共查询到20条相似文献,搜索用时 10 毫秒
1.
Katarzyna M Grochowska Guilherme M Gomes Rajeev Raman Rahul Kaushik Liudmila Sosulina Hiroshi Kaneko Anja M Oelschlegel PingAn Yuanxiang Irene ReyesResina Gonca Bayraktar Sebastian Samer Christina Spilker Marcel S Woo Markus Morawski Jürgen Goldschmidt Manuel A Friese Steffen Rossner Gemma Navarro Stefan Remy Carsten Reissner Anna Karpova Michael R Kreutz 《The EMBO journal》2023,42(4)
2.
Despite extensive research, the mechanisms underlying rhabdomyolysis‐induced acute kidney injury (AKI) remain largely elusive. In this study, we established both cell and murine models of rhabdomyolysis‐induced AKI by using myoglobin and glycerin, respectively, and provided evidence that protein kinase Cδ (PKC‐δ) was activated in both models and subsequently promoted cell apoptosis. Moreover, we found that this detrimental effect of PKC‐δ activation can be reversed by its pharmaceutical inhibitor rottlerin. Furthermore, we detected and confirmed the existence of PKC‐δ‐mediated myoglobin‐induced cell apoptosis and the expression of TNF‐α and IL1‐β via regulation of the p38MAPK and ERK1/2 signalling pathways. In summary, our research revealed the role of PKC‐δ in renal cell apoptosis and suggests that PKC‐δ is a viable therapeutic target for rhabdomyolysis‐induced AKI. 相似文献
3.
4.
Understanding the spatial distribution of plant diversity and its drivers are major challenges in biogeography and conservation biology. Integrating multiple facets of biodiversity (e.g., taxonomic, phylogenetic, and functional biodiversity) may advance our understanding on how community assembly processes drive the distribution of biodiversity. In this study, plant communities in 60 sampling plots in desert ecosystems were investigated. The effects of local environment and spatial factors on the species, functional, and phylogenetic α‐ and β‐diversity (including turnover and nestedness components) of desert plant communities were investigated. The results showed that functional and phylogenetic α‐diversity were negatively correlated with species richness, and were significantly positively correlated with each other. Environmental filtering mainly influenced species richness and Rao quadratic entropy; phylogenetic α‐diversity was mainly influenced by dispersal limitation. Species and phylogenetic β‐diversity were mainly consisted of turnover component. The functional β‐diversity and its turnover component were mainly influenced by environmental factors, while dispersal limitation dominantly effected species and phylogenetic β‐diversity and their turnover component of species and phylogenetic β‐diversity. Soil organic carbon and soil pH significantly influenced different dimensions of α‐diversity, and soil moisture, salinity, organic carbon, and total nitrogen significantly influenced different dimensions of α‐ and β‐diversity and their components. Overall, it appeared that the relative influence of environmental and spatial factors on taxonomic, functional, and phylogenetic diversity differed at the α and β scales. Quantifying α‐ and β‐diversity at different biodiversity dimensions can help researchers to more accurately assess patterns of diversity and community assembly. 相似文献
5.
6.
Keisuke Shigeta Masanori Hasegawa Takako Hishiki Yoshiko Naito Yuto Baba Shuji Mikami Kazuhiro Matsumoto Ryuichi Mizuno Akira Miyajima Eiji Kikuchi Hideyuki Saya Takeo Kosaka Mototsugu Oya 《The EMBO journal》2023,42(4)
Drug resistance contributes to poor therapeutic response in urothelial carcinoma (UC). Metabolomic analysis suggested metabolic reprogramming in gemcitabine‐resistant urothelial carcinoma cells, whereby increased aerobic glycolysis and metabolic stimulation of the pentose phosphate pathway (PPP) promoted pyrimidine biosynthesis to increase the production of the gemcitabine competitor deoxycytidine triphosphate (dCTP) that diminishes its therapeutic effect. Furthermore, we observed that gain‐of‐function of isocitrate dehydrogenase 2 (IDH2) induced reductive glutamine metabolism to stabilize Hif‐1α expression and consequently stimulate aerobic glycolysis and PPP bypass in gemcitabine‐resistant UC cells. Interestingly, IDH2‐mediated metabolic reprogramming also caused cross resistance to CDDP, by elevating the antioxidant defense via increased NADPH and glutathione production. Downregulation or pharmacological suppression of IDH2 restored chemosensitivity. Since the expression of key metabolic enzymes, such as TIGAR, TKT, and CTPS1, were affected by IDH2‐mediated metabolic reprogramming and related to poor prognosis in patients, IDH2 might become a new therapeutic target for restoring chemosensitivity in chemo‐resistant urothelial carcinoma. 相似文献
7.
8.
Yexian Yuan Pingwen Xu Qingyan Jiang Xingcai Cai Tao Wang Wentong Peng Jiajie Sun Canjun Zhu Cha Zhang Dong Yue Zhihui He Jinping Yang Yuxian Zeng Man Du Fenglin Zhang Lucas Ibrahimi Sarah Schaul Yuwei Jiang Jiqiu Wang Jia Sun Qiaoping Wang Liming Liu Songbo Wang Lina Wang Xiaotong Zhu Ping Gao Qianyun Xi Cong Yin Fan Li Guli Xu Yongliang Zhang Gang Shu 《The EMBO journal》2021,40(14)
The authors approached the journal to correct a mistake in the data presented in Appendix␣Fig S3D. The authors state that the mouse images in Appendix␣Fig S3D mistakenly displayed images from Fig 2F and Appendix␣Fig S1F. The images in Appendix␣Fig S3D are herewith corrected. The authors state that this change does not affect the conclusions or the statistics. The source data for these panels have been added to the original publication.The authors note that the following sentence needs to be corrected from: Appendix Figure S3D. Original. Appendix Figure S3D. Corrected. “Interestingly, several well‐established accumulation signatures of succinate, malate, hypoxanthine, and xanthine induced by endurance exercise (Lewis et␣al, 2010) were found to be decreased by endurance exercise (Figs 1D and EV1A–D)”.to“Interestingly, several well‐established accumulation signatures of succinate, malate, hypoxanthine, and xanthine induced by endurance exercise (Lewis et␣al, 2010) were found to be decreased by resistance exercise (Figs 1D and EV1A–D)”.Further, the authors requested to amend the legend of Appendix␣Fig S3R to indicate that the same sample for the iWAT group, “WT+2%AKG” treatment, is shown in Fig 3P. The corrected legend reads: “(R‐S). Representative images (R) and quantification (S) of p‐HSL DAB staining from male OXGR1OEAG mice treated with AKG for 12 weeks (n = 6 per group). The same sample is shown as in Fig 3P ”.The authors regret these errors and any confusion they may have caused. All authors approve of this correction. 相似文献
9.
Yangfeng Shi Yiming Xu Jianchang Yao Chao Yan Hua Su Xue Zhang Enguo Chen Kejing Ying 《Journal of cellular and molecular medicine》2021,25(14):7013
Recent studies have demonstrated that one‐carbon metabolism plays a significant role in cancer development. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), a mitochondrial enzyme of one‐carbon metabolism, has been reported to be dysregulated in many cancers. However, the specific role and mechanism of MTHFD2 in lung adenocarcinoma (LUAD) still remains unclear. In this study, we evaluated the clinicopathological and prognostic values of MTHFD2 in LUAD patients. We conducted a series of functional experiments in vivo and in vitro to explore novel mechanism of MTHFD2 in LUAD. The results showed that MTHFD2 was significantly up‐regulated in LUAD tissues and predicted poor prognosis of LUAD patients. Knockdown of MTHFD2 dramatically inhibited cell proliferation and migration by blocking the cell cycle and inducing the epithelial‐mesenchymal transition (EMT). In addition, MTHFD2 knockdown suppressed LUAD growth and metastasis in cell‐derived xenografts. Mechanically, we found that MTHFD2 promoted LUAD cell growth and metastasis via AKT/GSK‐3β/β‐catenin signalling. Finally, we identified miR‐30a‐3p as a novel regulator of MTHFD2 in LUAD. Collectively, MTHFD2 plays an oncogenic role in LUAD progression and is a promising target for LUAD diagnosis and therapy. 相似文献
10.
Sadia Afrin Mohamed Ali Malak El Sabeh Qiwei Yang Ayman AlHendy Mostafa A. Borahay 《Journal of cellular and molecular medicine》2022,26(5):1684
Uterine leiomyoma (UL) is the most common gynaecologic tumour, affecting an estimated 70 to 80% of women. Leiomyomas develop from the transformation of myometrial stem cells into leiomyoma stem (or tumour‐initiating) cells. These cells undergo self‐renewal and differentiation to mature cells, both are necessary for the maintenance of tumour stem cell niche and tumour growth, respectively. Wnt/β‐catenin and TGF‐β/SMAD pathways, both overactive in UL, promote stem cell self‐renewal, crosstalk between stem and mature cells, cellular proliferation, extracellular matrix (ECM) accumulation and drive overall UL growth. Recent evidence suggests that simvastatin, an antihyperlipidemic drug, may have anti‐leiomyoma properties. Herein, we investigated the effects of simvastatin on UL stem cells. We isolated leiomyoma stem cells by flow cytometry using DyeCycle Violet staining and Stro‐1/CD44 surface markers. We found that simvastatin inhibits proliferation and induces apoptosis in UL stem cells. In addition, it also suppressed the expression of the stemness markers Nanog, Oct4 and Sox2. Simvastatin significantly decreased the production of the key ECM proteins, collagen 1 and fibronectin. Finally, it inhibited genes and/or proteins expression of TGF‐β1, 2 and 3, SMAD2, SMAD4, Wnt4, β‐Catenin, LRP6, AXIN2 and Cyclin D1 in UL stem cells, all are key drivers of the TGF‐β3/SMAD2 and Wnt4/β‐Catenin pathways. Thus, we have identified a novel stem cell‐targeting anti‐leiomyoma simvastatin effect. Further studies are needed to replicate these findings in vivo. 相似文献
11.
12.
Chun Chen Yunzhe Zhou Hualong Wang Ashfaqul Alam Seong Su Kang Eun Hee Ahn Xia Liu Jianping Jia Keqiang Ye 《The EMBO journal》2021,40(17)
Inflammation plays an important role in the pathogenesis of Alzheimer''s disease (AD). Some evidence suggests that misfolded protein aggregates found in AD brains may have originated from the gut, but the mechanism underlying this phenomenon is not fully understood. C/EBPβ/δ‐secretase signaling in the colon was investigated in a 3xTg AD mouse model in an age‐dependent manner. We applied chronic administration of 1% dextran sodium sulfate (DSS) to trigger gut leakage or colonic injection of Aβ or Tau fibrils or AD patient brain lysates in 3xTg mice and combined it with excision/cutting of the gut–brain connecting vagus nerve (vagotomy), in order to explore the role of the gut–brain axis in the development of AD‐like pathologies and to monitor C/EBPβ/δ‐secretase signaling under those conditions. We found that C/EBPβ/δ‐secretase signaling is temporally activated in the gut of AD patients and 3xTg mice, initiating formation of Aβ and Tau fibrils that spread to the brain. DSS treatment promotes gut leakage and facilitates AD‐like pathologies in both the gut and the brain of 3xTg mice in a C/EBPβ/δ‐secretase‐dependent manner. Vagotomy selectively blunts this signaling, attenuates Aβ and Tau pathologies, and restores learning and memory. Aβ or Tau fibrils or AD patient brain lysates injected into the colon propagate from the gut into the brain via the vagus nerve, triggering AD pathology and cognitive dysfunction. The results indicate that inflammation activates C/EBPβ/δ‐secretase and initiates AD‐associated pathologies in the gut, which are subsequently transmitted to the brain via the vagus nerve. 相似文献
13.
Naoki Hosaka Seiji Kanda Takaki Shimono Toshimasa Nishiyama 《Journal of cellular and molecular medicine》2021,25(22):10604
T cells bearing γδ antigen receptors have been investigated as potential treatments for several diseases, including malignant tumours. However, the clinical application of γδT cells has been hampered by their relatively low abundance in vivo and the technical difficulty of inducing their differentiation from hematopoietic stem cells (HSCs) in vitro. Here, we describe a novel method for generating mouse γδT cells by co‐culturing HSC‐enriched bone marrow cells (HSC‐eBMCs) with induced thymic epithelial cells (iTECs) derived from induced pluripotent stem cells (iPSCs). We used BMCs from CD45.1 congenic C57BL/6 mice to distinguish them from iPSCs, which expressed CD45.2. We showed that HSC‐eBMCs and iTECs cultured with IL‐2 + IL‐7 for up to 21 days induced CD45.1+ γδT cells that expressed a broad repertoire of Vγ and Vδ T‐cell receptors. Notably, the induced lymphocytes contained few or no αβT cells, NK1.1+ natural killer cells, or B220+ B cells. Adoptive transfer of the induced γδT cells to leukemia‐bearing mice significantly reduced tumour growth and prolonged mouse survival with no obvious side effects, such as tumorigenesis and autoimmune diseases. This new method suggests that it could also be used to produce human γδT cells for clinical applications. 相似文献
14.
Qiming Gong Yan Jiang Xiuhong Pan Yanwu You 《Journal of cellular and molecular medicine》2021,25(14):6963
Fractalkine (CX3CL1, FKN), a CX3C gene sequence inflammatory chemokine, has been found to have pro‐inflammatory and pro‐adhesion effects. Macrophages are immune cells with a critical role in regulating the inflammatory response. The imbalance of M1/M2 macrophage polarization can lead to aggravated inflammation. This study attempts to investigate the mechanisms through which FKN regulates macrophage activation and the acute kidney injury (AKI) involved in inflammatory response induced by lipopolysaccharide (LPS) by using FKN knockout (FKN‐KO) mice and cultured macrophages. It was found that FKN and Wnt/β‐catenin signalling have a positive interaction in macrophages. FKN overexpression inhibited LPS‐induced macrophage apoptosis. However, it enhanced their cell viability and transformed them into the M2 type. The effects of FKN overexpression were accelerated by activation of Wnt/β‐catenin signalling. In the in vivo experiments, FKN deficiency suppressed macrophage activation and reduced AKI induced by LPS. Inhibition of Wnt/β‐catenin signalling and FKN deficiency further mitigated the pathologic process of AKI. In summary, we provide a novel mechanism underlying activation of macrophages in LPS‐induced AKI. Although LPS‐induced murine AKI was unable to completely recapitulate human AKI, the positive interactions between FKN and Wnt/β‐catenin signalling pathway may be a therapeutic target in the treatment of kidney injury. 相似文献
15.
16.
Satish Bodakuntla Xidi Yuan Mariya Genova Sudarshan Gadadhar Sophie Leboucher MarieChristine Birling Dennis Klein Rudolf Martini Carsten Janke Maria M Magiera 《The EMBO journal》2021,40(17)
Tubulin polyglutamylation is a post‐translational modification of the microtubule cytoskeleton, which is generated by a variety of enzymes with different specificities. The “tubulin code” hypothesis predicts that modifications generated by specific enzymes selectively control microtubule functions. Our recent finding that excessive accumulation of polyglutamylation in neurons causes their degeneration and perturbs axonal transport provides an opportunity for testing this hypothesis. By developing novel mouse models and a new glutamylation‐specific antibody, we demonstrate here that the glutamylases TTLL1 and TTLL7 generate unique and distinct glutamylation patterns on neuronal microtubules. We find that under physiological conditions, TTLL1 polyglutamylates α‐tubulin, while TTLL7 modifies β‐tubulin. TTLL1, but not TTLL7, catalyses the excessive hyperglutamylation found in mice lacking the deglutamylase CCP1. Consequently, deletion of TTLL1, but not of TTLL7, prevents degeneration of Purkinje cells and of myelinated axons in peripheral nerves in these mice. Moreover, loss of TTLL1 leads to increased mitochondria motility in neurons, while loss of TTLL7 has no such effect. By revealing how specific patterns of tubulin glutamylation, generated by distinct enzymes, translate into specific physiological and pathological readouts, we demonstrate the relevance of the tubulin code for homeostasis. 相似文献
17.
Hiroki Iwanishi Osamu Yamanaka Takayoshi Sumioka Shingo Yasuda Masayasu Miyajima Shizuya Saika 《Journal of cellular and molecular medicine》2022,26(20):5315
We investigated the effects of lacking TNFα on the development and regression of Argon‐laser‐induced choroidal neovascularization (CNV) in mice. We lasered ocular fundus for induction of CNV in both wild‐type (WT) and TNFα‐null (KO) mice. Fluorescence angiography was performed to examine the size of CNV lesions. Gene expression pattern of wound healing‐related components was examined. The effects of exogenous TNFα on apoptosis of human retinal microvascular endothelial cells (HRMECs) and on the tube‐like structure of the cells were investigated in vitro. The results showed that Argon‐laser irradiation‐induced CNV was significantly larger in KO mice than WT mice on Day 21, but not at other timepoints. Lacking TNFα increased neutrophil population in the lesion. The distribution of cleaved caspase3‐labelled apoptotic cells was more frequently observed in the laser‐irradiated tissue in a WT mouse as compared with a KO mouse. Exogenous TNFα induced apoptosis of HRMECs and accelerated regression of tube‐like structure of HRMECs in cell culture. Taken together, TNFα gene knockout delays the regression of laser‐induced CNV in mice. The mechanism underlying the phenotype might include the augmentation of neutrophil population in the treated tissue and attenuation of vascular endothelial cell apoptosis. 相似文献
18.
19.
Mnica VaraPrez Matteo Rossi Chris Van den Haute Hannelore Maes Maria Livia Sassano Vivek Venkataramani Bernhard Michalke Erminia Romano Kristine Rillaerts Abhishek D Garg Corentin Schepkens Francesca M Bosisio Jasper Wouters Ana Isabel Oliveira Peter Vangheluwe Wim Annaert Johannes V Swinnen Jean Marie Colet Joost J van den Oord SarahMaria Fendt Massimiliano Mazzone Patrizia Agostinis 《The EMBO journal》2021,40(10)
BNIP3 is a mitophagy receptor with context‐dependent roles in cancer, but whether and how it modulates melanoma growth in vivo remains unknown. Here, we found that elevated BNIP3 levels correlated with poorer melanoma patient’s survival and depletion of BNIP3 in B16‐F10 melanoma cells compromised tumor growth in vivo. BNIP3 depletion halted mitophagy and enforced a PHD2‐mediated downregulation of HIF‐1α and its glycolytic program both in vitro and in vivo. Mechanistically, we found that BNIP3‐deprived melanoma cells displayed increased intracellular iron levels caused by heightened NCOA4‐mediated ferritinophagy, which fostered PHD2‐mediated HIF‐1α destabilization. These effects were not phenocopied by ATG5 or NIX silencing. Restoring HIF‐1α levels in BNIP3‐depleted melanoma cells rescued their metabolic phenotype and tumor growth in vivo, but did not affect NCOA4 turnover, underscoring that these BNIP3 effects are not secondary to HIF‐1α. These results unravel an unexpected role of BNIP3 as upstream regulator of the pro‐tumorigenic HIF‐1α glycolytic program in melanoma cells. 相似文献
20.
Liang Xiao Quanlai Zhao Bo Hu Jing Wang Chen Liu Hongguang Xu 《Journal of cellular and molecular medicine》2020,24(23):14013
METTL3 is an important regulatory molecule in the process of RNA biosynthesis. It mainly regulates mRNA translation, alternative splicing and microRNA maturation by mediating m6A‐dependent methylation. Interleukin 1β (IL‐1β) is an important inducer of cartilage degeneration that can induce an inflammatory cascade reaction in chondrocytes and inhibit the normal biological function of cells. However, it is unclear whether IL‐1β is related to METTL3 expression or plays a regulatory role in endplate cartilage degeneration. In this study, we found that the expression level of METTL3 and methylation level of m6A in human endplate cartilage with different degrees of degeneration were significantly different, indicating that the methylation modification of m6A mediated by METTL3 was closely related to the degeneration of human endplate cartilage. Next, through a series of functional experiments, we found that miR‐126‐5p can play a significant role in IL‐1β–induced degeneration of endplate chondrocytes. Moreover, we found that miR‐126‐5p can inhibit the PI3K/Akt signalling pathway by targeting PIK3R2 gene, leading to the disorder of cell vitality and functional metabolism. To further determine whether METTL3 could regulate miR‐126‐5p maturation, we first confirmed that METTL3 can bind the key protein underlying pri‐miRNA processing, DGCR8. Additionally, when METTL3 expression was inhibited, the miR‐126‐5p maturation process was blocked. Therefore, we hypothesized that METTL3 can promote cleavage of pri‐miR‐126‐5p and form mature miR‐126‐5p by combining with DGCR8. 相似文献