首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L. Högbom  P. Högberg 《Oecologia》1991,87(4):488-494
Summary Current and maximally induced nitrate reductase activity (NRA), total-N, nitrate, K, P, Ca, Mg, Mo and sucrose in leaves ofDeschampsia flexuosa was measured three times during the vegetation period in forests along a deposition gradient (150 km) in south Sweden, in north Sweden where the nitrogen deposition is considerably lower, and at heavily N-fertilized plots. In addition, the interaction between nitrogen nutrition and light was studied along transects from clearings into forest in both south and north Sweden. Plants from sites with high nitrogen deposition had elevated current NRA compared to plants from less polluted sites, indicating high levels of available soil nitrate at the former. Current NRA and total N concentration in grass from sites with high deposition resembled those found at heavily N-fertilized plots. Under such circumstances, the ratio current NRA: maximally induced NRA as well as the concentration of nitrate was high, while the concentration of sucrose was low. This suggests that the grass at these sites was already utilizing a large portion of its capacity to assimilate nitrate. Light was found to play an important role in the assimilation of nitrate; leaf concentration of sucrose was found to be negatively correlated with both nitrate and total N. Consequently, grass growing under dense canopies in south Sweden is not able to dilute N by increasing growth. The diminished capacity of the grass to assimilate nitrate will increase leaching losses of N from forests approaching N saturation.  相似文献   

2.
Nitrate reductase activity (NRA) in different compartments of 14 Mediterranean geophytes (bulbous, tuberous and rhizomatous) and actual mineral nitrogen (NO3 and NH4+) in their soils were investigated. The nitrate reduction capacities of each species were determined as NRA per total plant material. Differences among compartments for NRA were significant in all species. The highest NRA was found in leaves of tuberous species (Anemone coronaria, Cyclamen coum) and of most bulbous species (Allium flavum, Allium guttatum, Bellevelia sarmatica, Galanthus plicatus, Leucojum aestivum, Ornithogalum nutans, Tulipa sylvestris). Therefore, in this group of species the contribution of the leaves to total plant NRA was the highest. The other bulbous species (Allium scorodoprasum, Crocus chrysanthus, Fritillaria bithynica, Muscari neglectum) and one rhizomatous taxon (Iris suaveolens) have a different NRA distribution within the plants. In these species the highest values of NRA were found in different organs. For example, in Allium scorodoprasum the highest NRA was in tunics, and in flowers in M. neglectum. Although leaves are the main compartments reducing nitrate in most of the studied geophytes, other compartments also contribute to total plant nitrate reduction.Our results show that the nitrate reduction capacity is different among geophyte species. Even if it roughly reflects the nitrogen supply in a habitat, differences in nitrate reduction capacities of different species collected from same sites indicate that the nitrate reducing capacity is species-specific.  相似文献   

3.
Abstract. Vegetated sites below bird-nesting cliffs are uniquely nutrient-rich habitats in the otherwise nutrient-poor arctic environment. Plants from six distinct vegetation zones below such a cliff at 79° N, Svalbard, Norway, were collected for analysis under greenhouse conditions. Leaf nitrate reductase activity (NRA) was analysed in 42 species representing 25 % of the Svalbard vascular flora. The species mean NRA values ranged from 0.37 to 8.34 μmols of nitrite ions formed per gram of plant fresh weight per hour. Species in the vegetated zone growing closest to recent guano deposits had the highest NRA values, (mean = 4.47) whereas plants growing farther below the cliff had significantly lower values (mean = 0.55). A similar pattern was detected in a duplicate set of plants induced with 15 mM KNO3; vegetation zone means for NRA ranged from 5.08 to 0.98 μmols of nitrite ions formed per gram of plant fresh weight per hour. Maximally induced species NRA values were highest in the first zones below the cliff and decreased downslope. This gradient paralleled the steep soil nitrate gradient, which decreased from 13.84 mg/l at the cliffbase to 1.03 mg/l downslope. Correspondingly, soil ammonium ions in the vegetation zones ranged between 1.96 mg/l at the cliff-base to 0.03 mg/l downslope. Correlations between NRA and soil nitrate provide a systematic basis for assigning scalar ‘nitrogen figures’ as indicators of habitat preference, here for the first time applied to arctic species.  相似文献   

4.
Aims For many terrestrial plants, nitrate is the most important form of available soil nitrogen for growth. However, many plant species, which grow on acidic, ammonium-dominated soils, exhibit a constantly low level of nitrate reductase activity (NRA). Little is known about NRA in high-mountain vascular plants in similar conditions. We tested the hypothesis that high-mountain vascular plants in acidic and ammonium-dominated habitats have low levels of NRA.  相似文献   

5.
硝酸盐对硝酸还原酶活性的诱导及硝酸还原酶基因的克隆   总被引:16,自引:0,他引:16  
硝酸盐在植物体内的积累过多已成为影响蔬菜品质并影响人类健康的重要因素。硝酸还原酶(NR)是硝酸盐代谢中的关键酶,提高其活性有利于硝酸盐的降解。为了解植物不同组织中NR的活性,用活体测定法检测了经50mmol/L的KNO3诱导不同时间后的油菜、豌豆和番茄幼苗根茎叶中NR活性,同时为了明确外源诱导剂浓度与植物体内NR活性的关系,检测了经不同浓度KNO3诱导2h后的矮脚黄、抗热605、小白菜和番茄叶片中的NRA。结果表明,不同植物组织NR活性有很大差异,叶中NR活性较高,根其次,茎最低;不同植物的NR活性随诱导时间呈不同的变化趋势,相同植物不同组织的NR活性变化趋势相似;不同植物叶片NRA为最高时KNO3浓度不同。用30mmol/L的KNO3诱导番茄苗2h后,从番茄根和叶中提取总RNA,用RT-PCR方法获得NR cDNA,全长2736bp,编码911个氨基酸。为进一步利用该基因提高植物对硝酸盐的降解能力打下基础。  相似文献   

6.
Summary Nitrate reductase activity (NRA), nitrate content and biomass components of leaflets, leaf stalks, old stem, current-year stem and roots of ash trees (Fraxinus excelsior L.) growing in their natural habitats were investigated. In addition, NRA, total nitrogen and nitrate concentration were analyzed in the leaves and roots of ash trees from four different field sites. The highest NRA per gram biomass and also per total compartment biomass was found in the leaflets, even though root biomass was much higher than total leaflet biomass. The highest nitrate concentrations were found in the leaf stalks. Correlations between nitrate availability in the soil and NRA in leaves were not significant due to high variability of the actual soil nitrate concentrations. The seasonal variation in foliar NRA, nitrate concentration and total nitrogen concentration is much smaller in F. excelsior than reported for herbaceous species and is mainly caused by changes in the actual soil nitrate availability and by senescence of the leaves.  相似文献   

7.
With the aims (1) to test whether the different natural occurrence of twoPlantago species in grasslands is explained by a different preference of the species for nitrate or ammonium; (2) to test whether the different occurrence is explained by differences in the flexibility of the species towards changes in the nitrogen form; (3) to find suitable parameters as a tool to study ammonium and nitrate utilization of these species at the natural sites in grasslands, plants ofPlantago lanceolata andP. major ssp.major were grown with an abundant supply of nitrate, ammonium or nitrate+ammonium as the nitrogen source (0.5 mM). The combination of ammonium and nitrate gave a slightly higher final plant weight than nitrate or ammonium alone. Ammonium lowered the shoot to root ratio inP. major. Uptake of nitrate per g root was faster than that of ammonium, but from the mixed source ammonium and nitrate were taken up at the same rate. In vivo nitrate reductase activity (NRA) was present in both shoot and roots of plants receiving nitrate. When ammonium was applied in addition to nitrate, NRA of the shoot was not affected, but in the root the activity decreased. Thus, a larger proportion of total NRA was present in the shoot than with nitrate alone. In vitro glutamate dehydrogenase activity (GDHA) was enhanced by ammonium, both in the shoot and in the roots.In vitro glutamine synthetase activity (GSA) was highest in roots of plants receiving ammonium. Both GDHA and GSA were higher inP. lanceolata than inP. major. The concentration of ammonium in the roots increased with ammonium, but it did not accumulate in the shoot. The concentration of amino acids in the roots was also enhanced by ammonium. Protein concentration was not affected by the form of nitrogen. Nitrate accumulated in both the shoot and the roots of nitrate grown plants. When nitrate in the solution was replaced by ammonium, the nitrate concentration in the roots decreased rapidly. It also decreased in the shoot, but slowly. It is concluded that the nitrogen metabolism of the twoPlantago species shows a similar response to a change in the form of the nitrogen source, and that differences in natural occurrence of these species are not related to a differential adaptation of nitrogen metabolism towards the nitrogen form. Suitable parameters for establishing the nitrogen source in the field are thein vivo NRA, nitrate concentrations in tissues and xylem exudate, and the fraction of total reduced nitrogen in the roots that is in the soluble form, and to some extent thein vitro GDHA and GSA of the roots. Grassland Species Research Group. Publ. no 118.  相似文献   

8.
A. Melzer  R. Kaiser 《Oecologia》1986,69(4):606-611
Summary 11 macrophytic species from a groundwater influenced chalk stream in Upper Bavaria were investigated during a period of one year in order to determine differences in the endogenous nitrate content, in total nitrogen content and in nitrate reductase activity (NRA). Nitrate concentrations of different plants taken from the same site of the river varied by a factor of approximately 103. A maximum of 1,958 mol NO 3 - g-1 dry w. could be measured in the petioles of Nasturtium officinale, which accounts for 12% of plant dry w. Very high values were also found in Callitriche obtusangula and Veronica angallis-aquatica. In comparison to the ambient water, mean accumulation rates of up to 131 could be found. In Fontinalis antipyretica, the plant poorest in nitrate, the ratio was only 1.24:1. Elodea canadensis belonged to a group of plants having very low nitrate concentrations. Since NRA was very low too, it is assumed that nitrogen nutrition of this species depends rather on ammonia than on nitrate. With a few exceptions nitrate content of different plant organs varied markedly. In general they were lowest in leaves and highest in shoot axes. Appreciable amounts of nitrate were also found in the roots of plants. No correlation could be found between endogenous nitrate content and NRA. In contrast to endogenous nitrate content and NRA, total nitrogen concentrations of the plants did not differ significantly.  相似文献   

9.
Summary 48 plant species of the families Asteraceae, Chenopodiaceae, Ericaceae, Fabaceae, Lamiaceae, Polygonaceae and Urticaceae were investigated in 14 natural habitats of Central Europe having different nitrate supplies, with respect to their nitrate content, nitrate reductase activity (NRA) and organic nitrogen content. Plants that were flowering were selected where possible for analysis. The plants were subdivided into flowers, laminae, petioles+shoot axes and below-ground organs. Each organ was analyzed separately. Differences among species were found for the three variables investigated. Apart from the Fabaceae, which had particularly high concentrations of organic N, these differences reflect mainly the ecological behaviour, i.e. high nitrate and organic N contents and NRA values per g dry weight were found in species on sites rich in nitrate, and vice versa. Nitrate content, NRA and organic N content were correlated with nitrogen figures of Central European vascular plants defined by Ellenberg (1979). By use of regression equations this correlation was tested with species from other systematic groups. Some species were attributed with calculated N figures for the first time.  相似文献   

10.
Nitrogen fixing plants of lucerne (Medicago sativa L. cv. Aragón) were grown in a glasshouse for three months in the absence of nitrate, and then supplied with 5 mM KNO3 for a week. In control (non-nitrate fed) plants, nitrate reductase activity (NRA EC 1.6.6.1) was detected only in nodules. After nitrate supply, root NRA showed a transient increase. Shoot NRA increased with time, paralleling changes in nitrate distribution; stem NRA represented nearly 50% of total NRA in plant tissues. Total nitrogen, expressed on a dry weight basis, tended to decrease in shoots upon nitrate supply. Bacteroid NRA (EC 1.7.99.4) showed a great variation depending on Rhizobium meliloti strains, ranging from 5 to 40% of total plant NRA. However, different Rhizobium strains did not give different results in terms of plant growth parameters, nitrate or organic nitrogen content.  相似文献   

11.
Summary Numbers of autotrophic nitrifiers in the rhizosphere, and thein vivo nitrate reductase activity (NRA) in the leaves of individual plants ofPlantago lanceolata were determined in plants at two contrasting sites. In a dune grassland, high numbers of nitrifiers were present in the rhizosphere, and significant NRA was detected in the leaves. During dry periods nitrate utilization sometimes was depressed. In a wet hayfield, on peat soil, very low numbers of nitrifiers were found in the rhizosphere. Also the NRA was low. In the wet habitat, the NRA in the leaves of some fen species, containing aerenchyma in the roots, was higher than that ofP. lanceolata, not containing aerenchyma.Grassland Species Research Group. Publication No. 105.  相似文献   

12.
To study aspects of the ecology of grassland species, in a comparative experiment, plants ofP. lanceolata andP. major were grown in pots in a greenhouse, and subjected to a gradual nitrate depletion for several weeks. Control plants were weekly supplied with nitrate. Growth, leaf appearance and disappearance, concentrations of cations and inorganic anions, soluble and insoluble reduced nitrogen concentrations,in vivo nitrate reductase activity (NRA) and the concentration of non-structural carbohydrates in several parts of the plants were followed. Depletion of nitrate caused a reduction of shoot growth, both in biomass and number of leaves. Withering of leaves increased. Accumulation of root dry matter was little (P. lanceolata), or not (P. major) affected. The concentration of reduced nitrogen in all tissues also decreased, both that of the soluble and that of the insoluble fraction. As a result, nitrogen use efficiency (NUE, g dry matter produced per mmol N incorporated) increased by nitrate depletion. NRA was higher in the roots than in the leaves, and decreased with increasing nitrate depletion. In control plants, nitrate became also limiting. This resulted in decreasing nitrate concentrations in leaves and roots. In the leaves, the decrease in nitrate concentration was preceded by a decrease in NRA. The decrease of the nitrate concentration was parallelled by an increase in the concentration of soluble sugar. No major differences in the response towards nitrate depletion were observed between the two species. Grassland Species Research Group, publication no. 129  相似文献   

13.
The CAM (Crassulacean acid metabolism) succulent species Kalanchoe daigremontiana, K. tubiflora and Crassula argentea, and the succulent C3 species Peperomia obtusifolia, were cultivated in pure culture in open-air conditions under two different regimes of nitrogen and water supply. At specified intervals during the course of vegetative growth, biomass, nitrate reductase activity (NRA), nitrate concentration, and organic nitrogen concentration of whole plants were measured. After 100 days of cultivation the leaf conductance of Crassula and Peperomia was measured at intervals for the duration of a day. Behaviour of all four species was strongly influenced by the cultivation regime. This was apparent in terms of productivity and variable flucturations in NRA, nitrate concentration, and organic nitrogen concentration during the vegetative period. Increase in biomass was mostly connected with a decrease in all other investigated parameters, especially under conditions of water and/or nitrogen deficiency. The typical reaction of the CAM species Crassula to limited netrogen but adequate soil water was to reduce leaf conductance during light, whereas the C3 plant Peperomia increased conductance in comparison with plants having a nitrogen suppy. The NRA of all plant species was reduced by both soil nitrate deficiency and drought. The succulent plant species, which are specially adapted to drought, neither took up nor used nitrate when water was limited. This was particularly the case for the CAM species, but less so for the C3 Peperomia, which showed very high concentrations of nitrate and organic nitrogen, but low NRA and biomass gain. A formula was derived to express the nitrogen use efficiency (NUE) of the species, i.e. the ability of a plant to use nitrogen over a specific period of growth. NUE was shown to increase with age for the crassulacean species but to decrease for the C3 Peperomia. Furthermore, NUE varied with the different nutrient levels in a species-specific manner, with high values for NUE not necessarily coupled to high productivity, and with NUE of the C3 species generally higher than that of CAM species.  相似文献   

14.
Two experiments were conducted to evaluate the effects of phenotypicrecurrent selection for high and low post-anthesis leaf-laminain vivo NRA on nitrate uptake, nitrate partitioning and in vitroNRA of seedling roots and leaves. In Experiment 1, intact plantsof cycle 0, 4, and 6 of the high and low NRA strains were grownon NH4-N for 11 d, then exposed to 1.0 mol m–3 KNO3, andcultures sampled at 6 h and 28 h (induction and post-inductionperiods). Nitrate uptake, tissue nitrate concentration and invitro NRA were determined. The pattern of response to selectionin seedling leaf NRA was similar to that observed for in vivoNRA of field grown plants. Leaf NRA increased between 6 h and28 h. Root NRA was not affected by selection or sampling time.Treatments differed in total fresh weight but not in reductionor uptake of nitrate per unit weight, indicating a lack of correspondencebetween NRA and reduction and supporting the idea that concomitantreduction by NR is not obligatorily linked to nitrate influxin the intact plant. In Experiment 2, dark-grown plants of cycle 0, and 6 of thehigh and low NRA strains were cultured without N, detopped onday 6, transferred the following day to 0-75 mol m–3 KNO3and sampled at 6 h and 28 h. In contrast to Experiment 1, selectionpopulations differed in nitrate reduction and root NRA, whichby 28 h reached higher average levels than root NRA of intactplants. Translocation and reduction were inversely related amongstrains within each sampling time. The high level of translocationin detopped plants of the low NRA strain was difficult to reconcilewith its low leaf NRA level of Experiment 1. It is suggestedthat nitrate transport in detopped roots is altered relativeto the intact system in a way which permits greater NRA inductionand nitrate reduction. The results indicate that nitrate partitioningby detopped root systems should be interpreted with caution. Key words: Zea, nitrate reductase activity, nitrate uptake, nitrate reduction, nitrate partitioning, selection  相似文献   

15.
Two Dutch heathland sites Hoorneboeg (HB) and Ede, dominated by Deschampsia flexuosa and differing in nitrate production, were sampled for an entire growing season. A large number of soil and plant parameters were monitored in an attempt to assess the contribution of nitrate in the N supply and its assimilation by Deschampsia.Average NO3 and NH4 + concentrations (mg kg–1) in the top 10-cm depth were 0.03 and 2.2, respectively, for HB, and 2.1 and 6.7, respectively, for Ede. Laboratory incubations of intact cores and experiments with FH-layer suspensions showed significantly higher mineralization and nitrification rates for the Ede site during most of the season. Nitrification was largely controlled by the rate of net N-mineralization, which in turn was highly affected by soil moisture. Nitrate production was virtually zero at HB and accounted for 25% of the net N-mineralization at Ede.Shoot chemical composition showed no essential differences for the two sites, but mean in vivo (current) foliar NRA was almost 2-fold higher at Ede than at HB, indicating some utilization of nitrate at the former location. At the HB site with essentially no nitrate production, however, enzyme activities were clearly higher than basal constitutive levels in NH4 +-fed plants. Apparently, shoot NRA at the HB site became positively affected by factors other than nitrate availability and/or showed disproportional increases in response to atmospheric nitrate inputs. Root NRA displayed the same low basal level at the two sites. Nitrate fertilization (100 kg N ha–1) yielded maximally induced foliar NRAs similar to levels found in hydroponic nitrate plants. Although no accumulation of free NO3 was observed in shoots from fertilized plots, increases in foliar concentrations of both organic N and carboxylates clearly indicated nitrate assimilation. Root NRA showed no response to nitrate addition.It is concluded that current NRA measurements in Deschampsia at heathland sites are of limited value only, especially when interpreted in isolation. A combined approach, using concurrently conducted soil and plant analyses, will allow the extent of nitrate utilization in the field to be best characterized.Publication 2013 of the Netherlands Institute of Ecology.FAX no corresponding author: +31 8306 23227  相似文献   

16.
Summary Pure and mixed cultures of the dicotyledons Atriplex hortensis L. (C3 plant) and Amaranthus retroflexus L. (C4 plant) were maintained under open air conditions in standard soil at low and high nitrogen supply levels.A comparison of shoot dry weight and shoot length in the various series shows that the growth of the aboveground parts of both species was severely reduced under low N conditions. In both pure and mixed cultures the differences resulting from low N vs. high N conditions was less pronounced with Atriplex (C3 plant) than with Amaranthus (C4 plant). The root dry weight of the two species was not reduced so much under low N conditions as was the shoot dry weight. The low N plants were found to contain a larger proportion of their biomass in the roots than did the high N plants. In general the root proportion of Atriplex was greater than that of Amaranthus. The contents of organic nitrogen and nitrate and the nitrate reductase activity (NRA) per g dry weight of both species decreased continually throughout the experiments. With the exception of young plants, the low N plants always had tower contents of organic nitrogen and nitrate and nitrate reductase activities than did the high N plants. The highest values of NRA were measured in the leaf laminae. The eaves also exhibited the highest concentrations of organic nitrogen. The highest nitrate concentrations, however, were observed in the shoot axis, and in most cases the lowest nitrate values were found in the laminae. At the end of ne growing season this pattern was found to have been reversed with Atriplex, but not with Amaranthus. Thus Atriplex was able to maintain a higher NRA in the laminae than Amaranthus under low N conditions.The transpiration per leaf area of the C4 plant Amaranthus during the course of a day was substantially lower than that of the C3 plant Atriplex. There were no significant differences in transpiration between the low N and high N series of Amaranthus. The low N plants of Atriplex, however, clearly showed in most cases higher transpiration rates than the corresponding high N plants. These different transpiration rates of the high N and the low N Atriplex plants were also reflected in a distinct 13C discrimination.The sum of these results points to the conclusion that the C3 plant Atriplex hortensis can maintain a better internal inorganic nitrogen supply than the C4 plant Amaranthus retroflexus under low N conditions and an ample water supply, due to the larger root proportion and the more pronounced and flexible transpiration of the C3 plant.Dedicated to Prof. Dr. Karl Mägdefrau, Deisenhofen, on the ocasion of his 80th birthday  相似文献   

17.
Summary Thein vivo nitrate reductase activity (NRA) was determined inAlnus glutinosa plants grown nonsymbiotically on ammonium, nitrate, a combination of both, or symbiotically with atmospheric nitrogen as the only nitrogen source. Root NRA was absent when ammonium or atmospheric nitrogen was the nitrogen source. With nitrate in the culture solution the roots showed a high NRA. However, the leaf NRA behaved quite differently: with negligible activities on all nitrogen sources except atmospheric nitrogen. The foliar NRA measured, however, is likely not due to the activity of the plant but of microbial origin. Methods commonly used to facilitate produced nitrite to leak out of the tissue, such as addition of propanol and cutting the plant material, did not increase the nitrite release from the leaves. A turbidity developed when testing the samples for nitrite which was positively correlated with the NRA. Populations of microorganisms in the phyllosphere did not differ between the nutritional treatments. Bacteria, able to grow on a low-nitrogen medium, were present on the leaves. Nitrifiers could not be detected. The bacteria on the leaves appear to produce nitrite when incubated with leaf material. Grassland Species Research Group, Publication no. 106  相似文献   

18.
Since little is known about how the Mediterranean Basin ecosystems are affected by nitrogen deposition, we aimed to understand the use of nitrogen by distinct plant functional groups (PFG: summer semi-deciduous and evergreen sclerophylls) present in the Mediterranean maquis in order to assess which may be more affected by changes in nitrogen availability. The availability of soil inorganic nitrogen, leaf nitrate concentrations and nitrate reductase activity (in vivo and in vitro) were measured during the year in three plant species from each PFG. The patterns of in vitro NRA along the shoot and through the day were also determined. Although summer semi deciduous species occupied soil patches richer in nitrate, their leaf NRA were significantly lower than that of evergreen sclerophylls species. The pattern of nitrate and ammonium availabilities along the year also distinguished the PFG. Results show that each PFG is composed of a number of physiologically similar species. Patterns of NRA varied according to the PFG, which may represent distinct specializations of co-occurring species to access nitrogen. Therefore, the NRA can be used as an indicator of the nitrate availability taking into consideration the time of the year, the plant species and its PFG.  相似文献   

19.
Two opposing niche processes have been shown to shape the relationship between ecological traits and species distribution patterns: habitat filtering and competitive exclusion. Habitat filtering is expected to select for similar traits among coexisting species that share similar habitat conditions, whereas competitive exclusion is expected to limit the ecological similarity of coexisting species leading to trait differentiation. Here, we explore how functional traits vary among 19 understory palm species that differ in their distribution across a gradient of soil resource availability in lower montane forest in western Panama. We found evidence that habitat filtering influences species distribution patterns and shifts community-wide and intraspecific trait values. Differences in trait values among sites were more strongly related to soil nutrient availability than to variation in light or rainfall. Soil nutrient availability explained a significant amount of variation in site mean trait values for 4 of 15 functional traits. Site mean values of leaf nitrogen and phosphorus increased 37 and 64%, respectively, leaf carbon:nitrogen decreased 38%, and specific leaf area increased 29% with increasing soil nutrient availability. For Geonoma cuneata, the only species occurring at all sites, leaf phosphorus increased 34% and nitrogen:phosphorus decreased 42% with increasing soil nutrients. In addition to among-site variation, most morphological and leaf nutrient traits differed among coexisting species within sites, suggesting these traits may be important for niche differentiation. Hence, a combination of habitat filtering due to turnover in species composition and intraspecific variation along a soil nutrient gradient and site-specific niche differentiation among co-occurring species influences understory palm community structure in this lower montane forest.  相似文献   

20.
Fan XH  Tang C  Rengel Z 《Annals of botany》2002,90(3):315-323
Nitrate uptake, nitrate reductase activity (NRA) and net proton release were compared in five grain legumes grown at 0.2 and 2 mM nitrate in nutrient solution. Nitrate treatments, imposed on 22-d-old, fully nodulated plants, lasted for 21 d. Increasing nitrate supply did not significantly influence the growth of any of the species during the treatment, but yellow lupin (Lupinus luteus) had a higher growth rate than the other species examined. At 0.2 mM nitrate supply, nitrate uptake rates ranged from 0.6 to 1.5 mg N g(-1) d(-1) in the order: yellow lupin > field pea (Pisum sativum) > chickpea (Cicer arietinum) > narrow-leafed lupin (L angustifolius) > white lupin (L albus). At 2 mM nitrate supply, nitrate uptake ranged from 1.7 to 8.2 mg N g(-1) d(-1) in the order: field pea > chickpea > white lupin > yellow lupin > narrow-leafed lupin. Nitrate reductase activity increased with increased nitrate supply, with the majority of NRA being present in shoots. Field pea and chickpea had much higher shoot NRA than the three lupin species. When 0.2 mM nitrate was supplied, narrow-leafed lupinreleased the most H+ per unit root biomass per day, followed by yellow lupin, white lupin, field pea and chickpea. At 2 mM nitrate, narrow-leafed lupin and yellow lupin showed net proton release, whereas the other species, especially field pea, showed net OH- release. Irrespective of legume species and nitrate supply, proton release was negatively correlated with nitrate uptake and NRA in shoots, but not with NRA in roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号