首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Age‐related decline in immune activity is referred to as immunosenescence and has been observed for both the adaptive immune response of vertebrates and the innate immune system of invertebrates. Because maintaining a basic level of immune defence and mounting an immune response is costly, optimal investment in immune function should vary over a wide range of individual states such as the individual’s age. In this study, we tested whether the immune response and immunological priming within individuals become less efficient with age using mealworm beetles, Tenebrio molitor, as a model organism. We also tested whether ageing and immunological priming affected the odours produced by males. We found that young males of T. molitor were capable of mounting an immune response a sterile nylon monofilament implant with the potential to exhibit a simple form of immune memory through mechanisms of immune priming. Older males did not increase their immune response to a second immune challenge, which negatively affected their sexual attractiveness and remaining life span. Our results indicate that the immune system of older males in T. molitor is less effective, suggesting complex evolutionary trade‐offs between ageing, immune response and sexual attractiveness.  相似文献   

2.
Current analytical models of the mammalian immune system typically assume a specialist predator-prey relationship between invading pathogens and the active components of the immune response. However, in reality, the specific immune system is not immediately effective following invasion by a novel pathogen. First, there may be an explicit time delay between infection and immune initiation and, second, there may be a gradual build-up in immune efficacy (for instance, during the period of B-cell affinity maturation) during which the immune response develops, before reaching maximal specificity to the pathogen. Here, we use a novel theoretical approach to show that these processes, together with the presence of long-lived immune memory, decouple the immune response from current pathogen levels, greatly changing the dynamics of the pathogen-immune system interaction and the ability of the immune response to eliminate the pathogen. Furthermore, we use this model to show how distributed primary immune responses combine with immune memory to greatly affect the optimal virulence of the pathogen, potentially resulting in the evolution of highly virulent pathogens.  相似文献   

3.
The immune synapse is a very important but often transient site for secretion between immune cells. How secretion is controlled in a coordinated fashion at the synapse is a subject of much investigation. Two key mechanisms are the polarisation of the centrosome and rapid actin dynamics across the immune synapses that form between interacting immune cells. In recent years it has become clear that different immune cells utilise a diversity of immune synapses that modify these mechanisms in order to optimise specialised modes of secretion. Here we describe some of the latest research, focusing on regulation by centrosomal and actin dynamics in a variety of immune cells.  相似文献   

4.
The insect immune system is comprised of both humoral and cellular components that are mobilized in response to parasitic or pathogenic infections. Activation of the immune response implies a considerable expenditure of energy and that is why insects rely on inducible pathways that are activated after coming into contact with the pathogenic agent. Known as immune priming, insects can prolong the activation of the immune response and transmit their immune status to the next generation. Starting from a laboratory colony of the lepidopteran Spodoptera exigua and using the lytic zone assay as a measure of the immune status, we selected for a sub‐colony with high levels of immune activity in the absence of external challenging with bacteria. Immune‐activated insect showed characteristics that are typical reported for immune primed insects, such as increased tolerance to pathogens (Bacillus thuringiensis in our case), fitness‐cost associated to the immune status, and maternal transmission of the immune status. However, additional analysis revealed that the selection for the immune‐activated insects was based on the selection of insects carrying a higher bacterial load in the midgut. Our results suggest that activation of the immune system in S. exigua may not only occur as consequence of the immune priming but also from an increase in midgut microbiota load.  相似文献   

5.
免疫反应的作用逐渐成为调节各种复杂癌症的关键因素。免疫治疗也逐渐成为癌症肿瘤的有效干预方式。肿瘤微环境包含不同类型的免疫细胞,这有助于调节抗肿瘤信号中先天性和适应性免疫系统之间的细微平衡。在这种环境下,肿瘤细胞与免疫细胞之间相互关联的机制有待广泛阐明,但目前已被证明,多种microRNA在实体肿瘤相关免疫细胞的发育和功能中起调控作用,其通过肿瘤及免疫细胞介导免疫抑制或免疫刺激因子分泌增强或抑制免疫应答,靶向调控肿瘤发生的相关免疫途径,从而在癌症起始、转移进展的所有阶段中起关键作用,近而在肿瘤免疫治疗中寻找新的治疗靶点。本文针对microRNA在肿瘤免疫反应中的相关调节进行综述。  相似文献   

6.
Immune complex disease in humans and experimental animals can occur as a consequence of the binding of specific antibodies to exogenous or endogenous antigens. If this reaction occurs in the circulation, the fate of the resulting immune complex may depend upon many factors including the ability of the immune complex to fix complement and bind to complement receptors on circulating cells (immune adherence). We studied the in vivo formation and immune adherence of soluble antibody/dsDNA immune complexes in the circulation of both a nonprimate and a primate model. The fact that this sequence of biological recognition reactions is completed in less than 2 min suggests that the immune adherence phenomenon may play a crucial role in the clearance of nascent complement-fixing immune complexes from the circulation.  相似文献   

7.
Lesser KJ  Paiusi IC  Leips J 《Aging cell》2006,5(4):293-295
Immunosenescence, the age‐related decline in immune response, is a well‐known consequence of aging. To date, most studies of age‐related changes in immune response focused on the cellular and physiological bases of this decline; we have virtually no understanding of the genetic basis of age‐related changes in the immune system or if indeed such control exists. We used 25 chromosome substitution lines of Drosophila melanogaster derived from a natural population to address three questions: (i) How is the function of the innate immune system influenced by age? (ii) Is there a genetic basis for phenotypic variation in immune response at different ages? (iii) Is there a genetic basis for differences in the way that age influences the immune function? Virgin females from each line were assayed for immune response using clearance of infection with Escherichia coli at 1 and 4 weeks of age. We found significant genetic variation among lines in immune response at each age. Unexpectedly, when averaged across all lines, the immune response actually improved with age. However, there was significant variation in the effect of age on immune response with 11 lines showing improvement, nine lines showing no change and five exhibiting a decline with age. There was no genetic correlation of immune response across ages suggesting that different loci contribute to variation in immune response at each age. The genetic component of the variation in immune response increased with age, a pattern predicted by the mutation accumulation model of senescence. However, this increase in variation resulted in part from the improvement of the immune response in some lines with age. Thus the observed changes in genetic variation in immune function with age are not entirely explained by the mutation accumulation model.  相似文献   

8.
The immune system is capable of interacting with tumor cells in such a way as to lead to tumor cell death, and this knowledge has inspired therapies to manipulate patient immune systems to eradicate cancer. However, tumor cells are able to mitigate the antitumor immune response, a fact that has rarely been addressed in the design of immunotherapies. There are many different tumor cell immune functions that play a role in mitigating the antitumor immune response. In some cases, these functions appear to be intimately associated with the tumor cell abnormalities that lead to loss of growth control, such as the cases where classical tumor suppressor proteins regulate tumor cell immune function genes. In other cases, tumor cell mutations appear to affect only the antitumor response, such as tumor cell mutations that eliminate MHC class I expression. Here I review the bases for tumor cell immune functions, noting in particular where tumor cell mutations, the gold standard for identifying a tumor-specific function, are known to be responsible for the tumor cell immune function. This review also discusses other known regulatory anomalies, in the absence of a known mutation, that are apparently important for tumor development and that regulate tumor cell immune functions. Surprisingly, in many cases where the tumor cell immune function is well understood in terms of its effect on the antitumor immune response, the tumor abnormality underlying the tumor cell immune function is completely uncharacterized.  相似文献   

9.
Costs of immunity are widely believed to play an important role in life history evolution, but most studies of ecological immunology have considered only single aspects of immune function. It is unclear whether we should expect correlated responses in other aspects of immune function not measured, because individual branches of immune defence may differ in their running costs and thus may compete unequally for limiting resources, resulting in negatively correlated evolution. In theory such selection pressure may be most intense where species are hosts to more virulent parasites, thus facing a higher potential cost of parasitism. These issues are relatively unstudied, but could influence the efficacy of attempting to estimate the scale and cost of host investment in immune defence. Here, in a comparative study of birds we found that species that scavenge at carcasses, that were hypothesised to be hosts to virulent parasites, had larger spleens for their body size and higher blood total leukocyte concentrations (general measures of immune function) than non-scavengers. These results support the hypothesis that scavengers are subject to strong parasite-mediated selection on immune defences. However, measures of specific branches of immune function revealed that scavengers had a relatively lower proportion of lymphocytes than phagocytic types of leukocytes, suggesting robust front line immune defences that could potentially reduce the need for mounting relatively energetically costly lymphocyte-dependent immune responses. Following experimental inoculation, scavengers produced significantly larger humoral immune responses, but not cell-mediated immune responses, than non-scavengers. However, the sizes of cell-mediated and humoral immune responses were not correlated across species. These results suggest that single measures of immune defence may not characterise the overall immune strategy, or reveal the likely costs involved.  相似文献   

10.
Behavioural robustness at antibody and immune network level is discussed. The robustness of the immune response that drives an autonomous mobile robot is examined with two computational experiments in the autonomous mobile robots trajectory generation context in unknown environments. The immune response is met based on the immune network metaphor for different low-level behaviours coordination. These behaviours are activated when a robot sense the appropriate conditions in the environment in relation to the network current state. Results are obtained over a case study in computer simulation as well as in laboratory experiments with a Khepera II microrobot. In this work, we develop a set of tests where such an immune response is externally perturbed at network or low-level behavioural modules to analyse the robust capacity of the system to unexpected perturbations. Emergence of robust behaviour and high-level immune response relates to the coupling between behavioural modules that are selectively engaged with the environment based on immune response. Experimental evidence leads discussions on a dynamical systems perspective of behavioural robustness in artificial immune systems that goes beyond the isolated immune network response.  相似文献   

11.
完善的先天免疫系统使得昆虫成为分布最广、适应性最强、物种多样性最丰富的动物类群。在长期的进化过程中,昆虫建立了一套安全有效的先天免疫系统,一方面在面对外界微生物攻击的时候及时有效的发生免疫应答反应;另一方面通过免疫抑制来调控适度免疫应答,避免对自身发动攻击和控制环境共生菌刺激引起的免疫应答信号通路的持续激活。泛素-蛋白酶体系统在昆虫先天免疫中具有重要的调控作用,在Toll和IMD信号通路中,通过对免疫应答通路中信号分子的泛素化修饰加工,促进或抑制抗菌肽的表达,从而使免疫反应达到一个平衡。本文通过对泛素-蛋白酶体系统在Toll和IMD信号通路中的免疫应答和免疫抑制方面的研究进行综述,阐明了该系统在昆虫先天免疫中的调控作用,将有助于开展农业害虫与其天敌之间相互关系的深入研究,揭示其免疫调控机理,为开发生物农药,进行生物防控提供理论依据。  相似文献   

12.
There are several mechanisms by which human immunodeficiency virus (HIV) can mediate immune dysfunction and exhaustion during the course of infection. Chronic immune activation, after HIV infection, seems to be a key driving force of such unwanted consequences, which in turn worsens the pathological status. In such cases, the immune system is programmed to initiate responses that counteract unwanted immune activation, for example through the expansion of myeloid-derived suppressor cells (MDSCs). Although the expansion of immune suppressor cells in the setting of systemic chronic immune activation, in theory, is expected to contain immune activation, HIV infection is still associated with a remarkably high level of biomarkers of immune activation. Paradoxically, the expansion of immune suppressor cells during HIV infection can suppress potent anti-viral immune responses, which in turn contribute to viral persistence and disease progression. This indicates that HIV hijacks not only immune activation but also the immune regulatory responses to its advantage. In this work, we aim to pave the way to comprehend how such unwanted expansion of MDSCs could participate in the pathology of acute/primary and chronic HIV infection in humans, as well as simian immunodeficiency virus infection in rhesus macaques, according to the available literature.  相似文献   

13.
14.
A formal model of an artificial immune system   总被引:20,自引:0,他引:20  
Tarakanov A  Dasgupta D 《Bio Systems》2000,55(1-3):151-158
The paper presents a mathematical model based on the features of antigen-antibody bindings in the immune system. In the natural immune system, local binding of immune cells and molecules to antigenic peptides is based generally on the behavior of surface proteins. In particular, immune cells contain proteins on their receptors, and apparently, these proteins play the key role both in immune response and recognition processes. In this work, we consider the immune cells in the form of formal B-cell and formal T-cell and develop a mathematical model of their interactions. We refer this model as the formal immune system (FIS). The paper provides an analysis of a network of bindings (or interactions) among the formal proteins of the FIS.  相似文献   

15.
A growing body of experimental evidence indicates that immune cells move in an unrestricted search pattern if they are in the pre-activated state, whilst they tend to stay within a more restricted area upon activation induced by the presence of tumour antigens. This change in movement is not often considered in the existing mathematical models of the interactions between immune cells and cancer cells. With the aim to fill such a gap in the existing literature, in this work we present a spatially structured individual-based model of tumour–immune competition that takes explicitly into account the difference in movement between inactive and activated immune cells. In our model, a Lévy walk is used to capture the movement of inactive immune cells, whereas Brownian motion is used to describe the movement of antigen-activated immune cells. The effects of activation of immune cells, the proliferation of cancer cells and the immune destruction of cancer cells are also modelled. We illustrate the ability of our model to reproduce qualitatively the spatial trajectories of immune cells observed in experimental data of single-cell tracking. Computational simulations of our model further clarify the conditions for the onset of a successful immune action against cancer cells and may suggest possible targets to improve the efficacy of cancer immunotherapy. Overall, our theoretical work highlights the importance of taking into account spatial interactions when modelling the immune response to cancer cells.  相似文献   

16.
Trans‐generational immune priming is the transmission of enhanced immunity to offspring following a parental immune challenge. Although within‐generation increased investment into immunity demonstrates clear costs on reproductive investment in a number of taxa, the potential for immune priming to impact on offspring reproductive investment has not been thoroughly investigated. We explored the reproductive costs of immune priming in a field cricket, Teleogryllus oceanicus. To assess the relative importance of maternal and paternal immune status, mothers and fathers were immune‐challenged with live bacteria or a control solution and assigned to one of four treatments in which one parent, neither or both parents were immune‐challenged. Families of offspring were reared to adulthood under a food‐restricted diet, and approximately 10 offspring in each family were assayed for two measures of immunocompetence. We additionally quantified offspring reproductive investment using sperm viability for males and ovary mass for females. We demonstrate that parental immune challenge has significant consequences for the immunocompetence and, in turn, reproductive investment of their male offspring. A complex interaction between maternal and paternal immune status increased the antibacterial immune response of male offspring. This increased immune response was associated with a reduction in son's sperm viability, implicating a trans‐generational resource trade‐off between investment into immunocompetence and reproduction. Our data also show that these costs are sexually dimorphic, as daughters did not demonstrate a similar increase in immunity, despite showing a reduction in ovary mass.  相似文献   

17.
Toll样受体(Toll-like receptors,TLR)是先天性免疫反应识别病原体的一个重要分子,在免疫系统中发挥关键作用.其家族各种成员的主要功能是识别入侵病原体表面的各种不同分子模式,随后启动免疫反应,达到保护机体作用.在大脑中,小胶质细胞可以作为抗原提呈细胞,参与脑内免疫反应,也可以通过分泌各种促炎症因子启动或促进免疫反应,而TLR家族在中枢神经免疫系统的作用仍存在争议,它既可以通过促进神经免疫反应枢纽因子的表达来增强免疫,也可因免疫过度而损伤神经细胞.总之,Toll信号通路对中枢神经系统疾病有一定的调控作用.  相似文献   

18.
1. Immune priming refers to improved protection of the host after a second encounter with the same parasite or pathogen. This phenomenon is similar to that of adaptive immunity in vertebrates. 2. There is evidence to suggest that this improved protection can be species/strain‐specific and can protect organisms for a lifetime. These two attributes, along with a biphasic immune response, are essential characteristics of immune priming and form the basis for the effectiveness of resistance to parasites and pathogens. 3. This paper considers the effect of immune priming within and across generations, the influence of a heterologous challenge during immune priming and the importance of testing the immune response with natural pathogens. 4. The analysis presented takes into account the multifaceted nature of the invertebrate immune response. The lack of evidence suggesting that the bacterial microbiome plays a complementary role in the immune priming outcome is discussed. 5. Finally, the cost of immune priming is explored. This is a poorly investigated issue, which could help to explain why there is a paucity of evidence in support of immune priming.  相似文献   

19.
Infection by human immunodeficiency virus (HIV) causes the acquired immune deficiency syndrome (AIDS), which has devastating effects on the host immune system. HIV entry into host cells and subsequent viral replication induce a proinflammatory response, hyperactivating immune cells and leading them to death, disfunction, and exhaustion. Adenosine is an immunomodulatory molecule that suppresses immune cell function to protect tissue integrity. The anti-inflammatory properties of adenosine modulate the chronic inflammation and immune activation caused by HIV. Lack of adenosine contributes to pathogenic events in HIV infection. However, immunosuppression by adenosine has its shortcomings, such as impairing the immune response, hindering the elimination of the virus and control of viral replication. By attempting to control inflammation, adenosine feeds a pathogenic cycle affecting immune cells. Deamination of adenosine by ADA (adenosine deaminase) counteracts the negative effects of adenosine in immune cells, boosting the immune response. This review comprises the connection between adenosinergic system and HIV immunopathogenesis, exploring defects in immune cell function and the role of ADA in protecting these cells against damage.  相似文献   

20.
The testis exhibits a distinctive form of immune privilege to protect the germ cells from the host immune attack. The property of testicular immune privilege was originally attributed to the blood-testis barrier in the seminiferous epithelium, which sequesters antigens. Recent studies have uncovered several levels of immune control besides the blood-testis barrier involved in the privilege of the testis, including the mechanisms of immune tolerance, reduced immune activation, localized active immunosuppression and antigen-specific immunoregulation. The somatic cells of the testis, especially Sertoli cells, play a key role in regulating the testicular immune privileged status. The constitutive expression of anti-inflammatory factors in the testis by somatic cells is essential for local immunosuppression. Growing evidence shows that androgens orchestrate the inhibition of proinflammatory factors and shift cytokine balance toward a tolerogenic environment. Disruption of these protective mechanisms, which may be caused by trauma, infection and genetic factors, can lead to orchitis and infertility. This review article highlights the unique immune environment of the testis, particularly focuses on the regulation of testicular immune privilege.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号