首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Candida albicans biofilms are a complex multilayer community of cells that are resistant to almost all classes of antifungal drugs. The bottommost layers of biofilms experience nutrient limitation where C. albicans cells are required to respire. We previously reported that a protein Ndu1 is essential for Candida mitochondrial respiration; loss of NDU1 causes inability of C. albicans to grow on alternative carbon sources and triggers early biofilm detachment. Here, we screened a repurposed library of FDA-approved small molecule inhibitors to identify those that prevent NDU1-associated functions. We identified an antihelminthic drug, Niclosamide (NCL), which not only prevented growth on acetate, C. albicans hyphenation and early biofilm growth, but also completely disengaged fully grown biofilms of drug-resistant C. albicans and Candida auris from their growth surface. To overcome the suboptimal solubility and permeability of NCL that is well known to affect its in vivo efficacy, we developed NCL-encapsulated Eudragit EPO (an FDA-approved polymer) nanoparticles (NCL-EPO-NPs) with high niclosamide loading, which also provided long-term stability. The developed NCL-EPO-NPs completely penetrated mature biofilms and attained anti-biofilm activity at low microgram concentrations. NCL-EPO-NPs induced ROS activity in C. albicans and drastically reduced oxygen consumption rate in the fungus, similar to that seen in an NDU1 mutant. NCL-EPO-NPs also significantly abrogated mucocutaneous candidiasis by fluconazole-resistant strains of C. albicans, in mice models of oropharyngeal and vulvovaginal candidiasis. To our knowledge, this is the first study that targets biofilm detachment as a target to get rid of drug-resistant Candida biofilms and uses NPs of an FDA-approved nontoxic drug to improve biofilm penetrability and microbial killing.

This study shows that encapsulation of the antiparasitic drug Niclosamide in nanoparticles can enhance its pharmaco-availability, prevent the growth and filamentation of Candida, and enhance biofilm penetrability and detachment, both in vitro and in two mouse models of mucosal candidiasis.  相似文献   

2.

Background

Candida auris and Candida haemulonii are emerging and multiresistant pathogens. C. auris has produced hospital outbreaks and is misidentified by phenotypic-based methods. The only reliable identification methods are DNA sequencing and MALDI-TOF.

Aims

To develop a classical-PCR method capable of rapidly and accurately identify C. auris and C. haemulonii.

Methods

A multiplex PCR was carried out in one tube that included an internal control and oligonucleotides that specifically hybridize to the ITS2 region of C. auris and C. haemulonii. The usefulness of the new method was verified by testing a collection of 50 strains of 20 different species (previously identified by ITS sequencing). The selection of species was made in order to emulate the C. auris panel used by the CDC to validate diagnostic tools. In addition, other yeast species not included in the aforementioned panel were incorporated based on reported identification errors.

Results

The results obtained with the proposed protocol were in total agreement with those obtained by ITS sequencing.

Conclusions

We present a PCR method able to unequivocally identify C. auris and differentiate it from C. haemulonii. It is inexpensive, fast and it could be a useful tool to reduce the chances of a C. auris outbreak.  相似文献   

3.
4.
The present study was designed to evaluate the antifungal activity of baicalein against Candida krusei isolates. Using a broth microdilution assay, baicalein exhibited potent in vitro antifungal activity against C. krusei isolates with a minimum inhibitory concentration of 2.7 μg/ml. Flow cytometric study indicated that baicalein depolarized mitochondrial membrane potential in a concentration-dependent manner. However, mechanistic analyses showed that the intracellular reactive oxygen species (ROS) level was virtually unchanged, and massive DNA fragmentation was not observed in C. krusei isolates after baicalein treatment even at a concentration which was apoptotic in C. albicans. Taken together, we conclude that the antifungal activity of baicalein in C. krusei isolates occurs through perturbation in mitochondrial homeostasis without causing elevation of the intracellular ROS level and does not involve apoptosis.  相似文献   

5.
Cassia leiandra is an Amazonian plant species that is used popularly for the treatment of mycoses. Recently, a protease inhibitor, named ClTI, with insecticidal activity against Aedes aegypti, was purified from the mature seeds of C. leiandra. In this work, we show that ClTI has antifungal activity against Candida species and describe its mode of action towards Candida albicans. This study is relevant because the nosocomial infections caused by Candida species are a global public health problem that, together with the growing resistance to current drugs, has increased the urgency of the search for new antifungal compounds. ClTI inhibited the growth of Candida albicans, Candida tropicalis, Candida parapsilosis, and Candida krusei. However, ClTI was more potent against C. albicans. The candidicidal mode of action of ClTI on C. albicans involves enhanced cell permeabilization, alteration of the plasma membrane proton-pumping ATPase function (H+ -ATPase), induction of oxidative stress, and DNA damage. ClTI also exhibited antibiofilm activity and non-cytotoxicity to mammalian cells. These results indicate that ClTI is a promising candidate for the future development of a new, natural, and safe agent for the treatment of infections caused by C. albicans.  相似文献   

6.

Purpose of Review

The purpose of this review is to contribute to the knowledge about the existence of Candida auris as an emerging pathogenic fungus, multi-resistant to antifungal, and causing health care-associated infections (HCAI).

Recent Findings

C. auris emerges as yeast with clonal transmission resistance to three families of commonly used antifungals, mainly azoles (fluconazole and voriconazole), diminishing therapeutic options for the treatment of fungal infections. In 2009, C. auris was isolated for the first time in Japan and by the time of this review, it has been reported in different countries in Africa, America, Asia, and Europe.

Summary

It is important to identify yeasts of the Candida genus up to species, to perform susceptibility tests and to implement surveillance, prevention, and control measures, to minimize the global spread of this fungus, due to its impact on public health.
  相似文献   

7.
Primary aliphatic alkanols from C6 to C13 were tested for their antifungal activity against Saccharomyces cerevisiae using a broth dilution method. Undecanol (C11) was found to be the most potent fungicide against this yeast with the minimum fungicidal concentration (MFC) of 25 μg/ml (0.14 mM), followed by decanol (C10) with the minimum inhibitory concentration (MIC) of 50 μg/ml (0.31 mM). The time-kill curve study showed that undecanol was fungicidal against S. cerevisiae at any growth stages. This fungicidal activity was not influenced by pH values. Dodecanol (C12) was the most effective fungistatic but did not show any fungicidal activity up to 1600 μg/mL. Fungistatic dodecanol quickly reduced cell viability, but the cell viability recovered shortly after and then finally became no longer different from the control indicating that the effect of dodecanol on S. cerevisiae was classified as a sublethal damage. However, fungistatic dodecanol combined with sublethal amount of anethole showed a fungicidal activity against this yeast. Anethole completely restricted the recovery of cell viability. Therefore expression of the synergistic effect was probably due to the blockade of the recovering process from dodecanol induced-stress. The alkanols tested inhibited glucose-induced acidification by inhibiting the plasma membrane H+-ATPase. Octanol (C8) increased plasma membrane fluidity in the spheroplast cells of S. cerevisiae. The same series of aliphatic primary alkanols was also tested against a food spoilage fungus Zygosaccharomyces bailii and compared with their effects against S. cerevisiae. Decanol was found to be the most potent fungicide against Z. bailii with an MFC of 50 μg/ml (0.31 mM), whereas undecanol was found to be the most potent fungistatic with an MIC of 25 μg/ml (0.14 mM). The time-kill curve study showed that decanol was fungicidal against Z. bailii at any growth stage. This antifungal activity was slightly enhanced in combination with anethole. The primary antifungal action of medium-chain (C9–C12) alkanols comes from their ability as nonionic surfactants to disrupt the native membrane-associated function of the integral proteins. Hence, the antifungal activity of alkanols is mediated by biophysical process, and the maximum activity can be obtained when balance between hydrophilic and hydrophobic portions becomes the most appropriate.  相似文献   

8.
Candida dubliniensis is an important human fungal pathogen that causes oral infections in patients with AIDS and diabetes mellitus. However, C. Dubliniensis has been frequently reported in bloodstream infections in clinical settings. Like its phylogenetically related virulent species C. albicans, C. Dubliniensis is able to grow and switch between yeast form and filamentous form (hyphae) and develops biofilms on both abiotic and biotic surfaces. Biofilms are recalcitrant to antifungal therapies and C. Dubliniensis readily turns drug resistant upon repeated exposure. More than 80% of infections are associated with biofilms. Suppression of fungal biofilms may therefore represent a viable antifungal strategy with clinical relevance. Here, we report that C. dubliniensis biofilms were inhibited by purpurin, a natural anthraquinone pigment isolated from madder root. Purpurin inhibited C. dubliniensis biofilm formation in a concentration-dependent manner; while mature biofilms were less susceptible to purpurin. Scanning electron microscopy (SEM) analysis revealed scanty structure consisting of yeast cells in purpurin-treated C. dubliniensis biofilms. We sought to delineate the mechanisms of the anti-biofilm activity of purpurin on C. Dubliniensis. Intracellular ROS levels were significantly elevated in fungal biofilms and depolarization of MMP was evident upon purpurin treatment in a concentration-dependent manner. DNA degradation was evident. However, no activated metacaspase could be detected. Together, purpurin triggered metacaspase-independent apoptosis in C. dubliniensis biofilms.  相似文献   

9.
Bac8c (RIWVIWRR-NH2) is an analogue peptide derived through complete substitution analysis of the linear bovine host defense peptide variant Bac2A. In the present study, the antifungal mechanism of Bac8c against pathogenic fungi was investigated, with a particular focus on the effects of Bac8c on the cytoplasmic membrane. We used bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)] staining and 3,3’-dipropylthiacarbocyanine iodide [DiSC3(5)] assays to show that Bac8c induced disturbances in the membrane potential of Candida albicans. An increase in membrane permeability and suppression of cell wall regeneration were also observed in Bac8c-treated C. albicans. We studied the effects of Bac8c treatment on model membranes to elucidate its antifungal mechanism. Using calcein and FITC-labeled dextran leakage assays from Bac8c-treated large unilamellar vesicles (LUVs) and giant unilamellar vesicles (GUVs), we found that Bac8c has a pore-forming action on fungal membranes, with an estimated pore radius of between 2.3 and 3.3 nm. A membrane-targeted mechanism of action was also supported by the observation of potassium release from the cytosol of Bac8c-treated C. albicans. These results indicate that Bac8c is considered as a potential candidate to develop a novel antimicrobial agent because of its low-cost production characteristics and high antimicrobial activity via its ability to induce membrane perturbations in fungi.  相似文献   

10.
The crude aqueous and ethanolic leaf extracts of Coccinia indica were screened for methicillin resistant Staphylococcus aureus (MRSA), multidrug resistant (MDR) Streptococcus pyogenes, Escherichia coli, Candida auris and Trichophyton rubrum. Antibacterial and antifungal activities were assessed by standard disc diffusion and tube dilution methods. The results showed that ethanolic extract inhibited MRSA, C. auris at 250 µg/mL and S. pyogenes at 200 µg/mL comparable to the susceptible antibiotics used as positive controls. There was no observable activity against T. rubrum, while a mild activity was observed with ethanolic extracts over E. coli at higher concentrations which did not turn out to be complete or significant inhibition. Aqueous extract did not exhibit any observable activity over the five organisms tested. Furthermore, the results showed clear cut concentration dependent antibacterial and antifungal activities with additional variation of specific activity over Gram positive and negative bacteria, yeast and filamentous fungi. So, it is evident that ethanolic extract of Coccinia indica could be further escalating for mechanistic studies in the era of multidrug resistance, indigenous preparations from herbs could be a safe choice over clinically challenging organisms.  相似文献   

11.
Candida albicans, which is the most common human fungal pathogen, causes high mortality among immunocompromised patients. Antifungal drug resistance becomes a major challenge for the management of Candida infection. Diorcinol D (DD), a diphenyl ether derivative isolated from an endolichenic fungus, exerted fungicidal action against Candida species. In this study, we investigated the possible mechanism of its antifungal activity. The change of membrane dynamics and permeability suggested that the cell membrane was disrupted by the treatment of DD. This was further supported by the evidences of intracellular glycerol accumulation, alteration of cell ultrastructure, and down-regulation of genes involved in cell membrane synthesis. In addition, the treatment of C. albicans with DD resulted in the elevation of reactive oxygen species (ROS), which caused the dysfunction of mitochondria. These altogether suggested that DD exerted its antifungal activity through cytoplasmic membrane destruction and ROS accumulation. This finding is helpful to uncover the underlying mechanisms for the diphenyl ether derivatives and provides a potential application in fighting clinical fungal infections.  相似文献   

12.
Plant defensins are small, cysteine-rich peptides with antifungal activity against a broad range of yeast and fungi. In this study we investigated the antibiofilm activity of a plant defensin from coral bells (Heuchera sanguinea), i.e. HsAFP1. To this end, HsAFP1 was heterologously produced using Pichia pastoris as a host. The recombinant peptide rHsAFP1 showed a similar antifungal activity against the plant pathogen Fusarium culmorum as native HsAFP1 purified from seeds. NMR analysis revealed that rHsAFP1 consists of an α-helix and a triple-stranded antiparallel β-sheet stabilised by four intramolecular disulfide bonds. We found that rHsAFP1 can inhibit growth of the human pathogen Candida albicans as well as prevent C. albicans biofilm formation with a BIC50 (i.e. the minimum rHsAFP1 concentration required to inhibit biofilm formation by 50% as compared to control treatment) of 11.00 ± 1.70 μM. As such, this is the first report of a plant defensin exhibiting inhibitory activity against fungal biofilms. We further analysed the potential of rHsAFP1 to increase the activity of the conventional antimycotics caspofungin and amphotericin B towards C. albicans. Synergistic effects were observed between rHsAFP1 and these compounds against both planktonic C. albicans cells and biofilms. Most notably, concentrations of rHsAFP1 as low as 0.53 μM resulted in a synergistic activity with caspofungin against pre-grown C. albicans biofilms. rHsAFP1 was found non-toxic towards human HepG2 cells up to 40 μM, thereby supporting the lack of a general cytotoxic activity as previously reported for HsAFP1. A structure-function study with 24-mer synthetic peptides spanning the entire HsAFP1 sequence revealed the importance of the γ-core and its adjacent regions for HsAFP1 antibiofilm activity. These findings point towards broad applications of rHsAFP1 and its derivatives in the field of antifungal and antibiofilm drug development.  相似文献   

13.
We report a fatal case of Candida auris that was involved in mixed candidemia with Candida tropicalis, isolated from the blood of a neutropenic patient. Identification of both isolates was confirmed by amplification and sequencing of internal transcribed spacer and D1/D2 domain of large subunit in rRNA gene. Antifungal susceptibility test by E-test method revealed that C. auris was resistant to amphotericin B, anidulafungin, caspofungin, fluconazole, itraconazole and voriconazole. On the other hand, C. tropicalis was sensitive to all antifungal tested. The use of chromogenic agar as isolation media is vital in detecting mixed candidemia.  相似文献   

14.
We previously reported the antifungal properties of a monoterpene phenol “Eugenol” against different Candida strains and have observed that the addition of methyl group to eugenol drastically increased its antimicrobial potency. Based on the results and the importance of medicinal synthetic chemistry, we synthesized eugenol-tosylate and its congeners (E1-E6) and tested their antifungal activity against different clinical fluconazole (FLC)- susceptible and FLC- resistant C. albicans isolates alone and in combination with FLC by determining fractional inhibitory concentration indices (FICIs) and isobolograms calculated from microdilution assays. Minimum inhibitory concentration (MIC) results confirmed that all the tested C. albicans strains were variably susceptible to the semi-synthetic derivatives E1-E6, with MIC values ranging from 1–62 μg/ml. The test compounds in combination with FLC exhibited either synergy (36%), additive (41%) or indifferent (23%) interactions, however, no antagonistic interactions were observed. The MICs of FLC decreased 2–9 fold when used in combination with the test compounds. Like their precursor eugenol, all the derivatives showed significant impairment of ergosterol biosynthesis in all C. albicans strains coupled with down regulation of the important ergosterol biosynthesis pathway gene-ERG11. The results were further validated by docking studies, which revealed that the inhibitors snugly fitting the active site of the target enzyme, mimicking fluconazole, may well explain their excellent inhibitory activity. Our results suggest that these compounds have a great potential as antifungals, which can be used as chemosensitizing agents with the known antifungal drugs.  相似文献   

15.
The fungal pathogen Candida albicans causes lethal systemic infections in humans. To better define how pathogens resist oxidative attack by the immune system, we examined a family of four Flavodoxin-Like Proteins (FLPs) in C. albicans. In agreement with previous studies showing that FLPs in bacteria and plants act as NAD(P)H quinone oxidoreductases, a C. albicans quadruple mutant lacking all four FLPs (pst1Δ, pst2Δ, pst3Δ, ycp4Δ) was more sensitive to benzoquinone. Interestingly, the quadruple mutant was also more sensitive to a variety of oxidants. Quinone reductase activity confers important antioxidant effects because resistance to oxidation was restored in the quadruple mutant by expressing either Escherichia coli wrbA or mammalian NQO1, two distinct types of quinone reductases. FLPs were detected at the plasma membrane in C. albicans, and the quadruple mutant was more sensitive to linolenic acid, a polyunsaturated fatty acid that can auto-oxidize and promote lipid peroxidation. These observations suggested that FLPs reduce ubiquinone (coenzyme Q), enabling it to serve as an antioxidant in the membrane. In support of this, a C. albicans coq3Δ mutant that fails to synthesize ubiquinone was also highly sensitive to oxidative stress. FLPs are critical for survival in the host, as the quadruple mutant was avirulent in a mouse model of systemic candidiasis under conditions where infection with wild type C. albicans was lethal. The quadruple mutant cells initially grew well in kidneys, the major site of C. albicans growth in mice, but then declined after the influx of neutrophils and by day 4 post-infection 33% of the mice cleared the infection. Thus, FLPs and ubiquinone are important new antioxidant mechanisms that are critical for fungal virulence. The potential of FLPs as novel targets for antifungal therapy is further underscored by their absence in mammalian cells.  相似文献   

16.
In all living organisms, secreted proteins play essential roles in different processes. Of special interest is the construction of the fungal cell wall, since this structure is absent from mammalian cells. The identification of the proteins involved in its biogenesis is therefore a primary goal in antifungal research. To perform a systematic identification of such proteins in Candida albicans, we carried out a genetic screening in which in-frame fusions with an intracellular allele of invertase gene SUC2 of Saccharomyces cerevisiae can be used to select and identify putatively exported proteins in the heterologous host S. cerevisiae. Eighty-three clones were selected, including 11 previously identified genes from C. albicans as well as 41 C. albicans genes that encode proteins homologous to already described proteins from related organisms. They include enzymes involved in cell wall synthesis and protein secretion. We also found membrane receptors and transporters presumably related to the interaction of C. albicans with the environment as well as extracellular enzymes and proteins involved in different morphological transitions. In addition, 11 C. albicans open reading frames (ORFs) identified in this screening encode proteins homologous to unknown or putative proteins, while 5 ORFs encode novel secreted proteins without known homologues in other organisms. This screening procedure therefore not only identifies a set of targets of interest in antifungal research but also provides new clues for understanding the topological locations of many proteins involved in processes relevant to the pathogenicity of this microorganism.  相似文献   

17.
18.
Antifungal drugs acting via new mechanisms of action are urgently needed to combat the increasing numbers of severe fungal infections caused by pathogens such as Candida albicans. The phosphopantetheinyl transferase of Aspergillus fumigatus, encoded by the essential gene pptB, has previously been identified as a potential antifungal target. This study investigated the function of its orthologue in C. albicans, PPT2/C1_09480W by placing one allele under the control of the regulatable MET3 promoter, and deleting the remaining allele. The phenotypes of this conditional null mutant showed that, as in A. fumigatus, the gene PPT2 is essential for growth in C. albicans, thus fulfilling one aspect of an efficient antifungal target. The catalytic activity of Ppt2 as a phosphopantetheinyl transferase and the acyl carrier protein Acp1 as a substrate were demonstrated in a fluorescence transfer assay, using recombinant Ppt2 and Acp1 produced and purified from E.coli. A fluorescence polarisation assay amenable to high-throughput screening was also developed. Therefore we have identified Ppt2 as a broad-spectrum novel antifungal target and developed tools to identify inhibitors as potentially new antifungal compounds.  相似文献   

19.
The maintenance of potassium homeostasis is crucial for all types of cells, including Candida glabrata. Three types of plasma-membrane systems mediating potassium influx with different transport mechanisms have been described in yeasts: the Trk1 uniporter, the Hak cation-proton symporter and the Acu ATPase. The C. glabrata genome contains only one gene encoding putative system for potassium uptake, the Trk1 uniporter. Therefore, its importance in maintaining adequate levels of intracellular potassium appears to be critical for C. glabrata cells. In this study, we first confirmed the potassium-uptake activity of the identified gene’s product by heterologous expression in a suitable S. cerevisiae mutant, further we generated a corresponding deletion mutant in C. glabrata and analysed its phenotype in detail. The obtained results show a pleiotropic effect on the cell physiology when CgTRK1 is deleted, affecting not only the ability of trk1Δ to grow at low potassium concentrations, but also the tolerance to toxic alkali-metal cations and cationic drugs, as well as the membrane potential and intracellular pH. Taken together, our results find the sole potassium uptake system in C. glabrata cells to be a promising target in the search for its specific inhibitors and in developing new antifungal drugs.  相似文献   

20.
Lactobacilli convert linoleic acid to hydroxy fatty acids; however, this conversion has not been demonstrated in food fermentations and it remains unknown whether hydroxy fatty acids produced by lactobacilli have antifungal activity. This study aimed to determine whether lactobacilli convert linoleic acid to metabolites with antifungal activity and to assess whether this conversion can be employed to delay fungal growth on bread. Aqueous and organic extracts from seven strains of lactobacilli grown in modified De Man Rogosa Sharpe medium or sourdough were assayed for antifungal activity. Lactobacillus hammesii exhibited increased antifungal activity upon the addition of linoleic acid as a substrate. Bioassay-guided fractionation attributed the antifungal activity of L. hammesii to a monohydroxy C18:1 fatty acid. Comparison of its antifungal activity to those of other hydroxy fatty acids revealed that the monohydroxy fraction from L. hammesii and coriolic (13-hydroxy-9,11-octadecadienoic) acid were the most active, with MICs of 0.1 to 0.7 g liter−1. Ricinoleic (12-hydroxy-9-octadecenoic) acid was active at a MIC of 2.4 g liter−1. L. hammesii accumulated the monohydroxy C18:1 fatty acid in sourdough to a concentration of 0.73 ± 0.03 g liter−1 (mean ± standard deviation). Generation of hydroxy fatty acids in sourdough also occurred through enzymatic oxidation of linoleic acid to coriolic acid. The use of 20% sourdough fermented with L. hammesii or the use of 0.15% coriolic acid in bread making increased the mold-free shelf life by 2 to 3 days or from 2 to more than 6 days, respectively. In conclusion, L. hammesii converts linoleic acid in sourdough and the resulting monohydroxy octadecenoic acid exerts antifungal activity in bread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号