MR blotted onto nitrocellulose from a sodium dodecyl sulfate-polyacrylamide gel. alpha 2MR immobilized on nitrocellulose in the absence of sodium dodecyl sulfate bound 45Ca2+ in the presence of 5 mM Mg2+, and 2-3 microM unlabeled Ca2+ was required to displace half of the bound 45Ca2+. The calcium concentration dependence showed upward concave Scatchard plots, and the number of binding sites was estimated to be approximately eight/alpha 2MR molecule. Binding of calcium did not change in the pH range 6.5-8.0 but decreased at lower pH values. Addition of Ca2+ to the medium was necessary for receptor binding of the alpha 2-macroglobulin-trypsin complex, and half of the maximal binding capacity was obtained with about 16 micrograms Ca2+ at pH 7.8. The requirement for calcium was increased at lower pH values, and half of the maximal 125I-alpha 2M-trypsin binding was obtained with about 30-40 microM Ca2+ at pH 7.0. Monoclonal antibodies were produced against alpha 2MR, and one of them distinguished between the Ca2(+)-occupied and nonoccupied forms. Like Ca2+, Sr2+ and Ba2+ elicited ligand binding affinity and competed for binding with 45Ca2+ in the order Ca2+ greater than Sr2+ greater than Ba2+. In conclusion, calcium ions bind specifically to alpha 2MR with high affinity, and it is likely that several sites on the alpha 2MR molecule have to be occupied to elicit the conformation recognizing the ligand.  相似文献   

17.
Asialoglycoprotein receptor (ASGP-R) is an endocytic C-type lectin receptor in hepatocytes that clears plasma glycoconjugates containing a terminal galactose or N-acetylgalactosamine. The carbohydrate recognition domain (CRD) of ASGP-R has three Ca(2+) binding sites (sites 1, 2 and 3), with Ca(2+) at site 2 being directly involved in ligand binding. Following endocytosis, the ligands are released from ASGP-R in endosomes to allow receptor recycling to the cell membrane. Although dissociation of the receptor-ligand complex is mediated by the acidic environment within the mature endosomes, many of these complexes also dissociate in the early time of endocytosis, where pH is approximately neutral. To investigate the mechanism of ligand release from ASGP-R in early endosomes, we examined the binding mode of Ca(2+) and ligands to ASGP-R CRD by NMR. We demonstrate that sites 1 and 2 of ASGP-R are high affinity Ca(2+) binding sites, site 3 is low affinity, and that Ca(2+) ions bind to sites 1 and 2 cooperatively. The pH and Ca(2+) concentration dependences of Ca(2+) binding states indicated that early endosome conditions favor apo-ASGP-R CRD, allowing ligand release. Our results elucidated that the cooperative binding mode of Ca(2+) makes it possible for ASGP-R to be more sensitive to Ca(2+) concentrations in early endosomes, and plays an important role in the efficient release of ligand from ASGP-R. In our proposed mechanism, ASGP-R can rapidly release Ca(2+) and its ligand even at nearly neutral pH. Sequence comparisons of endocytic C-type lectin receptors suggest that this mechanism is common in their family.  相似文献   

18.
Quantitation of tissue distribution of radioiodinated neoglycoproteins 1 h after intravenous injection into mice allowed to evaluate their suitability to uncover potential selectivity in tracer retention. Variations within the panel of neoglycoproteins were introduced to the carbohydrate determinant, its density and linkage to the carrier. Five arrays of neoglycoproteins, encompassing up to twelve different carbohydrate moieties were used. The individual response on the level of organ content showed differences, accounted for by carbohydrate structure and density. However, increase in sugar density eventually caused general decrease in tissue retention, emphasizing the importance of synthetic parameters. Attachment of sugar residues to the spacer via primarily the C-6 group of monosaccharides led to rather prolonged survival in circulation of the resulting neoglycoprotein compared to the application of neoglycoproteins with p-aminophenyl glycosides as derivatives for coupling. Besides applying neoglycoproteins tissue uptake was also measured for several organs, when four mammalian lectins were employed as radiotracers. These lectins bind to cellular carbohydrate ligands, namely beta-galactosides, alpha-fucosides or heparin. Differences were measured for retention in liver, kidneys, spleen, stomach, thymus and bone marrow. The distinct properties of different tissues with respect to binding of neoglycoproteins as well as to endogenous lectins, exhibiting a certain degree of selectivity, are a step within the framework to attempt to therapeutically exploit the carrier potential of probes by recognitive protein-carbohydrate interactions.  相似文献   

19.
A lectin-like molecule (macrophage lectin) was purified from murine peritoneal exudate macrophages which had been induced with an antitumor streptococcal preparation, OK-432. The purified macrophage lectin from both 3H-labeled and unlabeled macrophages after rechromatography on a beta-D-galactose-Bio-Gel P-100 column gave a broad single band corresponding to 45-60 kDa on SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The broadness of this band was due to high N-glycosylation of the lectin, because the lectin gave a compact band corresponding to 35 kDa on SDS-PAGE after deglycosylation. The lectin required Ca2+ for binding and showed an optimum pH of around 6. The sugar specificity of the lectin was examined by means of an inhibition assay using simple sugars and neoglycoproteins. The lectin was found to be specific for D-galactose/N-acetyl-D-galactosamine, and not inhibited with D-mannose or N-acetyl-D-glucosamine at all. The lectin was detected on the surface of OK-432-elicited and thioglycolate-elicited macrophages, but it was not detected on resident macrophages. Moreover, the binding of tumor cells to macrophages was inhibited by the addition of the purified lectin to the binding mixture. These results suggest that this lectin is expressed on the surface of activated macrophages, and that it participates in the interaction between tumoricidal macrophages and tumor cells.  相似文献   

20.
The Gal/GalNAc-specific lectin on the surface of rat peritoneal macrophages (macrophage asialoglycoprotein binding protein, M-ASGP-BP), which consists of a single polypeptide chain of 42 kDa, can form a homooligomeric receptor exhibiting high affinity for asialoorosomucoid (ASOR) [Ozaki K., Ii M., Itoh N., Kawasaki T. (1992)J Biol Chem 267: 9229–35]. In this study, the binding affinity of M-ASGP-BP was studied by using a series of synthetic or natural glycosides as inhibitors of125I-ASOR binding to recombinant M-ASGP-BP expressed on COS-1 cells (rM-ASGP-BP), and the results were compared with those of human hepatic lectin (HHL) on Hep G2 cells. Clustering of multiple Gal (or GalNAc) residues increased the binding affinity to M-ASGP-BP as well as to HHL. In contrast to HHL and other mammalian hepatic lectins, rM-ASGP-BP bound Gal residues tighter than GalNAc residues. A galactose-terminated triantennary N-glycoside, having oneN-acetyl-lactosamine unit on the 6 branch and twoN-acetyl-lactosamine units on the 3 branch of the trimannosyl core structure, showed affinity enhancement of 105 over a monovalent ligand for HHL, while the same glycopeptide showed enhancement of about 2000-fold for rM-ASGP-BP. These results suggest that spatial arrangements of sugar combining sites and subunit organization of macrophage and hepatic lectins are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号