首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Genetic variation in invasive populations is affected by a variety of processes including stochastic forces, multiple introductions, population dynamics and mating system. Here, we compare genetic diversity between native and invasive populations of the selfing, annual plant Senecio vulgaris to infer the relative importance of genetic bottlenecks, multiple introductions, post-introduction genetic drift and gene flow to genetic diversity in invasive populations. We scored multilocus genotypes at eight microsatellite loci from nine native European and 19 Chinese introduced populations and compared heterozygosity and number of alleles between continents. We inferred possible source populations for introduced populations by performing assignment analyses and evaluated the relative contributions of gene flow and genetic drift to genetic diversity based on correlations of pairwise genetic and geographic distance. Genetic diversity within Chinese populations was significantly reduced compared to European populations indicating genetic bottlenecks accompanying invasion. Assignment tests provided support for multiple introductions with populations from Central China and southwestern China descended from genotypes matching those from Switzerland and the UK, respectively. Genetic differentiation among populations in China and Europe was not correlated with geographic distance. However, European populations exhibited less variation in the relation between G ST and geographical distance than populations in China. These results suggest that gene flow probably plays a more significant role in structuring genetic diversity in native populations, whereas genetic drift appears to predominate in introduced populations. High rates of selfing in Chinese populations may restrict opportunities for pollen-mediated gene flow. Repeated colonization-extinction cycles associated with ongoing invasion is likely to maintain low genetic diversity in Chinese populations.  相似文献   

2.
珍稀濒危植物长叶红砂种群遗传多样性的ISSR分析   总被引:3,自引:1,他引:2  
张颖娟  王玉山 《植物研究》2008,28(5):568-573
采用ISSR分子标记技术,对濒危小灌木长叶红砂(Reaumuria trigyna) 集中分布的5个种群的遗传多样性水平和遗传结构进行了研究。14条引物共检测到114个位点,其中99个为多态位点,多态位点比率为86.84%,长叶红砂种群具有较高的遗传多样性。物种水平上Shannon多样性指数(I)为0.468 8,Nei基因多样性指数(H)为0.308 4;种群水平上,多态位点比率P为77.89%,I为0.410 6,H为0.260 9,基因分化系数Gst为0.106 9,揭示了长叶红砂种群遗传变异多存在于种群内,种群间的遗传分化较小,占10.69%。 基因流(Nm)为4.178 7>1,说明种群间的基因交流,防止了由于遗传漂变导致的遗传分化。聚类分析表明长叶红砂种群遗传距离与地理距离之间无显著的相关性。研究结果说明遗传多样性水平与物种本身特性和所处不同群落有关,濒危植物并不一定表现为遗传变异水平的降低。  相似文献   

3.
Genomic variation within and among populations is shaped by the interplay between natural selection and the effects of genetic drift and gene flow. Adaptive divergence can be found in small-scale natural systems even when population sizes are small, and the potential for gene flow is high, suggesting that local environments exert selection pressures strong enough to counteract the opposing effects of drift and gene flow. Here, we investigated genomic differentiation in nine moor frog (Rana arvalis) populations in a small-scale network of local wetlands using 16,707 ddRAD-seq SNPs, relating levels of differentiation with local environments, as well as with properties of the surrounding landscape. We characterized population structure and differentiation, and partitioned the effects of geographic distance, local larval environment, and landscape features on total genomic variation. We also conducted gene–environment association studies using univariate and multivariate approaches. We found small-scale population structure corresponding to 6–8 clusters. Local larval environment was the most influential component explaining 2.3% of the total genetic variation followed by landscape features (1.8%) and geographic distance (0.8%), indicative of isolation-by-environment, -by-landscape, and -by-distance, respectively. We identified 1000 potential candidate SNPs putatively under divergent selection mediated by the local larval environment. The candidate SNPs were involved in, among other biological functions, immune system function and development. Our results suggest that small-scale environmental differences can exert selection pressures strong enough to counteract homogenizing effects of gene flow and drift in this small-scale system, leading to observable population differentiation.Subject terms: Genetic variation, Ecological genetics  相似文献   

4.
Genetic variation and differentiation in six island populations of two species ( Cynopterus brachyotis Müller and Haplonycteris fischeri Lawrence) of Philippine fruit bats (Chiroptera, Pteropodidae) were analysed using allozyme electrophoresis. Cynopterus is eurytopic and widespread in southeast Asia; Haplonycteris is stenotopic and endemic to the Philippines. Genetic variability within populations is consistently higher in Cynopterus , but differentiation between populations is much more pronounced in Haplonycteris. Genetic variation is not significantly correlated with island size in either species, but a positive trend is present in both. Levels of gene flow are sufficiently low to allow differentiation by genetic drift alone in Haplonycteris ( Nm = 0.05), but not in Cynopterus ( Nm = 7.5). There is no significant association between genetic distance and distance between sampling sites; however, between-population differentiation is positively related to degree of geographic isolation during Pleistocene periods of low sea level and to vagility and consequent levels of gene flow among populations. Significant effects of population size on genetic differentiation were not found. Genetic distance matrices for the two species share a common structure that is similar to patterns of mammalian faunal similarity for the Philippines as a whole, suggesting similar effects of geographic and/or environmental factors.  相似文献   

5.
The wheat midge, Sitodiplosis mosellana, is an important pest in Northern China. We tested the hypothesis that the population structure of this species arises during a range expansion over the past 30 years. This study used microsatellite and mitochondrial loci to conduct population genetic analysis of S. mosellana across its distribution range in China. We found strong genetic structure among the 16 studied populations, including two genetically distinct groups (the eastern and western groups), broadly consistent with the geography and habitat fragmentation. These results underline the importance of natural barriers in impeding dispersal and gene flow of S. mosellana populations. Low to moderate genetic diversity among the populations and moderate genetic differentiation (F ST = 0.117) between the two groups were also found. The populations in the western group had lower genetic diversity, higher genetic differentiation and lower gene flow (F ST = 0.116, Nm = 1.89) than those in the eastern group (F ST = 0.049, Nm = 4.91). Genetic distance between populations was positively and significantly correlated with geographic distance (r = 0.56, P<0.001). The population history of this species provided no evidence for population expansion or bottlenecks in any of these populations. Our data suggest that the distribution of genetic diversity, genetic differentiation and population structure of S. mosellana have resulted from a historical event, reflecting its adaptation to diverse habitats and forming two different gene pools. These results may be the outcome of a combination of restricted gene flow due to geographical and environmental factors, population history, random processes of genetic drift and individual dispersal patterns. Given the current risk status of this species in China, this study can offer useful information for forecasting outbreaks and designing effective pest management programs.  相似文献   

6.
M A Millar  D J Coates  M Byrne 《Heredity》2013,111(5):437-444
Historically rare plant species with disjunct population distributions and small population sizes might be expected to show significant genetic structure and low levels of genetic diversity because of the effects of inbreeding and genetic drift. Across the globe, terrestrial inselbergs are habitat for rich, often rare and endemic flora and are valuable systems for investigating evolutionary processes that shape patterns of genetic structure and levels of genetic diversity at the landscape scale. We assessed genetic structure and levels of genetic diversity across the range of the historically rare inselberg endemic Acacia woodmaniorum. Phylogeographic and genetic structure indicates that connectivity is not sufficient to produce a panmictic population across the limited geographic range of the species. However, historical levels of gene flow are sufficient to maintain a high degree of adaptive connectivity across the landscape. Genetic diversity indicates gene flow is sufficient to largely counteract any negative genetic effects of inbreeding and random genetic drift in even the most disjunct or smallest populations. Phylogeographic and genetic structure, a signal of isolation by distance and a lack of evidence of recent genetic bottlenecks suggest long-term stability of contemporary population distributions and population sizes. There is some evidence that genetic connectivity among disjunct outcrops may be facilitated by the occasional long distance dispersal of Acacia polyads carried by insect pollinators moved by prevailing winds.  相似文献   

7.
  • Environmental gradients, and particularly climatic variables, exert a strong influence on plant distribution and, potentially, population genetic diversity and differentiation. Differences in water availability can cause among‐population variation in ecological processes and can thus interrupt populations’ connectivity and isolate them environmentally. The present study examines the effect of environmental heterogeneity on plant populations due to environmental isolation unrelated to geographic distance.
  • Using AFLP markers, we analyzed genetic diversity and differentiation among 12 Salvia spinosa populations and 13 Salvia syriaca populations from three phytogeographical regions (Mediterranean, Irano‐Turanian and Saharo‐Arabian) representing the extent of the species’ geographic range in Jordan. Differences in geographic location and climate were considered in the analyses.
  • For both species, flowering phenology varied among populations and regions. Irano‐Turanian and Saharo‐Arabian populations had higher genetic diversity than Mediterranean populations, and genetic diversity increased significantly with increasing temperature. Genetic diversity in Salvia syriaca was affected by population size, while genetic diversity responded to drought in S. spinosa. For both species, high levels of genetic differentiation were found as well as two well‐supported phytogeographical groups of populations, with Mediterranean populations clustering in one group and the Irano‐Turanian and Saharo‐Arabian populations in another. Genetic distance was significantly correlated to environmental distance, but not to geographic distance.
  • Our data indicate that populations from moist vs. arid environments are environmentally isolated, where environmental gradients affect their flowering phenology, limit gene flow and shape their genetic structure. We conclude that environmental heterogeneity may act as driver for the observed variation in genetic diversity.
  相似文献   

8.
Genetic differentiation of scattered populations at neutral loci is characterized by genetic drift counteracted by the remaining gene flow. Populations of Pinus cembra in the Carpathian Mountains are isolated and restricted to island-like stands at high-elevation mountain ranges. In contrast, paleobotanical data suggest an extended early Holocene distribution of P. cembra in the Carpathians and its surrounding areas, which has contracted to the currently disjunct occurrences. We analyzed the genetic variation of 11 Carpathian populations of P. cembra at chloroplast and, in part newly developed, nuclear microsatellites. Both marker types revealed low levels of genetic differentiation and a lack of isolation by distance, reflecting the post-glacial retraction of the species to its current distribution. Stronger effects of genetic drift were implied by the higher genetic differentiation found for haploid chloroplast than for diploid nuclear markers. Moreover, we found no association between the values of population genetic differentiation for the two marker types. Several populations indicated recent genetic bottlenecks and inbreeding as a consequence of decline in population sizes. Moreover, we found individuals in two populations from the Rodnei Mountains that strikingly differed in assignment probabilities from the remaining specimens, suggesting that they had been introduced from a provenance outside the studied populations. Comparison with Eastern Alpine P. cembra and individuals of the closely related Pinus sibirica suggests that these individuals presumably are P. sibirica. Our study highlights the importance of the maintenance of sufficiently large local population sizes for conservation due to low connectivity between local occurrences.  相似文献   

9.
RAPD markers were used to detect genetic diversity and population genetic differentiation of Hippophae rhamnoides ssp. yunnanensis, a sea buckthorn endemic to the Qinghai-Tibet plateau. The genetic parameters of percentage of polymorphic bands (92.86%), Nei’s gene diversity (h, 0.255), and Shannon’s index (I, 0.397) indicated high genetic diversity in this subspecies. The subpopulation differentiation suggested that 45.9% of genetic variation was among populations. High genetic differentiation among populations was also detected using AMOVA (47.02%). The main factors responsible for high genetic differentiation are probably related to natural geographic barriers among populations, gene drift, and limited gene flow caused by restricted pollen flow and seed flow. A Mantel test indicated that geographic distances were significantly correlated with genetic distances. The UPGMA phenogram based on Nei’s unbiased genetic distances and the result of three-dimensional model plots performed by principal coordinate analysis also supported the correlation. Altitude, however, did not have any clear effect on genetic differentiation.  相似文献   

10.
Genetic studies of recently established populations are challenging because the assumption of equilibrium underlying many analyses is likely to be violated. Using microsatellites, we investigated determinants of genetic structure and migration among invasive European-Chinese mitten crab populations, applying a combination of traditional population genetic analyses and nonequilibrium Bayesian methods. Consistent with their recent history, invasive populations showed much lower levels of genetic diversity than a native Chinese population, indicative of recent bottlenecks. Population differentiation was generally low but significant and especially pronounced among recently established populations. Significant differentiation among cohorts from the same geographical location (River Thames) suggests the low effective population size and associated strong genetic drift that would be anticipated from a very recent colonization. An isolation-by-distance pattern appears to be driven by an underlying correlation between geographical distance and population age, suggesting that cumulative homogenizing gene flow reduces founder bottleneck-associated genetic differentiation between longer-established populations. This hypothesis was supported by a coalescent analysis, which supported a drift + gene flow model as more likely than a model excluding gene flow. Furthermore, admixture analysis identified several recent migrants between the UK and Continental European population clusters. Admixture proportions were significantly predicted by the volume of shipping between sites, indicating that human-mediated transport remains a significant factor for dispersal of mitten crabs after the initial establishment of populations. Our study highlights the value of nonequilibrium methods for the study of invasive species, and also the importance of evaluating nonequilibrium explanations for isolation by distance patterns.  相似文献   

11.
Genetic effects of habitat fragmentation may be undetectable because they are generally a recent event in evolutionary time or because of confounding effects such as historical bottlenecks and historical changes in species'' distribution. To assess the effects of demographic history on the genetic diversity and population structure in the Neotropical tree Dipteryx alata (Fabaceae), we used coalescence analyses coupled with ecological niche modeling to hindcast its distribution over the last 21 000 years. Twenty-five populations (644 individuals) were sampled and all individuals were genotyped using eight microsatellite loci. All populations presented low allelic richness and genetic diversity. The estimated effective population size was small in all populations and gene flow was negligible among most. We also found a significant signal of demographic reduction in most cases. Genetic differentiation among populations was significantly correlated with geographical distance. Allelic richness showed a spatial cline pattern in relation to the species'' paleodistribution 21 kyr BP (thousand years before present), as expected under a range expansion model. Our results show strong evidences that genetic diversity in D. alata is the outcome of the historical changes in species distribution during the late Pleistocene. Because of this historically low effective population size and the low genetic diversity, recent fragmentation of the Cerrado biome may increase population differentiation, causing population decline and compromising long-term persistence.  相似文献   

12.
A previous phylogeography and genetic diversity study of Chamaedaphne calyculata (Ericaceae) showed that populations over its geographic range were strongly separated into two groups: a Eurasian/NW North American group and a NE North American one corresponding with the disjunct distribution of Sphagnum-dominated peatlands in north-western and central-eastern North America. Here, I have extended the survey and focused on the species’ detailed postglacial origin and the effect of isolation on genetic diversity patterns, particularly within island-like populations at the western periphery of its range in Europe. Using AFLP markers, estimates of genetic diversity within 16 C. calyculata populations in the Eurasian group were low (percentage of polymorphic loci P PL=14.9–24.8 %, Nei’s gene diversity H=0.060–0.119). Genetic diversity patterns within this species did not support the hypothesis that genetic diversity decreases towards the periphery of the range. Bayesian clustering analysis showed that population-level admixture was present in almost all studied 16 populations, suggesting multi-directional gene flow. On the other hand, the majority of assigned individuals (ca. 98 % of individuals) were offspring of the original residents, confirming that C. calyculata populations in the present day acted as discrete genetic units both in its continuous range and at its western periphery, and that gene flow was historic rather than contemporary in Eurasia. There was no correlation between genetic and geographic distance in the Eurasian group (r=0.02, P>0.05, Mantel test) nor at the western periphery (r=0.15, P>0.05, Mantel test). The isolation-by-distance (IBD) scatterplot matched Hutchinson and Templeton’s interpretation (case III), and geographic distance between populations was not a reliable predictor of the degree of genetic differentiation between populations. It is suggested that the lack of IBD might be a result of random genetic drift in rather disconnected populations that have become increasingly fragmented relatively recently. Positive and significant relationships between genetic and geographic distance on a small population scale was the result of biparental inbreeding of C. calyculata and restricted seed rain. Despite sporadic generative reproduction and limited dispersal, the fine-scale genetic structure within populations has been maintained, even though population sizes have been reduced to small fragments in recent years.  相似文献   

13.
Populations of the endangered giant kangaroo rat, Dipodomys ingens (Heteromyidae), have suffered increasing fragmentation and isolation over the recent past, and the distribution of this unique rodent has become restricted to 3% of its historical range. Such changes in population structure can significantly affect effective population size and dispersal, and ultimately increase the risk of extinction for endangered species. To assess the fine-scale population structure, gene flow, and genetic diversity of remnant populations of Dipodomys ingens, we examined variation at six microsatellite DNA loci in 95 animals from six populations. Genetic subdivision was significant for both the northern and southern part of the kangaroo rat’s range although there was considerable gene flow among southern populations. While regional gene diversity was relatively high for this endangered species, hierarchical F-statistics of northern populations in Fresno and San Benito counties suggested non-random mating and genetic drift within subpopulations. We conclude that effective dispersal, and therefore genetic distances between populations, is better predicted by ecological conditions and topography of the environment than linear geographic distance between populations. Our results are consistent with and complimentary to previous findings based on mtDNA variation of giant kangaroo rats. We suggest that management plans for this endangered rodent focus on protection of suitable habitat, maintenance of connectivity, and enhancement of effective dispersal between populations either through suitable dispersal corridors or translocations.  相似文献   

14.
We examined the genetic structure of natural populations of the European wood mouse Apodemus sylvaticus at the microgeographic (<3 km) and macrogeographic (>30 km) scales. Ecological and behavioural studies indicate that this species exhibits considerable dispersal relative to its home-range size. Thus, there is potential for high gene flow over larger geographic areas. As levels of population genetic structure are related to gene flow, we hypothesized that population genetic structuring at the microgeographic level should be negligible, increasing only with geographic distance. To test this, four sites were sampled within a microgeographic scale with two additional samples at the macrogeographic level. Individuals ( n =415) were screened and analysed for seven polymorphic microsatellite loci. Contrary to our hypothesis, significant levels of population structuring were detected at both scales. Comparing genetic differentiation with geographic distance suggests increasing genetic isolation with distance. However, this distance effect was non-significant being confounded by surprisingly high levels of differentiation among microgeographic samples. We attribute this pattern of genetic differentiation to the effect of habitat fragmentation, splitting large populations into components with small effective population sizes resulting in enhanced genetic drift. Our results indicate that it is incorrect to assume genetic homogeneity among populations even where there is no evidence of physical barriers and dispersal can occur freely. In the case of A. sylvaticus , it is not clear whether dispersal does not occur across habitat barriers or behavioural dispersal occurs without consequent gene flow.  相似文献   

15.
The distribution of allozymic and chromosomal polymorphisms was examined among central Australian populations of the chromosomally variable genus Gehyra to assess whether they typically have the small deme size and low gene flow levels required by some models of chromosomal speciation. Particular attention was given to comparisons between rock-specialists (Gehyra nana) and habitat-generalists (Gehyra variegata) to investigate whether the former have more restricted gene flow. Both allozyme and chromosome data sets showed greater among population differentiation in the rock-specialists than the habitat-generalists, consistent with predictions from a previous ecological study (Moritz, 1987), although this pattern could also be due to historical effects. This was evident from the relationships between genetic and geographic distance, the conditional frequency of alleles, and F-statistics. However, both taxa appear to have substantial levels of gene flow. This indicates that Gehyra populations typically do not meet the stringent conditions for the fixation of strongly underdominant chromosome rearrangements through strong genetic drift. A consistent deficiency of heterozygotes does, however, suggest the possibility of inbreeding which would increase the likelihood of the establishment of underdominant rearrangements.  相似文献   

16.
《Journal of Asia》2014,17(4):793-798
Athetis lepigone (Möschler) is an invasive insect pest that feeds on corn seedlings in the summer corn region of China. Inter-simple sequence repeat (ISSR) markers were used to determine genotype of A. lepigone collected from 15 geographic locations in North China. Data from seven primers resulted in a total of 183 bands that were scored, 174 (95.08%) of which were polymorphic. Genetic distance estimates among the 15 populations of A. lepigone ranged from 0.0133 to 0.0595. At species level, Nei's genetic diversity index was 0.3537 and Shannon information index was 0.5288. Genetic differentiation among the 15 populations was estimated at 0.0747 and historical mean number of migrants (Nm) was 6.19. Clustering analysis revealed no correlation between genetic diversity and geographic proximity among the A. lepigone populations. This lack of significant genetic diversity or correlation with geographic location suggests that gene flow may be high among the 15 A. lepigone populations or homogenization may be a result of recent range expansion. These data provide important preliminary estimates of A. lepigone population dynamics which may help in evaluating local scales required for control of this insect.  相似文献   

17.
Landscape heterogeneity plays an important role in population structure and divergence, particularly for species with limited vagility. Here, we used a landscape genetic approach to identify how landscape and environmental variables affect genetic structure and color morph frequency in a polymorphic salamander. The eastern red‐backed salamander, Plethodon cinereus, is widely distributed in northeastern North America and contains two common color morphs, striped and unstriped, that are divergent in ecology, behavior, and physiology. To quantify population structure, rates of gene flow, and genetic drift, we amplified 10 microsatellite loci from 648 individuals across 28 sampling localities. This study was conducted in northern Ohio, where populations of P. cinereus exhibit an unusually wide range of morph frequency variation. To test whether genetic distance was more correlated with morph frequency, elevation, canopy cover, waterways, ecological niche or geographic distance, we used resistance distance and least cost path analyses. We then examined whether landscape and environmental variables, genetic distance or geographic distance were correlated with variation in morph frequency. Tests for population structure revealed three genetic clusters across our sampling range, with one cluster monomorphic for the striped morph. Rates of gene flow and genetic drift were low to moderate across sites. Genetic distance was most correlated with ecological niche, elevation and a combination of landscape and environmental variables. In contrast, morph frequency variation was correlated with waterways and geographic distance. Thus, our results suggest that selection is also an important evolutionary force across our sites, and a balance between gene flow, genetic drift and selection interact to maintain the two color morphs.  相似文献   

18.
The analysis of geographic patterns in genetic variation has been one of the most important current tools to understand ecological and evolutionary processes underlying population structure. However, inferring such processes from population data may be misleading if biased geographic samples are analyzed. Here we expand previous analyses of Eugenia dysenterica population structure in Brazilian Cerrado, analyzing a larger number of populations distributed throughout a broader geographic region covering most of species' range. We provide new estimates of genetic diversity and population structure based on SSR markers from both neutral and genic regions, using several cluster and ordination techniques. These analyzes reveal a continuous northwestern-southeastern gradient in population differentiation, and not two distinct clusters of populations as suggested in some previous studies. This more comprehensive analysis also reinforces that a simple process of stochastic differentiation do not explain the observed patterns. Moreover, we conclude that explanations for population differentiation may focus on why genetic diversity decreases toward southeastern populations and not necessarily on barriers and interruption of gene flow creating regional patterns of population differentiation.  相似文献   

19.
Buddleja crispa Benth. is one of the most morphologically variable species in genus Buddleja, and it is widely distributed in the Himalaya-Hengduan Mountains (HHM) region. This study used AFLPs as a tool to examine the genetic variation among and within 25 populations of B. crispa. Analysis of population genetics of the species aimed to clarify morphological variation, current distribution patterns, strong adaptability to habitats, and the effects of geological factors in the HHM region. The genetic structure results, based on PCoA and NJ cluster analyses, revealed that the populations of B. crispa were divided into two genetic groups. Furthermore, the peripheral populations had lower genetic diversity than the populations in the center of the distribution areas (Three Parallel Rivers). We conclude that the gene flow (predominantly seed and pollen flow) and the population differentiation of B. crispa might be more affected by the barriers formed by rivers and mountains than by geographic distance.  相似文献   

20.
We investigated spatio-temporal genetic variation in allele frequency and estimated gene flow among sympatric populations of Tetranychus kanzawai on different host plants by the use of microsatellite markers. In the analysis of spatial genetic variation, no isolation by distance was detected among the populations. Gene flow between populations on Hydrangea macrophylla and those on other host plants was relatively restricted, whereas the populations on Akebia quinata and Clerodendrum trichotomum were almost panmictic. Our study on temporal genetic variation showed (1) that population differentiation was slightly reduced during the period from April to May owing to frequent gene flow among populations; and (2) that population differentiation was greatly enhanced from May to October because of bottleneck effects. Genetic differentiation among T. kanzawai populations was caused by the effect of host plants rather than by the effect of geographic distance among populations, suggesting possibility of sympatric host race formation in this species.This revised version was published online in May 2005 with a corrected cover date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号