首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 555 毫秒
1.
The benthic O2 consumption and CO2 production of sieved sediment cores containing a varied biomass of two polychaete species, Notomastus sp. (deep deposit-feeder) and Neanthes japonica (Izuka) (surface deposit-feeder), were measured simultaneously. Each species increased the benthic O2 consumption and CO2 production in proportion to its biomass. This increase was not explained by the respiration of the animals alone. The residual O2 and CO2 fluxes increased markedly in the presence of polychaetes. In the presence of Notomastus (the deeper burrowing species with low irrigation activity), the enhanced CO2 flux was much higher than that in the presence of Neanthes, whereas the enhanced O2 flux was lower in the presence of Notomastus.  相似文献   

2.
Benthic biogeochemistry and macrofauna were investigated six times over 1 year in a shallow sub-tropical embayment. Benthic fluxes of oxygen (annual mean ?918 μmol O2 m?2 h?1), ammonium (NH4 +), nitrate (NO3 ?), dissolved organic nitrogen, dinitrogen gas (N2), and dissolved inorganic phosphorus were positively related to OM supply (N mineralisation) and inversely related to benthic light (N assimilation). Ammonium (NH4 +), NO3 ? and N2 fluxes (annual means +14.6, +15.9 and 44.6 μmol N m?2 h?1) accounted for 14, 16 and 53 % of the annual benthic N remineralisation respectively. Denitrification was dominated by coupled nitrification–denitrification throughout the study. Potential assimilation of nitrogen by benthic microalgae (BMA) accounted for between 1 and 30 % of remineralised N, and was greatest during winter when bottom light was higher. Macrofauna biomass tended to be highest at intermediate benthic respiration rates (?1,000 μmol O2 m?2 h?1), and appeared to become limited as respiration increased above this point. While bioturbation did not significantly affect net fluxes, macrofauna biomass was correlated with increased light rates of NH4 + flux which may have masked reductions in NH4 + flux associated with BMA assimilation during the light. Peaks in net N2 fluxes at intermediate respiration rates are suggested to be associated with the stimulation of potential denitrification sites due to bioturbation by burrowing macrofauna. NO3 ? fluxes suggest that nitrification was not significantly limited within respiration range measured during this study, however comparisons with other parts of Moreton Bay suggest that limitation of coupled nitrification–denitrification may occur in sub-tropical systems at respiration rates exceeding ?1,500 μmol O2 m?2 h?1.  相似文献   

3.
Nutrient regeneration and respiration rates of natural zooplankton from a tropical reservoir were experimentally measured. Excretion rates of ammonia (Ea), orthophosphate (Ep) and community respiration rates (R) were estimated considering the variations in the concentrations of ammonia, orthophosphate and dissolved oxygen between control and experimental units. The ranges obtained for these rates from the 2 h assays were Ea = 1.95–4.95 μg N-NH4 · mg · DW−1 · h−1; Ep = 0.12–0.76 μg P-PO4 mg DW−1 · h−1. Respiratory rates were quite constant (R = 0.01–0.02 mg O2 · mg DW−1 · h−1). The uptake of nutrients due to bacteria can affect the experimental determination of excretion rates of zooplankton. Orthophosphate release increased from 0.28 to 0.82 μg P-PO4 · mg DW−1 · h−1 when bacterial activity was depleted by antibiotic addition in experimental vessels (Exp IV). This demonstrates that free living bacteria are able to consume promptly most phosphorus excreted by zooplankton. Ammonia excretion rates were lower in experimental units containing antibiotics. Lower excretion rates were also obtained with longer exposure times and higher biomass levels in the experimental units. Finally, this study also showed that zooplankton excretion can affect significantly turn over rates of total phosphorus in Pampulha Reservoir. In some periods, specially during the dry season when zooplankton biomass was very high, phosphorus release by zooplankton, during one single day, can be as high as 40% of the total phosphorus content in lake water (Turn over time = 2.5 days).  相似文献   

4.
We assessed the spatial variability in both, surface carbon dioxide (CO2) fluxes and in pelagic respiration rates in a newly created 600-km2 boreal reservoir, located in Northern Quebec. We show that total CO2 emission to the atmosphere was highest in the first year after flooding, and that surface fluxes were spatially heterogeneous. This spatial heterogeneity was not random, but was linked to the pre-flood landscapes: reservoir areas overlying former peatbogs and mature forests had the highest average emissions, whereas areas overlying former non-forest and burned soils had the lowest emissions. Total reservoir emissions appeared to decline exponentially in the next 2 years, and so did the degree of spatial heterogeneity in surface fluxes, suggesting a progressive weakening of the link to the pre-flood landscapes, and a homogenization of reservoir processes. We show that pelagic respiration rates were also initially high and spatially heterogeneous, the latter linked to the pre-flood landscapes. A simple, first-order mass balance for the first 3 years after flooding was used to derive potential benthic CO2 production rates, and thus to apportion the total reservoir emissions between its pelagic and benthic components. Extrapolation of the observed declines (normal exponential) in total emission, as well as of the underlying pelagic and benthic fluxes, results in a large underestimation of the fluxes for the fourth year, relative to the measured emissions. We postulate that the initial exponential decline in total emissions is driven primarily by the patterns of decomposition of surface plant biomass, whereas at later stages emission is increasingly dominated by sediment and pelagic respiration, which decline in time at a slower rate.  相似文献   

5.
Community metabolism and air-sea carbon dioxide (CO2) fluxes were investigated in July 1992 on a fringing reef at Moorea (French Polynesia). The benthic community was dominated by macroalgae (85% substratum cover) and comprised of Phaeophyceae Padina tenuis (Bory), Turbinaria ornata (Turner) J. Agardh, and Hydroclathrus clathratus Bory (Howe); Chlorophyta Halimeda incrassata f. ovata J. Agardh (Howe); and Ventricaria ventricosa J. Agardh (Olsen et West), as well as several Rhodophyta (Actinotrichia fragilis Forskál (Børgesen) and several species of encrusting coralline algae). Algal biomass was 171 g dry weight· m?2. Community gross production (Pg), respiration (R), and net calcification (G) were measured in an open-top enclosure. Pg and R were respectively 248 and 240 mmol Co2·m?2·d?1, and there was a slight net dissolution of CaCO3 (0.8 mmol · m?2·d?1). This site was a sink for atmospheric CO2 (10 ± 4 mmol CO2·m?2·d?1), and the analysis of data from the literature suggests that this is a general feature of algal-dominated reefs. Measurement of air-sea CO2 fluxes in open water close to the enclosure demonstrated that changes in small-scale hydrodynamics can lead to misleading conclusions. Net CO2 evasion to the atmosphere was measured on the fringing reef due to changes in the current pattern that drove water from the barrier reef (a C02 source) to the study site.  相似文献   

6.
高寒矮嵩草草甸冬季CO2释放特征   总被引:1,自引:0,他引:1  
吴琴  胡启武  曹广民  李东 《生态学报》2011,31(18):5107-5112
冬季碳排放在高寒草地年内碳平衡中占有重要位置。为探讨高寒草地冬季碳排放特征及温度敏感性,于2003-2005年在中国科学院海北高寒草甸生态系统研究站,利用密闭箱-气相色谱法连续观测了高寒矮嵩草草甸2个冬季的生态系统、土壤呼吸通量特征。结果表明:1)高寒矮嵩草草甸冬季生态系统呼吸、土壤呼吸均具有明显的日变化和季节变化规律,温度是其主要的控制因子,能够解释44%以上的呼吸速率变异。2)冬季生态系统呼吸与土壤呼吸速率在统计上没有显著差异,土壤呼吸占生态系统呼吸的比例高达85%以上。3)2003-2004年冬季生态系统呼吸、土壤呼吸的Q10值分别为1.53,1.38;2004-2005年冬季生态系统呼吸与土壤呼吸的Q10值为1.86,1.68,2个冬季生态系统呼吸的Q10值均高于土壤呼吸。4)未发现高寒矮嵩草草甸冷冬年份的Q10值高于暖冬年份以及冬季的Q10值高于生长季。  相似文献   

7.
Zhang F W  Liu A H  Li Y N  Zhao L  Wang Q X  Du M Y 《农业工程》2008,28(2):453-462
Using the CO2 flux data measured by the eddy covariance method in the northeast of Qinghai-Tibetan Plateau in 2005, we analyzed the carbon flux dynamics in relation to meteorological and biotic factors. The results showed that the alpine wetland ecosystem was the carbon source, and it emitted 316.02 gCO2 · m−2 to atmosphere in 2005 with 230.16 gCO2 · m−2 absorbed in the growing season from May to September and 546.18 gCO2 · m−2 released in the non-growing season from January to April and from October to December. The maximum of the averaged daily CO2 uptake rates and release rates was (0.45 ± 0.0012) mgCO2 · m−2 · s−1 (Mean ± SE) in July and (0.22 ± 0.0090) mgCO2 · m−2 · s−1 in August, respectively. The averaged diurnal variation showed a single-peaked pattern in the growing season, but exhibited very small fluctuation in the non-growing season. Net ecosystem exchange (NEE) and gross primary production (GPP) were all correlated with some meteorological factors, and they showed a negatively linear correlation with aboveground biomass, while a positive correlation existed between the ecosystem respiration (Res) and those factors.  相似文献   

8.
Summary Carbon dioxide effluxes from plants, litter and soil were measured in two mixed-grassland sites in Saskatchewan, Canada. Ecosystems at both locations were dominated by Agropyron dasystachyum (Hook.) Scribn. Respiration rates of intact and experimentally-modified systems were measured in field chambers using alkali-absorption. Removal of green leaves, dead leaves, and litter from a wet sward reduced respiration to as low as 58% of the rate in an intact system. In a dry sward green shoots were the only significant above-ground source of CO2.Carbon dioxide effluxes from different parts of A. dasystachyum plants, and from soil samples were measured in laboratory vessels at 20° using alkali-absorption. Respiration of green leaves (1.46 mg CO2 g-1 h-1) was significantly higher than microbial respiration in moist, dead leaf samples (0.79 mg CO2 g-1 h-1) or litter (0.75 mg CO2 g-1 h-1). Microbial respiration in air-dried, dead plant material was very low. Average repiration rates of roots separated from soil cores (0.24 mg CO2 g-1 h-1) were lower than many values reported in the literature, probably because the root population sampled included inactive, suberized and senescent roots. Root respiration was estimated to be 17–26% of total CO2 efflux from intact cores.Laboratory data and field measurements of environmental conditions and plant biomass were combined in order to reconstruct the CO2 efflux from the shoot-root-soil system. Reconstructed rates were 1.3 to 2.3 times as large as field measured rates, apparently because of stimulation to respiration caused by the experimental manipulations. The standing dead and litter fractions contributed 26% and 23% of the total CO2 efflux in a wet sward. Both field-measured and reconstructed repiration values suggest that in situ decomposition of standing dead material under moist conditions can be a significant part of carbon balance in mixed grassland.  相似文献   

9.
Responses of tomato leaves in a greenhouse to light and CO2 were examined at the transient stage at the end of winter, when both photoperiod and irradiance gradually increase. Additionally, CO2 fluxes were calculated for a greenhouse without supplementary lighting and without CO2 enrichment based on CO2 sinks (plant photosynthesis) and CO2 sources (plant and substrate respiration). In January, tomato leaves in the greenhouse showed low photosynthesis with a maximum assimilation of 6–8 μmol CO2 m−2 s−1, a quantum yield of 0.06 μmol CO2 μmol−1 photosynthetic active radiation (PAR) and a low light compensation point of 26 μmol PAR m−2 s−1, a combination which classifies them as shade leaves. In February, tomato leaves increased their light compensation point to 39 μmol PAR m−2 s−1 and quantum yield to 0.08, the former indicating the adaptation to increased irradiance and photoperiod. These tomato leaves increased their transpiration from 0.4 to 0.9 in January to ∼2 mmol H2O m−2 s−1 in February. Both photosynthesis and transpiration were primarily limited by light but neither by stomatal conductivity nor by CO2. In January, light response of photosynthesis, dark respiration and transpiration were negligibly affected by increasing CO2 concentrations from 600 to 900 ppm CO2 under low light conditions, indicating no benefit of CO2 enrichment unless light intensity increased. In February, tomato leaves were photoinhibited at inherent greenhouse CO2 concentrations on the first sunny day; this photoinhibition was further enhanced by an increased CO2 concentration of 1000 ppm. CO2 fluxes in the greenhouse appeared strongly dependent on solar radiation. After exceeding the light compensation point in the morning, greenhouse CO2 concentrations decreased by 58 or by 110 ppm CO2 h−1 on a sunny day in January or February and by 23 ppm on overcast days in both months. Calculated per overall tomato canopy, plant photosynthesis contributed 42–50% to the morning CO2 depletion in the greenhouse. Dark respiration of tomato leaves was ∼2 μmol CO2 m−2 s−1 in January and ∼3 μmol CO2 m−2 s−1 in February. This dark respiration resulted in rises of 15 and 17 ppm CO2 h−1 at night in the greenhouse compartment and was identified as primary source of CO2. Respiration of the substrate used to grow the plants, which produced 7.3 ppm CO2 h−1, was identified as secondary source of CO2. The combined plant and substrate respiration resulted in peaks of up to 900 ppm CO2 in the greenhouse before dawn.  相似文献   

10.
Stands of carrot (Daucus carota L.) were grown in the field within polyethylene-covered tunnels at a range of soil temperatures (from a mean of 7·5°C to 10·9°C) at either 348 (SE = 4·7) or 551 (SE = 7·7) μmol mol−1 CO2. The effect of increased atmospheric CO2 concentration on root yield was greater than that on total biomass. At the last harvest (137d from sowing), total biomass was 16% (95% CI = 6%, 27%) greater at 551 than at 348 μmol mol−1 CO2, and 37% (95% CI = 30%, 44%) greater as a result of a 1°C rise in soil temperature. Enrichment with CO2 or a 1°C rise in soil temperature increased root yield by 31% (95% CI = 19%, 45%) and 34% (95% CI = 27%, 42%), respectively, at this harvest. No effect on total biomass or root yield of an interaction between temperature and atmospheric CO2 concentration at 137 DAS was detected. When compared at a given leaf number (seven leaves), CO2 enrichment increased total biomass by 25% and root yields by 80%, but no effect of differences in temperature on plant weights was found. Thus, increases in total biomass and root yield observed in the warmer crops were a result of the effects of temperature on the timing of crop growth and development. Partitioning to the storage roots during early root expansion was greater at 551 than at 348 μmol mol−1 CO2. The root to total weight ratio was unaffected by differences in temperature at 551 μmol mol−1CO2, but was reduced by cooler temperatures at 348 μmol mol−1 CO2. At a given thermal time from sowing, CO2 enrichment increased the leaf area per plant, particularly during early root growth, primarily as a result of an increase in the rate of leaf area expansion, and not an increase in leaf number.  相似文献   

11.
The feeding dynamics and oxygen uptake of the bottom-dwelling caridean shrimp Nauticaris marionis were studied during the April/May 1984, 1996 and 1997 cruises to Marion Island (Prince Edward Islands, Southern Ocean). N. marionis is thought to have an opportunistic feeding mode. Prey composition varied considerably between the years and sites investigated. Overall, benthic (mainly hydrozoans and bottom-dwelling polychaetes) and, at times, pelagic (largely euphausiids and copepods) prey items dominated in the stomachs of N. marionis both by occurrence and by volume. Generally, pelagic prey contributed more to the diets of smaller shrimps, while benthic prey was a more important component in the guts of larger specimens. Wet, dry and ash-free dry weight were determined for specimens used in respiration experiments. The respiration rates of N. marionis females with carapace length 6.6–11.1 mm ranged from 80 to 250 μl O2 individual−1 · h−1, or from 0.588 to 2.756 μl O2 · mg−1 dry weight h−1. Regression analyses showed highly significant correlations between oxygen consumption and carapace length for N. marionis. Daily ingestion rates estimated using an in situ gut content analysis technique (4.4% of body dry weight) and an energy budget approach (average 4.7% of body dry weight, range 2.0–7.5%) showed good agreement with each other. Accepted: 29 July 1998  相似文献   

12.
Muhlenbergia sobolifera (Muhl.) Trin., a C4 grass, occurs in understory habitats in the northeastern United States. Plants of M. sobolifera were grown at 23 and 30°C at 150 and 700 μmol photons m−2 s−1. The photosynthetic CO2 compensation point, maximum CO2 assimilation, dark respiration and the absorbed quantum use efficiency (QUE) were measured at 23 and 30°C at 2 and 20% O2. Photosynthetic CO2 compensation points ranged from 4 to 14mm3 dm−3 CO2 and showed limited O2 sensitivity. The mean photosynthetic CO2 compensation point of plants grown at 30°C (4·5 mm3 dm−3) was 57% lower and 80% less inhibited by O2 than that of plants grown at 23°C. Photosynthesis was similarly affected by growth temperature, with 70% more O2 inhibition in plants grown at 23°C; suppression over all treatments ranging from 2 to 11%. Unlike typical C4 species, plants of M. sobolifera from both temperature regimes exhibited higher CO2 assimilation rates when grown at low light. Growth temperature and light also affected QUE; plants grown at low light and 23°C had the highest value (0·068 mol CO2/mol quanta). Measurement temperature and growth light regime significantly affected dark respiration; however, O2 did not affect QUE or dark respiration under any growth or measurement conditions. The results indicate that M. sobolifera is adapted to low PPFD, and that complete suppression of photorespiration is dependent upon high growth temperature.  相似文献   

13.
In spring 2005, monthly sampling was carried out at a sublittoral site near Tautra Island. Microphytobenthic identification, abundance (ABU), and biomass (BIOM), were performed by microscopic analyses. Bacillariophyceae accounted for 67% of the total ABU, and phytoflagellates constituted 30%. The diatom floristic list consisted of 38 genera and 94 species. Intact light‐harvesting pigments chl a, chl c, and fucoxanthin and their derivatives were identified and quantified by HPLC. Photoprotective carotenoids were also observed (only as diadinoxanthin; no diatoxanthin was detected). Average fucoxanthin content was 4.57 ± 0.45 μg fucoxanthin · g sediment dry mass?1, while the mean chl a concentration was 2.48 ± 0.15 μg · g?1 dry mass. Both the high fucoxanthin:chl a ratio (considering nondegraded forms) and low amounts of photoprotective carotenoids indicated that the benthic microalgal community was adapted to low light. Microphytobenthic primary production was estimated in situ (MPPs, from 0.15 to 1.28 mg C · m?2 · h?1) and in the laboratory (MPPp, from 6.79 to 34.70 mg C · m?2 · h?1 under light saturation) as 14C assimilation; in April it was additionally estimated from O2‐microelectrode studies (MPPO2) along with the community respiration. MPPO2 and the community respiration equaled 22.9 ± 7.0 and 7.4 ± 1.8 mg C · m?2 · h?1, respectively. A doubling of BIOM from April to June in parallel with a decreasing photosynthetic activity per unit chl a led us to suggest that the microphytobenthic community was sustained by heterotrophic metabolism during this period.  相似文献   

14.
The impact of microphytobenthos and different abundances of macrofauna (Nereis diversicolor) on temporal variation of benthic metabolism was investigated in laboratory microcosms. Measurements primarily included diurnal fluxes of O2 and CO2 as well as sediment profiles of Chlorophyll a and extracellular polymeric substances (EPS). Net and gross primary production (2-5 and 4-7 mmol CO2 m− 2 h− 1, respectively) were relatively stable in both defaunated and faunated sediment throughout a 12 h light period. The CO2 release from sediments immediately after onset of darkness ranged from 1.5 to 3.5 mmol CO2 m− 2 h− 1 followed by a consistent decrease during the next 12 h in the dark. The decrease was more conspicuous in faunated (about 50%) than defaunated (9%) sediment. Total carbon oxidation was in both cases fuelled primarily by microphytobenthic biomass, while EPS only contributed by 1-4%. Diurnal measurements of Nereis diversicolor ventilation activity showed a significant decrease in the dark that corresponds well to the observed decrease in total metabolic activity. It is concluded that changes in solute exchange associated with animals and burrows (e.g. microbial respiration) is a major controlling factor for total sediment metabolism. In general, the faunal impact was evident as about 50% enhanced CO2 release in the dark, while net primary production was reduced by 30-50%. The turnover time of produced organic carbon is therefore considerably shorter in the presence than absence of macrofauna. Thus, the daily average exchange of CO2 was almost balanced in bioturbated sediment with a 43% share of carbon oxidation mediated by direct faunal respiration. Defaunated sediment was net autotrophic with daily primary production exceeding microbial carbon oxidation by 40%. The present study clearly demonstrates that knowledge on interactions between microphytobenthos and macrofauna is essential for understanding carbon dynamics in shallow sediments.  相似文献   

15.
To investigate the water-air diffusive greenhouse gases (GHGs) fluxes from the Three Gorges Reservoir (TGR), a field experiment on carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes from water surface was carried out from March 2011 to August 2012 by floating static chamber method. The results showed that CO2 was released to the atmosphere all the time and was less in autumn than in other seasons (P < 0.05). CH4 was also released to the atmosphere throughout the year but more in summer than other three seasons (P < 0.05). N2O flux was higher in autumn than other seasons (P < 0.05), and N2O was absorbed from the atmosphere mainly in summer. Moreover, correlation analysis illustrated that CO2 flux had significantly negative correlation with wind velocity (P < 0.05), whereas positive correlation with pH (P < 0.01) had been found. There was no significant correlation between CH4 (or N2O) flux and the measured environmental variables respectively (P > 0.05). Additionally, the annual fluxes of CO2, CH4 and N2O were 140.45 ± 12.57 mg CO2·m?2 h?1, 1.35 ± 0.14 mg CH4·m?2 h?1 and 34.34 ± 11.64 μg N2O·m?2 h?1, respectively. When compared to other reservoirs worldwide, the CO2 and N2O fluxes from TGR were higher than those from boreal and temperate reservoirs, but much lower than those from tropical reservoirs. CH4 flux was lower than those from boreal, temperate and most tropical reservoirs. In our study, the surface area of the TGR emitted 1.42 × 106 t CO2, 1.19 × 104 t CH4 and 589.93 t N2O in a year. The total GWP was 17.68 t CO2-eq ha?1 yr?1, of which CO2 flux was dominant (74.38%). Therefore, CO2 was the main contributor of GHGs fluxes in our study and thus future researches should focus on how to reduce CO2 fluxes from the surface of the TGR. TGR has a considerable contribution to regional GHG emissions.  相似文献   

16.
The organic carbon cycle of a shallow, tundra lake (mean depth 1.45 m) was followed for 5 weeks of the open water period by examining CO2 fluxes through benthic respiration and anaerobic decomposition, photosynthesis of benthic and phytoplankton communities and gas exchange at the air-water interface. Total photosynthesis (as consumption of carbon dioxide) was 37.5 mmole C m–2 d–1, 83% of which was benthic and macrophytic. By direct measurement benthic respiration exceeded benthic photosynthesis by 6.6 mmole C m–2 d–1. The lake lost 1.4 × 106 moles C in two weeks after ice melted by degassing C02, and 6.8 mmole C m–2 d–1 (1.5 × 106 moles) during the remainder of the open water period; 2.2 mmole C m2 d–1 of this was release Of CO2 stored in the sediments by cryoconcentration the previous winter. Anaerobic microbial decomposition was only 4% of the benthic aerobic respiration rate of 38 mmole C m–2 d–1. An annual budget estimate for the lake indicated that 50% of the carbon was produced by the benthic community, 20% by phytoplankton, and 30% was allochthonous material. The relative contribution of allochthonous input was in accordance with measurement of the 15N of sedimented organic matter.  相似文献   

17.
The influence of forest stand age in a Picea sitchensis plantation on (1) soil fluxes of three greenhouse gases (GHGs – CO2, CH4 and N2O) and (2) overall net ecosystem global warming potential (GWP), was investigated in a 2‐year study. The objective was to isolate the effect of forest stand age on soil edaphic characteristics (temperature, water table and volumetric moisture) and the consequent influence of these characteristics on the GHG fluxes. Fluxes were measured in a chronosequence in Harwood, England, with sites comprising 30‐ and 20‐year‐old second rotation forest and a site clearfelled (CF) some 18 months before measurement. Adjoining unforested grassland (UN) acted as a control. Comparisons were made between flux data, soil temperature and moisture data and, at the 30‐year‐old and CF sites, eddy covariance data for net ecosystem carbon (C) exchange (NEE). The main findings were: firstly, integrated CO2 efflux was the dominant influence on the GHG budget, contributing 93–94% of the total GHG flux across the chronosequence compared with 6–7% from CH4 and N2O combined. Secondly, there were clear links between the trends in edaphic factors as the forest matured, or after clearfelling, and the emission of GHGs. In the chronosequence sites, annual fluxes of CO2 were lower at the 20‐year‐old (20y) site than at the 30‐year‐old (30y) and CF sites, with soil temperature the dominant control. CH4 efflux was highest at the CF site, with peak flux 491±54.5 μg m−2 h−1 and maximum annual flux 18.0±1.1 kg CH4 ha−1 yr−1. No consistent uptake of CH4 was noted at any site. A linear relationship was found between log CH4 flux and the closeness of the water table to the soil surface across all sites. N2O efflux was highest in the 30y site, reaching 108±38.3 μg N2O‐N m−2 h−1 (171 μg N2O m−2 h−1) in midsummer and a maximum annual flux of 4.7±1.2 kg N2O ha−1 yr−1 in 2001. Automatic chamber data showed a positive exponential relationship between N2O flux and soil temperature at this site. The relationship between N2O emission and soil volumetric moisture indicated an optimum moisture content for N2O flux of 40–50% by volume. The relationship between C : N ratio data and integrated N2O flux was consistent with a pattern previously noted across temperate and boreal forest soils.  相似文献   

18.
Land use and agricultural practices can result in important contributions to the global source strength of atmospheric nitrous oxide (N2O) and methane (CH4). However, knowledge of gas flux from irrigated agriculture is very limited. From April 2005 to October 2006, a study was conducted in the Aral Sea Basin, Uzbekistan, to quantify and compare emissions of N2O and CH4 in various annual and perennial land-use systems: irrigated cotton, winter wheat and rice crops, a poplar plantation and a natural Tugai (floodplain) forest. In the annual systems, average N2O emissions ranged from 10 to 150 μg N2O-N m−2 h−1 with highest N2O emissions in the cotton fields, covering a similar range of previous studies from irrigated cropping systems. Emission factors (uncorrected for background emission), used to determine the fertilizer-induced N2O emission as a percentage of N fertilizer applied, ranged from 0.2% to 2.6%. Seasonal variations in N2O emissions were principally controlled by fertilization and irrigation management. Pulses of N2O emissions occurred after concomitant N-fertilizer application and irrigation. The unfertilized poplar plantation showed high N2O emissions over the entire study period (30 μg N2O-N m−2 h−1), whereas only negligible fluxes of N2O (<2 μg N2O-N m−2 h−1) occurred in the Tugai. Significant CH4 fluxes only were determined from the flooded rice field: Fluxes were low with mean flux rates of 32 mg CH4 m−2 day−1 and a low seasonal total of 35.2 kg CH4 ha−1. The global warming potential (GWP) of the N2O and CH4 fluxes was highest under rice and cotton, with seasonal changes between 500 and 3000 kg CO2 eq. ha−1. The biennial cotton–wheat–rice crop rotation commonly practiced in the region would average a GWP of 2500 kg CO2 eq. ha−1 yr−1. The analyses point out opportunities for reducing the GWP of these irrigated agricultural systems by (i) optimization of fertilization and irrigation practices and (ii) conversion of annual cropping systems into perennial forest plantations, especially on less profitable, marginal lands.  相似文献   

19.
The aim of this study was to determine the effect of sediment grazing and burrowing activities of natural populations of Mictyris longicarpus on benthic metabolism, nitrogen flux and irrigation rates by comparing sediments taken from minimum disturbance exclusion cages and adjacent sediments subject to M. longicarpus activities. M. longicarpus reduced sediment surface chlorophyll a (approximately 77%), organic carbon (approximately 95%) and total nitrogen concentrations (approximately 99%) in comparison to ungrazed sediments. Consequently, they significantly reduced gross benthic O2 production (about 71%) and sediment O2 consumption (approximately 46%). Mean N2 fluxes showed net effluxes (276-430 μmol m−2 day−1) in the presences of M. longicarpus and net uptakes (194.09-449.21 μmol m−2 day−1) where they were excluded. The net uptake of N2 was most likely due to cyanobacteria fixing of N2, as dense microbial mats became established over the sediment surface in the absence of M. longicarpus grazing activity. Sediment irrigation/transport rates calculated from CsCl tracer dilution indicated greater irrigation rates in the exclusions (12.12-16.22 l m−2 h−1) compared to inhabited sediments (6.33-11.73 l m−2 h−1) and this was again was most likely due to the lack of grazing pressure which allowed large populations of small burrowing polychaetes to inhabit the organic matter rich exclusion sediments. As such, the main influence of M. longicarpus was the interception and consumption of transported organic material, benthic microalgae and other small infaunal organisms resulting in the removal of approximately 0.06 g m−2 day−1 of nitrogen and 12.12 g m−2 day−1 of organic carbon. This “cleansing” of the sediments reduced sediment metabolism and the flux of solutes across the sediment water interface and ultimately the heavy predation of M. longicarpus by transient species such as stingrays, results in a net loss of carbon and nitrogen from the system.  相似文献   

20.
Rates of net photosynthesis and dark respiration were determined under submersed and emerged conditions for Hesperophycus harveyanus S. & G. and Pelvetia fastigiata f. gracilis (Decne.) S. & G. Both species exhibited submersed photosynthesis-light relationships and dark respiration rates similar to those established for other closely related intertidal, fucoids. Maximal net photosynthesis of H. harveyanus (0.21 mmol O2 g dry wt.-1· h-1; 0.18 mmol CO2 g dry wt.-1· h-1) was similar to that of P. fastigiata f. gracilis (0.17 mmol. O2 g dry wt.-1· h-1; 0.14 mmol CO2 g dry wt. -1· h-1). Light saturation occurred between 150 and 250 μE · m-2· s-1 for H. harveyanus and between 75 and 150 μE · m-2· s-1 for P. fastigiata f. gracilis; photon flux densities required for compensation were 6.4 and 9.2 μE · m-2· s-1, respectively. Photoinhibition was not observed for either species. The light-saturated, submersed net photosynthetic performances of both species varied significantly with temperature. Greatest photosynthetic rates were obtained at 23° C for H. harveyanus and at 18° C for P. fastigiata f. gracilis. Under emersed conditions, the maximal net photosynthetic rate and the photon flux densities required for saturation were greater for H. harveyanus (0.08 mmol CO2 g dry wt.-1· h-1; 260 to 700 μE · m-2· s-1) than for P. fastigiata f. gracilis (0.02 mmol CO2g dry wt.-1· h-1; 72 to 125 μE · m-2· s-1). However, for both species, emersed photosynthetic rates were much lower (14–44%) than those obtained under submersed conditions. Desiccation negatively influenced emersed photosynthesis, of both species, but H. harveyanus thalli contained more water when fully hydrated and lost water more slowly during dehydration, thus suggesting greater photosynthetic potential during field conditions of emersion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号