首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a sucrose-bridge technique, we studied electrical and mechanical responses of smooth muscle ring strips of the rabbit main pulmonary artery to applications of blockers of voltage-operated (including Ca2+-dependent) K+ channels, tetraethylammonium (TEA) and 4-aminopyridine (4-AP), as well to application of nitric oxide (NO); nitroglycerin (NG) was used as a donor of the latter. All experiments were carried out under conditions of blockade of the adreno- and cholinoreceptors in the preparation. Both TEA and 4-AP evoked dose-dependent effects: depolarization of smooth muscle cells (SMC) and their contraction. Simultaneous addition of TEA and 4-AP to the normal superfusate (Krebs solution) resulted in intensification of depolarization and initiated generation of action potentials (AP); contractions became rather intensive and possessed a tetanic pattern. Addition of NG to TEA- and 4-AP-containing Krebs solution effectively suppressed AP generation and contractions, whereas the depolarization level underwent only mild modifications. These findings show that Ca2+-dependent high-conductance K+ channels (KCa channels) and 4-AP-sensitive voltage-operated K+ channels (KV channels) are involved in the formation of the resting membrane potential (RMP) in SMC of the rabbit main pulmonary artery. The impact of the KCa channels is greater than that of the KV channels. We suppose that the effects of NO on SMC are related to inhibition of the activity of high-threshold voltage-operated L-type Ca2+ channels and, probably, to lowering of the sensitivity of the contractile SMC apparatus to Ca2+.  相似文献   

2.
 Effects of Ca2+-activated K+ and voltage-activated K+-channel agonists and antagonists on the myoelectrical and contractile activity of a locus of the small bowel are simulated numerically. The model assumes that the electrical activity of smooth muscle syncytium is defined by kinetics of a mixture of L- and T-type Ca2+-channels, Ca2+-activated K+ and voltage-activated K+-channels, and leak Cl--channels, and that the smooth muscle syncytium of the locus is a null-dimensional contractile system. The results of modelling, both qualitatively and quantitatively, reproduce the effects of forskolin, lemakalim, phencyclidine, charybdotoxin and high concentration of external K+ ions, on gastrointestinal motility. This is confirmed by comparison with experimental observations conducted on the smooth muscle preparations of different species. Received: 19 February 1996 / Accepted in revised form: 26 June 1996  相似文献   

3.
Inoptopic effect of yttrium acetate (Y3+) on myocardium of the marsh frog Rana ridibunda and its effect on ion transport across the inner mitochondrial membrane (IMM) of rat heart was studied. Y3+ was found to decrease the rate of heart contractions and to stimulate ion transport in the rat heart mitochondria in media with 10 mM glutamate and 2 mM malate. Presence of Y3+ induced inhibition of energy-dependent Ca2+ transport into mitochondria, which was expressed as a marked decrease of their swelling in the media containing 125 mM NH4NO3 and Ca2+ or 25 mM potassium acetate, 100 mM sucrose and Ca2+. It is suggested that the Y3+-induced decrease in rat muscle contractions is determined not only by direct suppressing effect of Y3+ on potential-modulated Ca2+-channels of pacemaker and contractile cardiomyocytes (CM), but also by its indirect effect on Ca2+-carrier in IMM. The data confirming that Y3+ activates energy-dependent K+ transport catalyzed by mitochondrial uniporter and blocks Ca2+-channels in the mitochondrial membrane are important for more complete understanding of mechanisms of the Y3+ action on vertebrates and human CM.  相似文献   

4.
ObjectivesTestosterone replacement therapy improves bladder capacity in urinary tract dysfunction. There is no information, however, about the role of this steroid hormone on the muscle tension of the bladder outflow region. The current study investigated the mechanisms underlying the testosterone-induced action in the pig bladder neck.MethodsUrothelium-denuded bladder neck strips were mounted in myographs for isometric force recordings and for simultaneous measurements of intracellular Ca2+ concentration ([Ca2+]i) and tension. The relaxations to testosterone, the non-aromatizable metabolite 4,5α-dihydrotestosterone (DHT) and electrical field stimulation (EFS) were carried out on phenylephrine (PhE)-precontracted strips.ResultsTestosterone and DHT evoked similar concentration-dependent relaxations only at very high pharmacological concentrations. The presence of the urothelium and the inhibition of intracellular androgenic receptor (AR), aromatase, 5α-reductase, nitric oxide (NO) synthase, guanylyl cyclase, cyclooxygenase (COX), large-, intermediate- and small-Ca2+-activated K+ channels or ATP-dependent K+ channels failed to modify the testosterone relaxations. Neuronal voltage-gated Ca2+ (VOC) channels and voltage-gated K+ (KV) channel blockers potentiated these responses. EFS evoked frequency-dependent relaxations, which were not changed by threshold concentrations of testosterone. In Ca2+-free potassium rich physiological saline solution, testosterone inhibited the contractions induced by CaCl2 and the L-type VOC channel activator (±)-BAY K 8644. Relaxations elicited by testosterone were accompanied by simultaneous decreases in smooth muscle [Ca2+]i.ConclusionsTestosterone produces relaxation of the pig urinary bladder neck through mechanisms independent of urothelium, AR, aromatase, 5α-reductase, NO synthase, guanylyl cyclase, COX and K+ channels. Testosterone-induced relaxation is produced via the inhibition of the extracellular Ca2+ entry through L-type VOC channels.  相似文献   

5.
1. The pentapeptide proctolin produced contractions of the coxal depressor muscle of the cockroach, Periplaneta americana.2. The contraction was dependent upon extracellular calcium and the contraction was completely blocked by a Ca-free EGTA saline.3. Caffeine elicited transient contractions which were unaffected by manganese treatment.4. When the muscle was pre-treated with the conditioning solution with different K+ concentrations (1–100 mM), the amplitude of proctolin-induced contractions was reduced in the low K+ saline as well as in the high K+ saline.5. The results suggest that voltage sensitive calcium channels account for the proctolin-induced contractions.6. Octopamine (OA) reduced the contractions resulting from brief applications of elevated K+ concentration and of caffeine.7. The effect of OA on the response to elevated K+ concentrations was blocked by the α-adrenergic blocker, phentolamine.  相似文献   

6.
1. Ca2+-antagonists counteract the muscular activity of the sea urchin pluteus. Agents that block rapid Na+-channels have no effect.2. High muscular activity is induced by increasing the sea water concentration of Ca2+ or K+ and by a Ca2+-ionophore. The stimulatory effects tend to decline.3. Muscarinic agents counteract the effects of Ca2+ and K+.4. Variation in the concentration of Ca2+ or K+ has profound effects on the response to nicotinic agents.5. It is suggested that Ca2+ plays the role as a charge-carrier and in the release of monoamines from an inner source, and that an excessive Ca2+-influx induces an outflux of K+ leading to hyperpolarization and abolition of the impulse activity.  相似文献   

7.
Abstract: The effects of four K+-channel inhibitors on synaptosomal free Ca2+ concentrations and 86Rb+ fluxes are analysed. 4-Aminopyridine, α-dendrotoxin, charybdotoxin, and tetraethylammonium all increase the free Ca2+ concentration, although their potencies differ widely. In each case, the elevation in free Ca2+ concentration is reversed by the subsequent addition of tetrodotoxin. The transient 86Rb+ efflux from preequilibrated synaptosomes induced with high concentrations of veratridine is partially inhibited by 4-aminopyridine and α-dendrotoxin. In contrast, when 4-aminopyridine or α-dendrotoxin is added to polarized synaptosomes, an enhanced86Rb+ flux is seen, both for uptake and for efflux with no change in the total 86Rb+/K+ content of the synaptosomes and with only a slight time-averaged plasma membrane depolarization (6.4 and 3.3 mV, respectively). The enhancements of flux by 4-aminopyridine or α-dendrotoxin are sensitive to ouabain and/or to tetrodotoxin. Furthermore, these flux changes show the same concentration dependencies as the blocked component of veratridine-stimulated 86Rb+ efflux, the elevation of free Ca2+ concentration, and the facilitation of glutamate exocytosis that are elicited by 4-aminopyridine or α-dendrotoxin. It is concluded that these findings support the proposal of spontaneous, repetitive firing of synaptosomes evoked by K+-channel inhibitors and that the enhanced 86Rb+ flux is a consequence of the activity of 4-aminopyridine- and α-dendrotoxin-insensitive K+ channels during these action potentials.  相似文献   

8.
In this study 3H-noradrenaline (NA) release from rat neocortex slices evoked by electrical field-stimulation (1 Hz, 12 mA, 2 msec) was compared with that induced by K+-depolarization (13–30 mM K+) under similar experimental conditions, with a particular emphasis on the role of external Ca2+ and the releasable transmitter pool(s). Not only 3H-NA release evoked by electrical stimulation but also that induced by 13 mM K+ was almost completely blocked by 0.3 μM tetrodotoxin (TTX). Release induced by 20 mM K+ appeared to be less sensitive to TTX. Thus, under relatively mild stimulation conditions, the activation of sodium channels appears to be involved in 3H-NA release elicited by both stimuli.The electrically evoked 3H-NA release increased sigmoidally with the external Ca2+-concentration up to 1.2 mM. In contrast, 3H-NA release induced by 13–20 mM K+ reached a maximal value at 0.6–0.9 mM Ca2+ and gradually decreased at higher Ca2+-concentrations. The Ca2+-antagonist D-600 (1–30 μM) did not inhibit electrically evoked release, while K+-induced 3H-NA release was dose-dependently reduced. Upon repetitive K+-depolarization a strong depression of 3H-NA release could be demonstrated, while this phenomenon did not occur with repeated electrical stimulation. Moreover, a previous K+-induced (partial) depletion of 3H-NA stores did not affect the release evoked by electrical pulses and vice versa. Taken together these data are compatible with a much stronger activation of Ca2+-channels and a larger vesicle mobilizing capacity in case of electrical stimulation at physiological frequencies compared to sustained depolarization with moderate K+-concentrations.  相似文献   

9.
A mathematical model for the excitation-contraction coupling within a functional unit (locus) of the small bowel is proposed. The model assumes that: the functional unit is an electromyogenic syncytium; its electrical activity is defined by kinetics of L- and T-type Ca2+-channels, mixed Ca2+-dependent K+-channels, potential-sensitive K+-channels and Cl-channels; the basic neural circuit, represented by the cholinergic and adrenergic neurones, provides a regulatory input to the functional unit via receptor-linked L-type Ca2+-channels; the smooth muscle syncytium of the locus is a null-dimensional contractile system. With the proposed model the dynamics of active force generation is determined entirely by the concentration of cytosolic calcium. The model describes electrical processes of the propagation of excitation along the neural circuit, chemical mechanisms of nerve-pulse transmission at the synaptic zones and the dynamics of active force generation. Numerical simulations have shown that it is capable of displaying different electrical patterns and mechanical responses of the locus. The simulated effects of: tetrodotoxin, -bungarotoxin, salts of divalent cations, inhibitors of catechol-O-methyltransferase and neuronal uptake mechanisms, and changes in the concentration of external Ca2+ on the dynamics of force generation have been analysed. The results are in good qualitative and quantitative agreement with results of experiments conducted on the visceral smooth muscle of the small bowel.  相似文献   

10.
Summary Slow muscle fibers were dissected from cruralis muscles of Rana esculenta and Rana pipiens. Isometric contractures were evoked by application of K+-rich Ringer's containing Ca2+, Ni2+, Co2+, Mn2+ or Mg2+. High (7.2 mmol/liter) external Ca2+ concentration raised, 0 Ca2+ lowered the K+ threshold. Replacing Ca2+ by Ni2+ or Co2+ had an effect similar to that of high Ca2+ Ringer's. In Mg2+ Ringer's the K+ concentration-response curve was flattened. These effects were observed already after short exposure times in both species of slow fibers. When Ca2+ was removed for long periods of time the slow fibers of R. esculenta lost their contractile response to application of high K+ concentrations much more quickly than those of R. pipiens, while the response to caffeine (20 mmol/liter) was maintained. Upon readmission of Ca2+ contractile ability was quickly restored in the slow fibers of both R. esculenta and R. pipiens, but the effects of Ni2+ (or Co2+, Mn2+ and Mg2+) were much larger in R. esculenta than in R. pipiens slow fibers. It is concluded that divalent cations have two different sites of action in slow muscle fibers. K+ threshold seems to be affected through binding to sites at the membrane surface; these sites bind Ni2+ and Co2+ more firmly than Ca2+. The second site is presumably the voltage sensor in the transverse tubular membrane, which controls force production, and where Ca2+ is the most effective species of the divalent cations examined.We are grateful to Mrs. S. Pelvay for technical assistance.  相似文献   

11.
The hyperneural muscle of Periplaneta americana responded with sustained contracture to applications of l-glutamic acid at near 10?4 M. d-glutamic acid was much less active. The responses of a particular preparation to glutamate were usually extremely consistent and highly reproducible; however, some preparations showed no response to l-glutamic acid even at 10?2 M whereas neurally evoked responses were normal. High magnesium, low calcium perfused onto the preparations blocked neurally evoked contractions. The glutamate response was blocked reversibly in low calcium solutions. suggesting that the glutamate effect, when present, was presynaptic.Dopamine, acetylcholine, 5-hydroxytryptamine, synephrine, Rogitine®, strychnine, strychnine, pentobarbital, and picrotoxin, all suspected to varying degrees of some action on insect central or peripheral synaptic transmission, had no effect on the patterns of neurally evoked contracture of the hyperneural muscle. A new transducer is described for use with low force insect muscle contractions.  相似文献   

12.
The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1–2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel activity comparable to bladder SMCs which may be important for urological regenerative medicine applications.  相似文献   

13.
When exposed to intermediate glucose concentrations (6–16 mol/l), pancreatic β-cells in intact islets generate bursts of action potentials (superimposed on depolarised plateaux) separated by repolarised electrically silent intervals. First described more than 40 years ago, these oscillations have continued to intrigue β-cell electrophysiologists. To date, most studies of β-cell ion channels have been performed on isolated cells maintained in tissue culture (that do not burst). Here we will review the electrophysiological properties of β-cells in intact, freshly isolated, mouse pancreatic islets. We will consider the role of ATP-regulated K+-channels (KATP-channels), small-conductance Ca2+-activated K+-channels and voltage-gated Ca2+-channels in the generation of the bursts. Our data indicate that KATP-channels not only constitute the glucose-regulated resting conductance in the β-cell but also provide a variable K+-conductance that influence the duration of the bursts of action potentials and the silent intervals. We show that inactivation of the voltage-gated Ca2+-current is negligible at voltages corresponding to the plateau potential and consequently unlikely to play a major role in the termination of the burst. Finally, we propose a model for glucose-induced β-cell electrical activity based on observations made in intact pancreatic islets.  相似文献   

14.
Nitric oxide (NO) and calcium channel blockers are two agents that can affect gastrointestinal motility. The goal of this work was to study the rabbit intestinal smooth muscle contraction response to (1) sodium nitroprusside (SNP), the NO donor, and its potential mechanism of action, and (2) nifedipine, the l-type Ca2+ channel blocker; to clarify the degree of participation by extra- and intracellular Ca2+ in smooth muscle contraction. We used standard isometric tension and intracellular micro-electrode recordings. To record the activity of the longitudinal smooth muscle of the ileum, segments of 1.5?cm length of the ileum were suspended vertically in organ baths of Krebs solution. The mechanical activity of the isolated ileal longitudinal muscle was recorded. Different substances were added, and the changes produced on spontaneous contraction were recorded. We found that SNP produced significant decrease, while nitric oxide synthase inhibitor produced significant increase in the amplitude of spontaneous contractions. Both apamin, the Ca2+-dependent K+ channel blocker, and methylene blue, the inhibitor of soluble guanylate cyclase, alone, partially decreased relaxation induced by SNP. Addition of both methylene blue and apamine together abolished the inhibitory effect produced by SNP on spontaneous contractions. Nifedipine produced significant decrease in the amplitude of spontaneous contractions. In conclusion, in longitudinal muscle of rabbit ileum, calcium channels blocker are potent inhibitors of spontaneous activity. However, both extracellular and intracellular Ca2+ participates in the spontaneous contractions. NO also has inhibitory effect on spontaneous activity, and this effect is mediated by cGMP generation system and Ca2+-dependent K+ channels.  相似文献   

15.
The ionic requirements for K+-evoked efflux of endogenous taurine from primary cerebellar astrocyte cultures were studied. The Ca2+ ionophore A23187 evoked taurine efflux in a dose-dependent fashion with a time-course identical to that of K+-induced efflux. The Ca2+-channel antagonist nifedipine had no effect upon efflux induced by 10 or 50 mM K+. In addition, verapamil did not antagonize 50 mM K+-evoked efflux except at high, non-pharmacological concentrations (>100 M), and preincubation with 2 M -conotoxin had no effect on 50 mM K+-evoked efflux. Similarly, preincubation with 1 mM ouabain had no effect on the amount of taurine released by K+ stimulation, but did accelerate the onset of efflux by 2–4 min. Although 2 M tetrodotoxin had no effect on K+-evoked release, replacing Na+ with choline abolished the taurine efflux seen in response to K+ stimulation. Together, these findings suggest that neuronal N- and L-type Ca2+- and voltage-dependent Na+-channels are not involved in the influx of Ca2+ which appears to be necessary for K+-evoked taurine efflux, and that in addition to Ca2+, extracellular Na+ is also required.  相似文献   

16.
In the rat parotid salivary gland, fluid secretion is regulated by alterations in fluxes of monovalent ions. , stimulation of muscarinic, α-adrenergic or substance P receptors provokes a biphasic increase in membrane permeability to K+ which can be conveniently assayed as efflux of 86Rb. The increased 86Rb flux is thought to arise in response to a receptor mediated elevation in [Ca2+]i which activates Ca2+-activated K+-channels. The biphasic nature of the response is presumably due to a biphasic mode of Ca2+ mobilization by secretagogues; a transient response reflects release of a finite pool of Ca from an intracellular store while a more sustained phase results from Ca entry through receptor operated Ca channels or gates. Calcium also mediates an increased Na+ entry which in turn activates the Na+, K+-pump. The mechanism involved in the regulation of monovalent ion channels by Ca2+ is not understood.  相似文献   

17.
The toxic effect of mercuric ions on intestinal cholinergic neurotransmission was investigated in vitro. Hg2+ inhibited the evoked release and enhanced the resting release of ACh. Smooth muscle contraction was irreversibly inhibited by Hg2+ in a concentration-dependent manner, and Na2EDTA did not antagonize this effect. We also investigated if Hg2+ enters the nerve terminal through Ca2+-channels, or Na+-channels, or both. The effects of mercuric ions obtained in our study were completely abolished by the combined administration of TTX and Co2+. It is suggested that the site of the action of mercuric ions is intracellular. We concluded that Hg2+ may interfere with cholinergic transmission by blocking [Ca2+]o-dependent release of ACh and by enhancing [Ca2+]o-independent resting release of ACh. The effect of Hg2+ was not only presynaptic since it also inhibited the effect of ACh on smooth muscle.  相似文献   

18.
Lung lamellar bodies maintain an acidic interior by an energy-dependent process. The acidic pH may affect the packaging of surfactant phospholipids, processing of surfactant proteins, or surfactant protein A-dependent lipid aggregation. The electron-probe microanalysis of lamellar body elemental composition has previously suggested that lamellar bodies contain high levels of calcium some of which may be in ionic form. In this study, we investigated the Ca2+ uptake characteristics in isolated lung lamellar bodies. The uptake of Ca2+ was measured by monitoring changes in the fluorescence of Fluo-3, a Ca2+ indicator dye. The uptake of Ca2+ in lamellar bodies was ATP-dependent and increased with increasing concentrations of Ca2+. At 100 nm Ca2+, the uptake was almost completely inhibited by bafilomycin A1, a selective inhibitor of vacuolar type H+-ATPase, or by NH4Cl, which raises the lamellar body pH, suggesting that the pH gradient regulates the uptake. The uptake of Ca2+ increased as the Ca2+ concentration was increased, but the relative contribution of bafilomycin A1-sensitive uptake decreased. At 700 nm, it comprised only 20% of the total uptake. These results suggest the presence of additional mechanism(s) for uptake at higher Ca2+ concentrations. At 700 nm Ca2+, the rate and extent of uptake were lower in the absence of K+ than in the presence of K+. The inhibitors of Ca2+-activated K+-channels, tetraethylammonium, Penitrem A, and 4-aminopyridine, also inhibited the K+-dependent Ca2+ uptake at 700 nm Ca2+. Thus the uptake of Ca2+ in isolated lung lamellar bodies appears to be regulated by two mechanisms, (i) the H+-gradient and (ii) the K+ transport across the lamellar body membrane. We speculate that lamellar bodies accumulate Ca2+ and contribute to regulation of cytosolic Ca2+ in type II cells under resting and stimulated conditions. Received: 18 August 1999/Revised: 9 November 1999  相似文献   

19.
The review describes peculiarities of Ca2+-signalization in electro-excitable cells of higher eukaryotes. The light has been shed on problems of Ca2+-dependent mechanisms of regulation of muscle contractility and of neuronal synaptic plasticity in the higher vertebrate animals. A particular attention has been paid to analysis of contribution of such poorly studied components of Ca2+-signalization as non-selective TRPC-channels, Orai channels, sensory STIM1 proteins, Ca2+-controlled K+-channels of large and small conductance, and neuronal Ca2+-sensors (NCS).  相似文献   

20.
1. Leucomyosuppressin (LMS) inhibited neurally evoked contractions of the hindgut of the cockroach Leucophaea maderae. The threshold for this inhibition of LMS was in the range of 1 × 10−10 M.2. LMS caused a sharp reduction in both l-glutamate and proctolin induced contractions. Dose-response profiles of the effect of LMS (held constant at 10−8M) on variable amounts of proctolin showed an inhibitory effect at 10−9 M proctolin and below, but at 5 × 10−9 M proctolin and above, LMS caused no inhibition.3. Potassium (158 mM) depolarized hindguts treated with LMS (10−8 M) showed a marked reduction (76% ± 2.1) in the proctolin (10−8 M) response.4. When calcium depleted preparations were returned to normal calcium levels (2 mM) in the presence of proctolin (10 −8 M) a contraction occurred that was 45% ± 4 of the maximum in normal saline solution. However, LMS (10−8 M) reduced this response to only 28% ± 2 of the maximum.5. Proctolin (10−8 M) induced contractions in the presence of the manganous ions (2mM) fell to 63% ± 4 of the maximum but on the addition of LMS (10−8M), such responses fell to only 16% ± 5 of the maximum.6. These results offer evidence for a non-synaptic site of action for LMS and a perturbation of key calcium dependent events in the excitation-contraction coupling sequence of visceral muscle by this peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号