共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Min Chen Weiqi Zhang Liangliang Han Xuejuan Ru Yuzhu Cao Yasufumi Hikichi Kouhei Ohnishi Guanghui Pan Yong Zhang 《Molecular Plant Pathology》2022,23(5):679-692
A syringe-like type III secretion system (T3SS) plays essential roles in the pathogenicity of Ralstonia solanacearum, which is a causal agent of bacterial wilt disease on many plant species worldwide. Here, we characterized functional roles of a CysB regulator (RSc2427) in R. solanacearum OE1-1 that was demonstrated to be responsible for cysteine synthesis, expression of the T3SS genes, and pathogenicity of R. solanacearum. The cysB mutants were cysteine auxotrophs that failed to grow in minimal medium but grew slightly in host plants. Supplementary cysteine substantially restored the impaired growth of cysB mutants both in minimal medium and inside host plants. Genes of cysU and cysI regulons have been annotated to function for R. solanacearum cysteine synthesis; CysB positively regulated expression of these genes. Moreover, CysB positively regulated expression of the T3SS genes both in vitro and in planta through the PrhG to HrpB pathway, whilst impaired expression of the T3SS genes in cysB mutants was independent of growth deficiency under nutrient-limited conditions. CysB was also demonstrated to be required for exopolysaccharide production and swimming motility, which contribute jointly to the host colonization and infection process of R. solanacearum. Thus, CysB was identified here as a novel regulator on the T3SS expression in R. solanacearum. These results provide novel insights into understanding of various biological functions of CysB regulators and complex regulatory networks on the T3SS in R. solanacearum. 相似文献
5.
6.
Choghag Demirjian Narjes Razavi Henri Desaint Fabien Lonjon Stéphane Genin Fabrice Roux Richard Berthomé Fabienne Vailleau 《Molecular Plant Pathology》2022,23(3):321-338
Ralstonia solanacearum gram-negative phytopathogenic bacterium exerts its virulence through a type III secretion system (T3SS) that translocates type III effectors (T3Es) directly into the host cells. T3E secretion is finely controlled at the posttranslational level by helper proteins, T3SS control proteins, and type III chaperones. The HpaP protein, one of the type III secretion substrate specificity switch (T3S4) proteins, was previously highlighted as a virulence factor on Arabidopsis thaliana Col-0 accession. In this study, we set up a genome-wide association analysis to explore the natural diversity of response to the hpaP mutant of two A. thaliana mapping populations: a worldwide collection and a local population. Quantitative genetic variation revealed different genetic architectures in both mapping populations, with a global delayed response to the hpaP mutant compared to the GMI1000 wild-type strain. We have identified several quantitative trait loci (QTLs) associated with the hpaP mutant inoculation. The genes underlying these QTLs are involved in different and specific biological processes, some of which were demonstrated important for R. solanacearum virulence. We focused our study on four candidate genes, RKL1, IRE3, RACK1B, and PEX3, identified using the worldwide collection, and validated three of them as susceptibility factors. Our findings demonstrate that the study of the natural diversity of plant response to a R. solanacearum mutant in a key regulator of virulence is an original and powerful strategy to identify genes directly or indirectly targeted by the pathogen. 相似文献
7.
A putative LysR‐type transcriptional regulator PrhO positively regulates the type III secretion system and contributes to the virulence of Ralstonia solanacearum 下载免费PDF全文
Yong Zhang Jiaman Li Weiqi Zhang Hualei Shi Feng Luo Yasufumi Hikichi Xiaojun Shi Kouhei Ohnishi 《Molecular Plant Pathology》2018,19(8):1808-1819
8.
Saeed Hosseinzadeh Ebrahim Hosseinzadeh 《Archives Of Phytopathology And Plant Protection》2013,46(6):643-655
Ralstonia solanacearum is a complex bacterial species that causes the very destructive plant disease, bacterial wilt, on many solanaceous species and also several other plant families in tropical, subtropical and some temperate regions of the world. In this study, the inhibitory effects of three sub-bactericidal concentrations of the Cinnamon (Cinnamomum zeylanicum), Thyme (Thymus vulgaris), lavender (Lavandula angustifolia) and eucalyptus (Eucalyptus camaldulensis) essential oils (EOs) were evaluated on biofilm formation, the swimming, swarming and twitching motilities of R. solanacearum race three strains. Furthermore, the effects of EOs on bacterial morphology were assessed. All treatments caused significant reductions in biofilm formation and on the ability to swim, swarm and twitch of bacterial cells. The results also indicated that sub-lethal concentrations of EOs which were applied in this study caused abnormality in the shape of bacterial cells and changed the R. solanacearum morphology. The results obtained indicated that the sub-bactericidal concentrations of EOs applied in this study suppressed R. solanacearum pathogenicity and virulence factors. Because of less phytotoxicity at these concentrations and lower costs of their application, they can be used as environment-friendly biofumigants. 相似文献
9.
Bacterial wilt, caused by soil-borne pathogen Ralstonia solanacearum, is a serious disease in many plants such as Solanaceae. To investigate the effects of accumulated nitrogen in soil on the phenotype and pathogenicity of the R. solanacearum, a serial passage experiment (SPE) was designed. Specifically speaking, minimal medium supplied with a slight excess of ammonium sulphate (AS) or ammonium nitrate (AN) was used to simulate the nutrition of soil containing excess nitrogen. During the period of 30 SPE, the phenotype, pathogenicity and relative expression of nitrogen metabolism genes in R. solanacearum were monitored. Phenotypic analysis results illustrated that the colony morphology of R. solanacearum changed after long-term culture, from high virulence colonies with strong fluidity to small, round non-mucoid colonies; The strain after prolonged stress of excessive exogenous nitrogen was a no-virulence phenotype conversion type (PC-type). The time for a change in colony morphology to occur after exposure to exogenous AS or AN was significantly less than the untreated samples, which treated without exogenous nitrogen. The results of pathogenicity also demonstrated that the cultures treated with exogenous AN or AS reduced virulence more quickly than the control. The disease index of 10 SPE with AN treatment or AS treatment was 89% or 68% lower than that of the control, respectively. In addition, as the incubation time increased, the swimming motility and the number of biofilms formation of the cultures were significantly changed under both treatments in comparison to the untreated samples. Furthermore, the relative expression of the nitric oxide reductase norB gene in the cultures treated with AN was 1.51-fold higher compared with the control after 30 SPE. These results indicated that excessive nitrogen supply in the environment could accelerate the transformation of R. solanacearum from high virulence wild-type into a PC-type, probably for the purpose of adapting to the adverse environment. 相似文献
10.
《Genomics》2021,113(3):992-1000
Integrated bacteriophages (prophages) can impact host cells, affecting their lifestyle, genomic diversity, and fitness. However, many basic aspects of how these organisms affect the host cell remain poorly understood. Ralstonia solanacearum is a gram-negative plant pathogenic bacterium that encompasses a great diversity of ecotypes regarded as a species complex (R. solanacearum Species Complex - RSSC). RSSC genomes have a mosaic structure containing numerous elements, signaling the potential for its evolution through horizontal gene transfer. Here, we analyzed 120 Ralstonia spp. genomes from the public database to identify prophage sequences. In total, 379 prophage-like elements were found in the chromosome and megaplasmid of Ralstonia spp. These elements encode genes related to host fitness, virulence factors, antibiotic resistance, and niche adaptation, which might contribute to RSSC adaptability. Prophage-like elements are widespread into the complex in different species and geographic origins, suggesting that the RSSC phages are ancestrally acquired. Complete prophages belonging to the families Inoviridae, Myoviridae, and Siphoviridae were found, being the members of Inoviridae the most abundant. Analysis of CRISPR-Cas spacer sequences demonstrated the presence of prophages sequences that indicate successive infection events during bacterial evolution. Besides complete prophages, we also demonstrated 14 novel putative prophages integrated into Ralstonia spp. genomes. Altogether, our results provide insights into the diversity of prophages in RSSC genomes and suggest that these elements may deeply affect the virulence and host adaptation and shaping the genomes among the strains of this important pathogen. 相似文献
11.
We investigated the genetic diversity, extent of recombination, natural selection, and population divergence of Ralstonia solanacearum samples obtained from sources worldwide. This plant pathogen causes bacterial wilt in many crops and constitutes a serious threat to agricultural production due to its very wide host range and aggressiveness. Five housekeeping genes, dispersed around the chromosome, and three virulence-related genes, located on the megaplasmid, were sequenced from 58 strains belonging to the four major phylogenetic clusters (phylotypes). Whereas genetic variation is high and consistent for all housekeeping loci studied, virulence-related gene sequences are more diverse. Phylogenetic and statistical analyses suggest that this organism is a highly diverse bacterial species containing four major, deeply separated evolutionary lineages (phylotypes I to IV) and a weaker subdivision of phylotype II into two subgroups. Analysis of molecular variations showed that the geographic isolation and spatial distance have been the significant determinants of genetic variation between phylotypes. R. solanacearum displays high clonality for housekeeping genes in all phylotypes (except phylotype III) and significant levels of recombination for the virulence-related egl and hrpB genes, which are limited mainly to phylotype strains III and IV. Finally, genes essential for species survival are under purifying selection, and those directly involved in pathogenesis might be under diversifying selection. 相似文献
12.
Evolutionary dynamics of Ralstonia solanacearum 总被引:2,自引:0,他引:2
We investigated the genetic diversity, extent of recombination, natural selection, and population divergence of Ralstonia solanacearum samples obtained from sources worldwide. This plant pathogen causes bacterial wilt in many crops and constitutes a serious threat to agricultural production due to its very wide host range and aggressiveness. Five housekeeping genes, dispersed around the chromosome, and three virulence-related genes, located on the megaplasmid, were sequenced from 58 strains belonging to the four major phylogenetic clusters (phylotypes). Whereas genetic variation is high and consistent for all housekeeping loci studied, virulence-related gene sequences are more diverse. Phylogenetic and statistical analyses suggest that this organism is a highly diverse bacterial species containing four major, deeply separated evolutionary lineages (phylotypes I to IV) and a weaker subdivision of phylotype II into two subgroups. Analysis of molecular variations showed that the geographic isolation and spatial distance have been the significant determinants of genetic variation between phylotypes. R. solanacearum displays high clonality for housekeeping genes in all phylotypes (except phylotype III) and significant levels of recombination for the virulence-related egl and hrpB genes, which are limited mainly to phylotype strains III and IV. Finally, genes essential for species survival are under purifying selection, and those directly involved in pathogenesis might be under diversifying selection. 相似文献
13.
14.
15.
16.
17.
Lipopolysaccharides (LPSs) from four strains of Ralstonia solanacearum belonging to biovar I (ICMP 6524, 8115, 5712, and 8169) were isolated and investigated. The structural components of the LPS molecule, such as lipid A, the core oligosaccharide, and O-specific polysaccharide (O-PS), were obtained after mild acid hydrolysis of the LPS preparations. In lipid A from all the LPS samples studied, 3-hydroxyhexadecanoic, 2-hydroxyhexadecanoic, tetradecanoic, and hexadecanoic fatty acids prevailed. The dominant monosaccharides of the core oligosaccharides of all of the strains studied were rhamnose, glucose, glucosamine, 2-keto-3-deoxyoctulosonic acid, and heptose. However, individual strains varied in the content of galactose, ribose, xylose, and arabinose. Three types of the O-PS structure were established, which differed in their configuration (alpha or beta), as well as in the type of the bond between glucosamine and rhamnose residues (1-->2 or 1-->3). 相似文献
18.
19.
Lipopolysaccharides (LPSs) from four strains of Ralstonia solanacearum belonging to biovar I (ICMP 6524, 8115, 5712, and 8169) were isolated and investigated. The structural components of the LPS molecule, such as lipid A, the core oligosaccharide, and O-specific polysaccharide (O-PS), were obtained after mild acid hydrolysis of the LPS preparations. In lipid A from all the LPS samples studied, 3-hydroxytetradecanoic, 2-hydroxyhexadecanoic, tetradecanoic, and hexadecanoic fatty acids prevailed. The dominant monosaccharides of the core oligosaccharides of all of the strains studied were rhamnose, glucose, glucosamine, 2-keto-3-deoxyoctulosonic acid, and heptose. However, individual strains varied in the content of galactose, ribose, xylose, and arabinose. Three types of the O-PS structure were established, which differed in their configuration ( or ), as well as in the type of the bond between glucosamine and rhamnose residues (1 2 or 1 3). 相似文献