首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although iron is a key nutrient for algal growth just as are nitrogen and phosphorus in aquatic systems, the effects of iron on algal growth are not well understood. The growth characteristics of two species of cyanobacteria, Microcystis aeruginosa and Planktothrix agardhii, in iron-limited continuous cultures were investigated. The relationships between dissolved iron concentration, cell quota of iron, and population growth rate were determined applying two equations, Monod’s and Droop’s equations. Both species produced hydroxamate-type siderophores, but neither species produced catechol-type siderophores. The cell quota of nitrogen for both M. aeruginosa and P. agardhii decreased with decreasing cell quota of iron. The cell quota of phosphorus for M. aeruginosa decreased with decreasing cell quota of iron, whereas those for P. agardhii did not decrease. Iron uptake rate was measured in ironlimited batch cultures under different degrees of iron starvation. The results of the iron uptake experiments suggest that iron uptake rates are independent of the cell quota of iron for M. aeruginosa and highly dependent on the cell quota for P. agardhii. A kinetic model under iron limitation was developed based on the growth characteristics determined in our study, and this model predicted accurately the algal population growth and iron consumption. The model simulation suggested that M. aeruginosa is a superior competitor under iron limitation. The differences in growth characteristics between the species would be important determinants of the dominance of these algal species.  相似文献   

2.
With the human intensification of agricultural and industrial activities, large amount of reduced nitrogen enter into the biosphere, which consequently results in the development of global eutrophication and cyanobacterial blooms. However, no research had reported the effect of ammonia toxicity on the algal succession. In this study, we investigated the ammonia toxicity to 19 algal species or strains to test the hypothesis that ammonia may regulate the succession of cyanobacterial blooms and the distribution of common algal species in freshwater lakes. The bloom‐forming cyanobacterium Microcystis aeruginosa PCC 7806 suffered from ammonia toxicity at high pH value and light intensity conditions. Low NH4Cl concentration (0.06 mmol L?1) resulted in the decrease of operational PSII quantum yield by 50% compared with the control exposed to 1000 μmol photons m?2 s?1 for 1 h at pH 9.0 ± 0.2, which can be reached in freshwater lakes. Furthermore, the tolerant abilities to NH3 toxicity of 18 freshwater algal species or strains were as follows: hypertrophication species > eutrophication species > mesotrophication species > oligotrophication species. The different sensitivities of NH3 toxicity in this study could well explain the distributing rule of common algal species in the freshwater lakes of different trophic states. Meanwhile, the cyanobacterial bloom (e.g. M. aeruginosa) always happened at the low concentration of ammonia in summer, and disappeared with the decrease of ammonia. This may be attributed to the toxic effect of ammonia to M. aeruginosa in spring (the average and maximum ammonia concentration were 0.08 and 0.72 mmol L?1 in 33 Chinese lakes), and the low level of NH3‐N in summer and fall in the lakes might be used as preferred nitrogen nutrition by M. aeruginosa, rather than with toxicity. Therefore, ammonia could be a key factor to determine the distribution of common algal species and cyanobacterial bloom in the freshwater systems.  相似文献   

3.
The Hawkesbury River at Sackville, New South Wales, Australia is fresh and vigorously mixed by tidal movement. The location has frequent blooms of Microcystis aeruginosa, which have been recorded occurring throughout the year, including winter temperatures as low as 13 °C. Nutrient enrichment tests were performed in‐situ on the natural phytoplankton population in 1997 and 1998 while Microcystis aeruginosa dominated (covering both summer and winter periods). These experiments compared population changes under the ambient nutrient regime with those after additions of ortho‐phosphate, nitrate, ammonia and various combinations of these nutrients. Under ambient conditions, the Microcystis population was able to grow significantly (P < 0.05) while most non‐cyanobacterial phytoplankton did not. Nutrient additions induced a variety of nutrient limitation responses that often varied between genera of major groups i.e. in the Chlorophyceae (Actinastrum sp. responded to phosphorus while Psephonema sp. responded to nitrogen). The possibility that shifts in population dominance from Chlorophyceae to the Cyanobacteria (M. aeruginosa) at Sackville are in response to competition for limiting nutrients is discussed.  相似文献   

4.
The persistence and interaction between newly isolated strains ofPseudomonas aeruginosa and resident bacteriophages indigenous to a freshwater environment was monitored over 45 days in lake water microcosms. The interaction between susceptible and resistant bacteria with pure phage (UT1) particles or a mixed phage population (M1) was investigated by following temporal changes in host density, phage-to-bacteria ratio (PBR), and the appearance of apparent prophage carriers within the host population. Decay rates of the phage (UT1) ranged from 0.054 hour–1 in natural water to 0.027 hour–1 in filtered lake water. About 45% of sensitive bacteria incubated with phase UT1 were pseudolysogenic within 12 hours of incubation in natural lake water. This process was delayed until 72 hours in the steile lake water control, suggesting that host-phage interaction is promoted in the presence of a viable natural microbial community. Phage UT1 appeared to stabilize the density of host bacteria in lake water at a level of 104 colony-forming units (cfu) ml–1. Bacterial coexistence with the mixed phage (M1) population resulted in an oscillating equilibrium with the PBR stabilizing at about 3. The presence of extraneous homoimmune phages appeared to be detrimental to the stability of the pseudolysogens, which were maintained at a lower population density than prophage-free cells in lake water containing the mixed phage (M1) population.  相似文献   

5.
The cell-associated mucilage and soluble extracellular polysaccharides (EPS) were investigated in a eutrophic freshwater lake (Rostherne Mere, Cheshire, U.K.) over up to 2 year annual cycles. Five particular lake algae (Anabaena spiroides Klebahn, Anabaena flos-aquae Brébisson ex Bornet & Flahault,Anabaena circinalis Rabenhorst, Microcystis aeruginosa Kützing emend. Elenkin and Eudorina elegans Ehrenberg) were found to be the major contributors to cell-associated mucilage, particularly M. aeruginosa. Calculation of the total amount of cell-associated mucilage in the phytoplankton samples showed that it occupied 0.0001–0.007% (the latter during a bloom of Microcystis) of lake water volume within the epilimnion. Seasonal changes in the total volume of associated mucilage reflected the succession of mucilage-producing algal species in Rostherne Mere, which was closely correlated with the physico-chemical (temperature, oxygen, pH, nutrients) and biological (Secchi depth, phytoplankton) parameters within the lake. High levels of cell-associated mucilage present in the lake may have potential for binding metals or other ions in the aquatic environment. Colourimetric determination of the concentration of soluble EPS revealed concentrations of between 2.5 and 60 mg l–1, with peak levels during the bacillariophyceaen bloom and late clear water phase. The second phase did not appear to relate directly to changes in algal population, and may result from bacterial activity, algal lysis or zooplankton activity. As soluble EPS forms a major component of the total amount of dissolved carbon in lakes, the study of the soluble EPS is important to understand the carbon cycle in freshwaters. No direct correlation occurred between algal-associated mucilage and soluble EPS over a single annual cycle.  相似文献   

6.
Viruses can control the structure of bacterial communities in aquatic environments. The aim of this project was to determine if cyanophages (viruses specific to cyanobacteria) could exert a controlling influence on the abundance of the potentially toxic cyanobacterium Microcystis aeruginosa (host). M. aeruginosa was isolated, cultured, and characterized from a subtropical monomictic lake—Lake Baroon, Sunshine Coast, Queensland, Australia. The viral communities in the lake were separated from cyanobacterial grazers by filtration and chloroform washing. The natural lake viral cocktail was incubated with the M. aeruginosa host growing under optimal light and nutrient conditions. The specific growth rate of the host was 0.023 h−1; generation time, 30.2 h. Within 6 days, the host abundance decreased by 95%. The density of the cyanophage was positively correlated with the rate of M. aeruginosa cell lysis (r2 = 0.95). The cyanophage replication time was 11.2 h, with an average burst size of 28 viral particles per host cell. However, in 3 weeks, the cultured host community recovered, possibly because the host developed resistance (immunity) to the cyanophage. The multiplicity of infection was determined to be 2,890 virus-like particles/cultured host cell, using an undiluted lake viral population. Transmission electron microscopy showed that two types of virus were likely controlling the host cyanobacterial abundance. Both viruses displayed T7-like morphology and belonged to the Podoviridiae group (short tails) of viruses that we called cyanophage Ma-LBP. In Lake Baroon, the number of the cyanophage Ma-LBP was 5.6 × 104 cyanophage·ml−1, representing 0.23% of the natural viral population of 2.46 × 107·ml−1. Our results showed that this cyanophage could be a major natural control mechanism of M. aeruginosa abundance in aquatic ecosystems like Lake Baroon. Future studies of potentially toxic cyanobacterial blooms need to consider factors that influence cyanophage attachment, infectivity, and lysis of their host alongside the physical and chemical parameters that drive cyanobacterial growth and production.  相似文献   

7.
Intraspecific niche divergence is an important driver of species range, population abundance and impacts on ecosystem functions. Genetic changes are the primary focus when studying intraspecific divergence; however, the role of ecological interactions, particularly host‐microbiome symbioses, is receiving increased attention. The relative importance of these evolutionary and ecological mechanisms has seen only limited evaluation. To address this question, we used Microcystis aeruginosa, the globally distributed cyanobacterium that dominates freshwater harmful algal blooms. These blooms have been increasing in occurrence and intensity worldwide, causing major economic and ecological damages. We evaluated 46 isolates of M. aeruginosa and their microbiomes, collected from 14 lakes in Michigan, USA, that vary over 20‐fold in phosphorus levels, the primary limiting nutrient in freshwater systems. Genomes of M. aeruginosa diverged along this phosphorus gradient in genomic architecture and protein functions. Fitness in low‐phosphorus lakes corresponded with additional shifts within M. aeruginosa including genome‐wide reductions in nitrogen use, an expansion of phosphorus assimilation genes and an alternative life history strategy of nonclonal colony formation. In addition to host shifts, despite culturing in common‐garden conditions, host‐microbiomes diverged along the gradient in taxonomy, but converged in function with evidence of metabolic interdependence between the host and its microbiome. Divergence corresponded with a physiological trade‐off between fitness in low‐phosphorus environments and growth rate in phosphorus‐rich conditions. Co‐occurrence of genotypes adapted to different nutrient environments in phosphorus‐rich lakes may have critical implications for understanding how M. aeruginosa blooms persist after initial nutrient depletion. Ultimately, we demonstrate that the intertwined effects of genome evolution, host life history strategy and ecological interactions between a host and its microbiome correspond with an intraspecific niche shift with important implications for whole ecosystem function.  相似文献   

8.
Compelling evidence of complex statisticalrelationships among various elements contained withinphytoplankton cells has traditionally been ignored inmodels of algal nutrient uptake and populationdynamics. Here we present a new approach,incorporating a phytoplankton intracellular elementalcorrelation pattern into the existing dynamicsimulation model of a freshwater lake. Within thisapproach, uptake and cycling of elements that arelikely to become limiting during the simulation periodare described by ordinary differential equations.Dynamics of nutrients that are unlikely to becomelimiting are described either by differentialequations or, when more practicable, by multipleregressions on environmental variables and cell quotasof other elements. This allows an easy simultaneousconsideration of a wide range of elements.The model adopting the described approach wastested on a data set for Rostherne Mere, Cheshire, UK.It showed a good fit between observations andsimulations for all considered variables, includingthe population dynamics of Ceratium hirundinellaand Microcystis aeruginosa, the outcome ofinterspecific competition and changes inconcentrations within algal cells and in thesurrounding lake water. The approach could easily beimplemented in models of bioreactors, chemostatexperiments and aquatic ecosystems.  相似文献   

9.
Summary The possibility of using crude seasalt, and saltpeter as the basis of a culture medium for the blue-green alga Spirulina maxima, was investigated. Saltpeter appears to be an excellent nitrogen and micronutrient-source and is very cheap. The effect of the nutrient level on algal growth, and nitrogen conversion efficiency, was studied. The results suggest the possibility of using this medium in a large-scale algal culture.  相似文献   

10.
Cyanobacteria are the causative organisms of the algal blooms that occur in Taihu Lake. Dissolved organic nitrogen (DON) comprises a significant composition of nitrogen (N) pool in the water and may increase the nutrient source of microalgae. In the present study, we investigated the relationship between Microcystis aeruginosa, Pseudomonas sp. A3CT isolated from Taihu, and DON compounds. Co-incubation (3 days) of the bacterium with six DON compounds (four free amino acids and two combined amino acids) was collected as six decomposed DON solutions. The decomposed DON solutions of six compounds were used to test the stimulatory effect of nutrient regeneration by the bacterium. The growth of M. aeruginosa was significantly enhanced by the six decomposed DON solutions. M. aeruginosa grew much better under the six decomposed DON solutions than the corresponding undigested DON forms. Especially, the decomposed l-lysine solution, not only avoided the inhibiting effect of lysine on M. aeruginosa, but significantly promoted the cyanobacterial growth. Further chemical tests indicated that A3CT transformed DON into NH4 +, which was utilized by M. aeruginosa. These results demonstrate that the bacterium plays an important role in decomposing unavailable DON forms into available NH4 +, which suggests that the bacterium contributes to the fast growth of M. aeruginosa. Moreover, this phenomenon, in conjunction with previous studies, indicates that the responsible and effective way of harmful blooms is reducing the N and P inputs (including DON and DOP).  相似文献   

11.
Microcystis aeruginosa, a cosmopolitan form, is a colonial cyanobacterium, which is also common in many freshwater bodies in Mexico. In eutrophic water bodies cyanobacteria are often the main phytoplankton that co-exist with cladocerans. We evaluated the effect of mixed diets, comprising 0, 25, 50, 75, and 100% on dry weight basis of M. aeruginosa, and the rest of one of two green algal species (Chlorella vulgaris and Scenedesmus acutus), on the population growth of the cladocerans Ceriodaphnia dubia and Moina macrocopa. Regardless of the share of M. aeruginosa in the mixed diet, C. dubia fed Chlorella had a longer initial lag phase. However, in mixed diet with S. acutus, the lag phase of C. dubia increased with increasing proportion of M. aeruginosa. When raised on 100% M. aeruginosa, the population growth of C. dubia was lowered compared with 100% S. acutus or 100% C. vulgaris. Increased proportion of M. aeruginosa in the mixed diet also resulted in decreased abundance of M. macrocopa. Irrespective of diet type, M. macrocopa had a shorter lag phase than C. dubia. Depending on the diet type, the rate of population increase (r) of C. dubia varied from 0.07 to 0.26 d−1 while that of M. macrocopa was higher (0.14–0.61 d−1). For both cladoceran species, the lower r values were obtained when fed Microcystis. Our study showed that the strain of M. aeruginosa was not highly toxic to cause total elimination of either C. dubia or M. macrocopa. Addition of a green algal component to the diet improved the population growth rates of both cladoceran species.  相似文献   

12.
In recent times, the treatment of harmful algal blooms (HABs) became an important environmental issue to preserve and remediate water resources globally. In the present study, the adsorptive removal of harmful algal species Microcystis aeruginosa directly from an aqueous medium was attempted. Waste biomass (Escherichia coli) was immobilized using polysulfone and coated using the cationic polymer polyethylenimine (PEI) to generate PEI-coated polysulfone-biomass composite fiber (PEI-PSBF). The density of M. aeruginosa in an aqueous medium (BG11) was significantly decreased by treatment with PEI-PSBF. additionally, analysis using FE-SEM, confirmed that the removal of M. aeruginosa algal cells by PEI-PSBF was caused by the adsorption mechanism. According to the profiles of phosphorus for the algal cell growth in M. aeruginosa cultivating samples, we found that the adsorbed M. aeruginosa onto the PEI-PSBF lost their biological activity compared to the non-treated M. aeruginosa cells.  相似文献   

13.
Understanding responses of parasites to changes in nutrient regimes is necessary for prediction of their role in aquatic ecosystems under global change in nutrient loading. We studied the response of the natural parasite fauna of Daphnia longispina to nutrient enrichment in mesocosms in a small humic lake. We measured the concentrations of inorganic phosphorus and nitrogen in the water, total nutrients in the seston, algal and bacterial biomass, Daphnia population dynamics, Daphnia stoichiometry, Daphnia stable isotope values and the presence and abundance of parasites in treated mesocosms as compared to three control ones. Incorporation of the nutrient enrichment in the food web was seen as increased nutrient concentrations in the epilimnion and as a decrease in carbon:nutrient ratios and δ15N values in Daphnia. Nutrient enrichment did not significantly influence algal, bacterial or Daphnia biomass. One of the four parasite species observed, unidentified small gut parasite, had a higher prevalence (percentage of Daphnia infected) in treated mesocosms, but its intensity (number of parasites per infected host) remained the same among treatments. Our results suggest that the effect of nutrient enrichment on host–parasite dynamics is dependent on complex interactions within food webs and on the epidemiological traits of parasites.  相似文献   

14.
15.
Micro-cyanobacteria and pico-cyanobacteria coexist in many lakes throughout the world. Their distinct cell sizes and nutrient utilization strategies may lead to dominance of one over the other at varying nutrient levels. In this study, Microcystis aeruginosa and Synechococcus sp. were chosen as representative organisms of micro- and pico-cyanobacteria, respectively. A series of nitrate and ammonia conditions (0.02, 0.1, 0.5, and 2.5 mg N L−1) were designed in mono- or co-cultured systems, respectively. Growth rates of the two species were calculated and fitted by the Monod and Logistic equations. Furthermore, the interspecific competition was analyzed using the Lotka–Volterra model. In mono-cultures, the two cyanobacteria displayed faster growth rates in ammonia than in nitrate. Meanwhile, Synechococcus sp. showed faster growth rates compared to M. aeruginosa in lower N groups (≤ 0.5 mg N L−1). However, in the highest nitrate treatment (2.5 mg N L−1), M. aeruginosa achieved much higher biomass and faster growth rates than Synechococcus sp.. In co-cultures, Synechococcus sp. dominated in the lowest N treatment (0.02 mg N L−1), but M. aeruginosa dominated under the highest nitrate condition (2.5 mg N L−1). Based on the analysis of Raman spectra of living cells in mono-cultures, nitrate (2.5 mg N L−1) upgraded the pigmentary contents of M. aeruginosa better than ammonia (2.5 mg N L−1), but nitrogen in different forms showed little effects on the pigments of Synechococcus sp.. Findings from this study can provide valuable information to predict cyanobacterial community succession and aquatic ecosystem stability.  相似文献   

16.
Microcystis aeruginosa is one of the most common blue-green algae species that forms harmful water bloom, which frequently causes serious ecological pollution and poses a health hazard to animals and humans. To understand the progression of algal blooms and to provide a theoretical basis for predicting and preventing the occurrence of algal blooms and reducing the harm of algal bloom to environment, we investigated the diurnal variation of photosynthesis, ATP content and cell division in M. aeruginosa PCC7820. The results showed that the photosynthesis and ATP content of M. aeruginosa PCC7820 exhibited clear circadian rhythm with a period of approximately 24 h and that the periodic rhythms continued for at least three cycles under continuous light conditions. Furthermore, the period length showed that a temperature compensation effect and changes in light cycle or temperature could reset the phase of circadian rhythm. These results indicate that the circadian rhythms of physiological process in M. aeruginosa PCC7820 are controlled by the endogenous circadian clock. Examinations of the number, size and cytokinin content of cells also reveal that the cell division of M. aeruginosa PCC7820 with the generation time of 38.4 h exhibits robust circadian rhythms with a period close to 24 h. The circadian rhythms of cell division may be generated by a biological clock through regulation of the cell division phase of M. aeruginosa PCC7820 via a gating mechanism. The phases in which cell division slows or stop recur with a circadian periodicity of about 24 h.  相似文献   

17.
The effect of iron enrichment on algal growth and photosynthesis was investigated using natural assemblages of Lake Erie phytoplankton and axenic cultures of Anabaena, Scenedesmus and Selenastrum. Cell yield and photosynthesis were frequently inhibited in the presence of unchelated iron over the range of 3.6 to 53.7 μM iron as FeCl3. In lake water and in a defined medium with low nutrient concentrations, the degree of inhibition by iron could be reduced by chelating the iron with EDTA or by enriching the cultures with phosphorus. Chemical analyses revealed that the EDTA efectively reduced the ability of the ferric iron to remove soluble phosphorus from the media. EDTA was also observed to reduce rather than enhance iron uptake by axenic cultures of A. flos-aquae. These data support the hypothesis that additions of EDTA to low-nutrient media may serve to stimulate algal growth in the presence of iron by preventing the iron from altering extracellular concentrations of soluble ions essential for algal metabolism. In medium with high nutrient concentrations, the soluble phosphorus concentration was not appreciably altered by either EDTA-chelated or unchelated iron enrichment (0.9 to 53.7 μM). Instead, the observed enhancement of cell yield by EDTA-chelated iron in nutrient-rich media appeared to be due to the direct effect of iron on intracellular metabolic processes.  相似文献   

18.
Gibbs  M. M.  White  E. 《Hydrobiologia》1994,275(1):467-477
Lake Horowhenua, a small (2.9 km2) shallow (< 2 m deep), coastal dune lake on the west coast of the North Island of New Zealand, receives the runoff from intensive agriculture within its catchment and, until 1987, the treated sewage effluent from the town of Levin. Consequently the lake is highly enriched but with an annual cycle of algal P-limitation in winter and N-limitation in summer. There have been several schemes proposed to accelerate the improvement of the lake's water quality for recreational use. A computer hydraulic and nutrient model of Lake Horowhenua was developed using rainfall, evaporation and nutrient data to describe the nutrient budget. To match the lake nutrient concentrations, terms for in-lake processes of sedimentation, seasonal sediment nutrient release, phytoplankton production, and denitrification were required. The computer model results indicated that denitrification was the major natural restoration process accounting for a net loss of more than 50% of the N from the lake each year. Application of the model also allowed lake managers to evaluate the potential effects of a number of proposed restoration schemes.  相似文献   

19.
In Lake Tega, Japan, the shift of dominant algal species was caused as a result of discharging water from the adjacent river into the lake. The transition from cyanobacteria (mainly the genus Microcystis) to diatoms (mainly the genus Cyclotella) resulted in a disappearance of algal blooms. Although some environmental conditions such as flow rate, nutrient concentration, and transparency were changed by the project, the decisive factor for the transition has not been clarified yet. For the effective control of algal blooms by water discharge, this study aimed to elucidate the effects of daily renewal rate and nitrogen concentration on the interspecific competition between Microcystis aeruginosa and Cyclotella sp. Monoculture experiments were conducted to obtain growth characteristics for each species and mixed culture experiments were performed to examine their competitive abilities under various daily renewal rates of the culture medium (15 and 30 %) and nitrate concentrations (71.4, 178, and 357 μM). In addition to prepared medium, Lake Tega water was also used for mixed culture experiments. The results showed that the increase in a daily renewal rate contributed to the dominance of Cyclotella sp., while a nitrate concentration had little influence on the competition. We conclude that algal blooms composed of the genus Microcystis would be controlled by maintaining a daily renewal rate up to 30 % or more, which corresponded to the dilution rate of 0.36 day?1, under a nitrate concentration of ≤357 μM. The study would include essential information for the management of lakes suffering from frequent occurrences of algal blooms.  相似文献   

20.
Myall Lakes is a large brackish coastal lake on the east coast of Australia that was considered pristine until the occurrence of blue-green algal blooms in 1999. The temporal and spatial extent of chemical and biological changes to the water column of Myall Lakes was studied intensively after a rain event in 2002. Water quality profiles (T, EC, pH, DO), turbidity (secchi), nutrients (TN, NO x , NH4 +, DON, TP, FRP, DOP, Si), and phytoplankton (chl a and cell counts) were measured at nine sites on eight occasions immediately after the rain event. Freshwater inflows affected a large area of the lake. Greatest changes were seen in areas close to the mouth of the upper Myall River which is the largest freshwater input to the lakes. Here, greatly elevated concentrations of NO x , TP, and FRP (up to two orders of magnitude higher than background) were recorded immediately after the rain event but persisted for only 2 to 8 days. Slightly elevated concentrations of TP and NO x were seen in inflows from the smaller Boolambayte Creek. Stratification was associated with bottom water anoxia and release of ammonia from the sediments. Identification of the sources of nutrient species delivered from different parts of the catchment, combined with studies of nutrient loads can assist managers to develop effective nutrient reduction strategies to reduce the incidence of blue-green algal blooms in Myall Lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号