首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract Strains of Staphylococcus aureus were converted into L-forms with β-lactam antibiotics, vancomycin and lysostaphin. Reverted bacteria obtained after several transfers in protoplast forms (unstable L-forms) as well as stable L-forms lost their plasmids. Curing was obtained whatever the plasmid size (from 3.4 to 28.2 kb) but complete curing required cell division. Elimination of plasmids in wall-less organisms could be the result of an inhibition of new rounds of plasmid replication following the loss of DNA-envelope interactions.  相似文献   

3.
Extensive research has been conducted on the development of three groups of naturally occurring antimicrobials as novel alternatives to antibiotics: bacteriophages (phages), bacterial cell wall hydrolases (BCWH), and antimicrobial peptides (AMP). Phage therapies are highly efficient, highly specific, and relatively cost-effective. However, precautions have to be taken in the selection of phage candidates for therapeutic applications as some phages may encode toxins and others may, when integrated into host bacterial genome and converted to prophages in a lysogenic cycle, lead to bacterial immunity and altered virulence. BCWH are divided into three groups: lysozymes, autolysins, and virolysins. Among them, virolysins are the most promising candidates as they are highly specific and have the capability to rapidly lyse antibiotic-resistant bacteria on a generally species-specific basis. Finally, AMP are a family of natural proteins produced by eukaryotic and prokaryotic organisms or encoded by phages. AMP are of vast diversity in term of size, structure, mode of action, and specificity and have a high potential for clinical therapeutic applications.  相似文献   

4.
噬菌体是能感染细菌的病毒。为了抵抗噬菌体的感染,细菌进化出多种抵抗噬菌体感染的机制,这些机制的阐析极大地促进了基因编辑领域的发展,同时也为噬菌体治疗的开展奠定了基础。本文就细菌针对噬菌体感染的各个环节所进行的抵抗及其分子机制进行了简要综述,同时讨论了这些防御系统的存在对细菌自身的影响,分析了当前细菌耐受噬菌体机制研究存在的局限性,并对未来研究进行了展望。  相似文献   

5.
Nowadays there is more and more evidence that mast cells take part in antibacterial defence. Mast cells have the ability to kill bacteria via phagocytose‐dependent or phagocytose‐independent ways and express antimicrobial peptides that can directly kill pathogens at their site of entry. What is more, mast cells are capable of processing bacterial antigens for presentation through class I and II MHC molecules. Some data indicate that these cells can release various proinflammatory mediators in response to activation with bacteria and/or their products, however this information is still far from complete. Therefore, in this study we examined the ability of PGN from Staphylococcus aureus, LPS from Eschericha coli and LAM from Mycobacterium smegmatis to stimulate mature rat mast cell degranulation as well as cysteinyl LT generation. We also studied the influence of these bacterial components on mast cell migration. We found that PGN, LPS and LAM all failed to induce mast cell degranulation and histamine release. At the same time, activation of mast cells with these bacterial antigens resulted in generation and release of significant amounts of LT. Moreover, we documented that, even in the presence of laminin, none of the bacterial antigens used stimulated mast cell migration. However, PGN did induce migration of RANTES‐primed mast cells, and LPS did stimulate mast cell migratory response after priming with IL‐6. Our results show that PGN, LPS and LAM might be among the important bacterial antigens involved in mast cell activation during bacterial infection.  相似文献   

6.
Toole GA  Gunning PA  Parker ML  Smith AC  Waldron KW 《Planta》2001,212(4):606-611
Previous mechanical studies using algae have concentrated on cell extension and growth using creep-type experiments, but there appears to be no published study of their failure properties. The mechanical strength of single large internode cell walls (up to 2 mm diameter and 100 mm in length) of the charophyte (giant alga) Chara corallina was determined by dissecting cells to give sheets of cell wall, which were then notched and fractured under tension. Tensile tests, using a range of notch sizes, were conducted on cell walls of varying age and maturity to establish their notch sensitivity and to investigate the propagation of cracks in plant cell walls. The thickness and stiffness of the walls increased with age whereas their strength was little affected. The strength of unnotched walls was estimated as 47 ± 13 MPa, comparable to that of some grasses but an order of magnitude higher than that published for model bacterial cellulose composite walls. The strength was notch-sensitive and the critical stress intensity factor K 1c was estimated to be 0.63 ± 0.19 MNm−3/2, comparable to published values for grasses. Received: 4 April 2000 / Accepted: 21 July 2000  相似文献   

7.
The cell wall plays a central role in protecting bacteria from some environmental stresses, but not against all. In fact, in some cases, an elaborate cell envelope may even render the cell more vulnerable. For example, it contains molecules or complexes that bacteriophages recognize as the first step of host invasion, such as proteins and sugars, or cell appendages such as pili or flagella. In order to counteract phages, bacteria have evolved multiple escape mechanisms, such as restriction-modification, abortive infection, CRISPR/Cas systems or phage inhibitors. In this perspective review, we present the hypothesis that bacteria may have additional means to escape phage attack. Some bacteria are known to be able to shed their cell wall in response to environmental stresses, yielding cells that transiently lack a cell wall. In this wall-less state, the bacteria may be temporarily protected against phages, since they lack the essential entities that are necessary for phage binding and infection. Given that cell wall deficiency can be triggered by clinically administered antibiotics, phage escape could be an unwanted consequence that limits the use of phage therapy for treating stubborn infections.  相似文献   

8.
Peptidoglycan is the main component of the bacterial cell wall. It is a complex, three‐dimensional mesh that surrounds the entire cell and is composed of strands of alternating glycan units crosslinked by short peptides. Its biosynthetic machinery has been, for the past five decades, a preferred target for the discovery of antibacterials. Synthesis of the peptidoglycan occurs sequentially within three cellular compartments (cytoplasm, membrane, and periplasm), and inhibitors of proteins that catalyze each stage have been identified, although not all are applicable for clinical use. A number of these antimicrobials, however, have been rendered inactive by resistance mechanisms. The employment of structural biology techniques has been instrumental in the understanding of such processes, as well as the development of strategies to overcome them. This review provides an overview of resistance mechanisms developed toward antibiotics that target bacterial cell wall precursors and its biosynthetic machinery. Strategies toward the development of novel inhibitors that could overcome resistance are also discussed.  相似文献   

9.
10.
Mutations of the secondary cell wall   总被引:6,自引:0,他引:6  
It has not been possible to isolate a number of crucial enzymes involved in plant cell wall synthesis. Recent progress in identifying some of these steps has been overcome by the isolation of mutants defective in various aspects of cell wall synthesis and the use of these mutants to identify the corresponding genes. Secondary cell walls offer numerous advantages for genetic analysis of plant cell walls. It is possible to recover very severe mutants since the plants remain viable. In addition, although variation in secondary cell wall composition occurs between different species and between different cell types, the composition of the walls is relatively simple compared to primary cell walls. Despite these advantages, relatively few secondary cell wall mutations have been described to date. The only secondary cell wall mutations characterised to date, in which the basis of the abnormality is known, have defects in either the control of secondary cell wall deposition or secondary cell wall cellulose or lignin biosynthesis. These mutants have, however, provided essential information on secondary cell wall biosynthesis.  相似文献   

11.
An amphotericin B (AmB)-resistant mutant was isolated from a wild-type AmB-susceptible strain of Aspergillus flavus by serial transfer of conidia on agar plates containing stepwise increased concentrations of AmB up to 100 microg ml-1. The acquired resistance of mycelia was specific for polyene-antibiotics AmB, nystatin and trichomycin. Spheroplasts derived from the resistant mycelia were as susceptible to AmB as the wild-type. Chemical analysis of the cell wall revealed that levels of alkali-soluble and -insoluble glucans were significantly higher in the resistant mycelia as compared to those in the wild-type. When resistant mycelia were treated with SDS, they adsorbed as much AmB as wild-type mycelia. These results suggest that alterations in the cell wall components of mycelia, especially 1,3-alpha-glucan and protein complex in the outermost wall layer, lead to AmB resistance in A. flavus.  相似文献   

12.
目的了解L型细菌在慢性肾盂肾炎的感染及耐药状况。方法对71例患者清洁中段尿做普通细菌培养(B型)、L型细菌培养(L型)及耐药分析。结果细菌阳性率为77.5%,其中单独L型阳性率为49.3%、B型与L型混合感染为15.5%,而B型阳性率仅为12.7%。主要是大肠埃希菌,其次是葡萄球菌;青霉素及头孢噻肟均有较高的耐药率(88.9%及73.6%)。结论L型细菌在慢性肾盂肾炎感染中占主导,β-内酰胺类药物有较高的耐药性,临床治疗应据药敏结果合理选择及时调整抗生素。  相似文献   

13.
14.
Summary A few cell lines and primary monolayer cultures were accidentally infected by bacteria. These cultures were successfully decontaminated by means of the specific bacteriophage virus after quick identification of the responsible bacteria. This method presents a practical interest for preservation of valuable cultures. This work is supported by the Institut National de la Sante et de la Recherche Medicale (France) and the Fondation pour la Recherche Medicale (France).  相似文献   

15.
植物激素在植物细胞壁扩展中的作用   总被引:3,自引:0,他引:3  
细胞壁不仅是植物细胞结构的重要组成部分,而且控制着细胞的大小、形状和生长。细胞经有丝分裂后,原生质体吸水膨胀,细胞壁重塑,新生壁物质合成,纤维素定向沉积等引发细胞壁生长。在这些过程中,乙烯(ethylene,ET)、生长素(auxin)、赤霉素(gibberellin,GA)、油菜素甾醇(brassinosteroids,BR)等植物激素调控细胞壁生长相关酶类如纤维素合酶复合体(cellulose synthase A,CESA)、扩展素(expansin,EXP)、木葡聚糖内糖基转移酶/水解酶(xyloglucan endotran glucosylase/hydrolase,XET/XTH)的表达活性,进而调控细胞壁扩展,促使细胞壁的生长。  相似文献   

16.
Abstract Wall mannoproteins from Kluyveromyces lactis have been solubilised by treatment of cell walls with sodium dodecyl sulphate (SDS) or zymolyase. While the former reagent liberates a large number of molecular species, zymolyase preferentially releases a high-molecular-weight material that is sensitive to endo- β - N -acetylglucosaminidase H, and a 29-kDa molecule that reacts with the antiserum raised against a similar species from walls of Saccharomyces cerevisiae . In contrast with observations on isolated walls of S. cerevisiae , dithiothreitol pretreatment of K. lactis walls does not enhance the effect of zymolyase upon mannoprotein release. However, the action of thiol agents is still necessary to obtain protoplasts by zymolyase digestion from K. lactis whole cells.  相似文献   

17.
The human pathogen Pseudomonas aeruginosa harbors three paralogous zinc proteases annotated as AmpD, AmpDh2, and AmpDh3, which turn over the cell wall and cell wall-derived muropeptides. AmpD is cytoplasmic and plays a role in the recycling of cell wall muropeptides, with a link to antibiotic resistance. AmpDh2 is a periplasmic soluble enzyme with the former anchored to the inner leaflet of the outer membrane. We document, herein, that the type VI secretion system locus II (H2-T6SS) of P. aeruginosa delivers AmpDh3 (but not AmpD or AmpDh2) to the periplasm of a prey bacterium upon contact. AmpDh3 hydrolyzes the cell wall peptidoglycan of the prey bacterium, which leads to its killing, thereby providing a growth advantage for P. aeruginosa in bacterial competition. We also document that the periplasmic protein PA0808, heretofore of unknown function, affords self-protection from lysis by AmpDh3. Cognates of the AmpDh3-PA0808 pair are widely distributed across Gram-negative bacteria. Taken together, these findings underscore the importance of their function as an evolutionary advantage and that of the H2-T6SS as the means for the manifestation of the effect.  相似文献   

18.
The Wall Associated Kinases (WAKs) bind to both cross-linked polymers of pectin in the plant cell wall, but have a higher affinity for smaller fragmented pectins that are generated upon pathogen attack or wounding. WAKs are required for cell expansion during normal seedling development and this involves pectin binding and a signal transduction pathway involving MPK3 and invertase induction. Alternatively WAKs bind pathogen generated pectin fragments to activate a distinct MPK6 dependent stress response. Evidence is provided for a model for how newly generated pectin fragments compete for longer pectins to alter the WAK dependent responses.  相似文献   

19.
Alkaline hydrolysis liberated ferulic and diferulic acid from polysaccharides of the Avena coleoptile ( Avena sativa L. cv. Victory I) cell walls. The amount of the two phenolic acids bound to cell walls increased substantially at day 4–5 after sowing, when the growth rate of the coleoptile started to decrease. The level of these acids was almost constant from the tip to base in 3-day-old coleoptiles, but increased toward the basal zone in 4- and 5-day-old ones. The ratio of diferulic acid to ferulic acid was almost constant irrespective of coleoptile age and zone. An increase in the amount of ferulic and diferulic acids bound to cell wall polysaccharides correlated with a decrease in extensibility and with an increase in minimum stress-relaxation time and relaxation rate of the cell wall. The level of lignin in the cellulose fraction increased as coleoptiles aged, but this increase did not correlate with changes in mechanical properties of the cell walls. These results suggest that ferulic acid, ester-linked to cell wall polysaccharides, is oxidized to give diferulic acid, which makes the cell wall mechanically rigid by cross-linking matrix polysaccharides and results in limited cell extension growth. In addition, it is probable that the step of feruloylation of cell wall polysaccharides is rate-limiting in the formation of in-termolecular bridges by diferulic acid in Avena coleoptile cell walls.  相似文献   

20.
Bacteria are surrounded by a complex cell envelope made up of one or two membranes supplemented with a layer of peptidoglycan (PG). The envelope is responsible for the protection of bacteria against lysis in their oft‐unpredictable environments and it contributes to cell integrity, morphology, signaling, nutrient/small‐molecule transport, and, in the case of pathogenic bacteria, host–pathogen interactions and virulence. The cell envelope requires considerable remodeling during cell division in order to produce genetically identical progeny. Several proteinaceous machines are responsible for the homeostasis of the cell envelope and their activities must be kept coordinated in order to ensure the remodeling of the envelope is temporally and spatially regulated correctly during multiple cycles of cell division and growth. This review aims to highlight the complexity of the components of the cell envelope, but focusses specifically on the molecular apparatuses involved in the synthesis of the PG wall, and the degree of cross talk necessary between the cell division and the cell wall remodeling machineries to coordinate PG remodeling during division. The current understanding of many of the proteins discussed here has relied on structural studies, and this review concentrates particularly on this structural work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号