首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fluorescently labelled derivative of the calcium binding subunit of troponin, TnC, has been injected into isolated striated muscle fibres from the barnacle Balanus nubilus. The Ca2+ affinity of isolated TnC is close to that of intact troponin when located in the thin filament. Excitation of the TnCDANZ within the muscle cell (325nm) revealed a marked fluorescence at 510 nm and was similar to that observed in vitro, which was absent at 400 or 600 nm after subtraction of the fibre autofluorescence. High Ca2+ salines increased the fluorescence at 510 nm by roughly 2 times. Single voltage clamp pulses produced a rapid rise in fluorescence at 510 nm after allowing for any non-specific changes at 400 nm, and this signal preceded force development by approx. 55 ms at 22 degrees C. It reached a maximum at the same time as force and subsequently decayed more slowly. The fluorescence signal increased in magnitude with increase in stimulus intensity. These results suggest that Ca2+ attaches rapidly to the contractile filament, but is lost relatively slowly and imply a slow decay of the activation process.  相似文献   

2.
The fluorescent Ca2+ indicator, quin 2, has been used in isolated striated muscle fibres. There is a distinct quin 2 fluorescence peak at lambda 500 nm upon excitation at lambda 339 nm after axial injection of the potassium salt of quin 2, pH 7.1. Single voltage-clamp or current clamp electrical stimulation resulted in a distinct transient change in the fluorescence at lambda 500 nm which was not observed at lambda 400 nm, the peak of the fibre autofluorescence. Ca2+ buffering is marked at high quin 2 concentrations (greater than or equal to 400 microM) producing a slow decay of force and fluorescence. At lower concentrations (8-30 microM) of quin, the decay of force is within the range observed in non-injected control fibres. A Kd of 457 nM at 5 mM free Mg2+ suggests an upper resting free Ca2+ concentration of 310 nM at 12 degrees C.  相似文献   

3.
A biochemical pathway to platelet activation involving protein kinase C has been deemed "Ca2+-independent", because the intracellular fluorophore quin2 indicates no rise in cytoplasmic [Ca2+] in platelets stimulated by certain agonists. However, unlike quin2, the Ca2+-sensitive photoprotein aequorin demonstrates a rise in [Ca2+] when platelet aggregation is induced by phorbol ester or diacylglycerol. Aequorin and quin2 appear to report different aspects of Ca2+ homeostasis, and the absence of a quin2 signal may not be sufficient to establish that a metabolic pathway is "Ca2+-independent".  相似文献   

4.
In the presence of 1 mM EGTA, the addition of the calcium ionophore ionomycin to human platelets loaded with 30 microM fura-2 could elevate [Ca2+]i from less than 100 nM to a maximum of greater than 3 microM, presumably by discharge of Ca2+ from internal stores. Under the same conditions thrombin could maximally increase [Ca2+]i to a peak of greater than 1 microM which then declined to near resting levels within 3-4 minutes; by contrast in platelets loaded with 1 mM quin2 thrombin could raise [Ca2+]i to only about 200 nM. In the presence of 1 mM Ca2+ the peak response to thrombin in fura-2-loaded platelets was higher (1.4 microM) than that observed in the presence of EGTA (1.1 microM) and the elevation in [Ca2+] was prolonged, presumably by Ca2+ influx. These results with fura-2-loaded platelets indicate that mobilisation of internal Ca2+ can contribute a substantial proportion of the early peak [Ca2+]i evoked by thrombin directly confirming the deductions from previous work with different loadings of quin2. Under natural conditions the major role of Ca2+ influx may be to prolong the [Ca2+]i rise rather than to make it larger.  相似文献   

5.
The Ca2+ sensitivity of a population of isolated adult rat heart myocytes has been related to the Na+ content of the cells prior to Ca2+ exposure, and the intracellular free Ca2+ as reported by quin2 fluorescence when the cells are challenged with millimolar external Ca2+. Myocytes exposed to Ca2+ during quin2 loading show a resting intracellular free Ca2+ of 150 +/- 30 nM and retain the rod cell morphology of heart cells in situ. The myocytes take up Na+ and lose K+ when incubated in the cold in the absence of Ca2+. Large numbers of these rod-shaped, Na+-loaded myocytes hypercontract into grossly distorted round cell forms when exposed to physiological levels of Ca2+. The number of cells that hypercontract is proportional to the Na+ content of the cells prior to Ca2+ addition and can be directly related to the intracellular free Ca2+ concentration attained following Ca2+ addition. Fifty percent of the cells in a myocyte population hypercontract when the internal free Ca2+ concentration reported by quin2 reaches 400 nM and virtually all of the cells hypercontract when this value reaches 1 microM. The entry of Ca2+ into Na+-loaded myocytes is biphasic with one phase inhibited by Ca2+ channel blockade. This suggests that Ca2+ enters Na+-loaded myocytes by the Ca2+ channel as well as by Na+/Ca2+ exchange.  相似文献   

6.
We have measured intracellular free Ca2+ concentration in rat and guinea pig ventricular myocytes using the fluorescent Ca2+-indicator quin2. Our results indicate a resting concentration in heart cells that is considerably lower than previous estimates. The mean value of 137 nM for rat ventricle that we have recorded is consistent with the hypothesis that resting intracellular [Ca2+] is controlled by a voltage-dependent, sarcolemmal exchange mechanism. Furthermore, we show that activation of plasma membrane Ca2+-channels is involved when intracellular free Ca2+ increases in response to K+-depolarization.  相似文献   

7.
Rat basophil leukemic (2H3) cells ( Siraganian , R.P., McGivney , A., Barsumian , E. L., Crews, F. T., Hirata , F., and Axelrod , J. (1982) Fed. Proc. 41, 30-34) loaded with fluorescent Ca2+ indicator quin 2 ( Tsien , R. Y. (1980) Biochemistry 19, 2396-2404) showed a rapid increase in free cytosol calcium concentration [( Ca]i) when histamine release was induced. Intracellular quin 2 concentrations up to 7 mM did not affect release of histamine in response to antigen (aggregated ovalbumin) or concanavalin A with cells primed with antigen-specific monoclonal IgE, or in response to Ca2+ ionophores. The [Ca]i increased from approximately 105 nM to a maximum of approximately 1200 nM within 2 to 3 min after antigenic stimulation and then declined slowly over 30 min toward the level in unstimulated cells. Histamine release was most rapid as [Ca]i reached the maximum value and then decreased continuously with [Ca]i over the subsequent 30 min. Neither the Ca signal nor histamine release was observed when the Ca2+ concentration in the medium [( Ca]o) was less than 50 microM, but both responses were restored on readdition of Ca2+ to 1 mM. The maximal Ca signal was obtained when [Ca]o was approximately greater than 1 mM and was half-maximal at [Ca]o congruent to 0.4 mM. In marked contrast [Ca]i in unstimulated cells varied very little with [Ca]o from 0.1 to 1 mM. Maintenance of the Ca signal required the continuous presence of stimulating ligand, external Ca2+, and the maintenance of cellular ATP; metabolic inhibitors blocked or reversed the Ca signal. La+ ions also caused a rapid and reversible block of the Ca signal and histamine release. The data are interpreted in a model in which the Ca signal is generated by a La3+-sensitive signal influx pathway that is functionally independent of the normal Ca2+ influx pathway in unstimulated cells, and that allows a 10-fold or greater increase in rate of Ca2+ entry. The Ca signal is maintained dynamically by the balance between the increased Ca2+ influx and active Ca2+ efflux across the plasma membrane.  相似文献   

8.
Dansylaziridine-labeled troponin C (TnCDANZ) undergoes a greater than 2-fold fluorescence enhancement with Ca2+ binding to the Ca2+-specific regulatory sites of troponin C. Hence, TnCDANZ serves as a very good indicator of Ca2+ in the range of 3.0 to 70 micron. Ca2+ uptake and release by sarcoplasmic reticulum can be easily and accurately monitored by the fluorescence changes in TnCDANZ. In this manner, we can monitor directly the removal of Ca2+ from troponin C by the sarcoplasmic reticulum. Thus, this reaction represents a useful analogue ot the Ca2+ "on-off" process in muscle.  相似文献   

9.
A new, fluorescent, highly selective Ca2+ indicator , "quin2", has been trapped inside intact mouse and pig lymphocytes, to measure and manipulate cytoplasmic free Ca2+ concentrations, [Ca2+]i. Quin2 is a tetracarboxylic acid which binds Ca2+ with 1:1 stoichiometry and an effective dissociation constant of 115 nM in a cationic background mimicking cytoplasm. Its fluorescence signal (excitation 339 nm, emission 492 nm) increases about fivefold going from Ca-free to CA- saturated forms. Cells are loaded with quin2 by incubation with its acetoxymethyl ester, which readily permeates the membrane and is hydrolyzed in the cytoplasm, thus trapping the impermeant quin2 there. The intracellular quin2 appears to be free in cytoplasm, not bound to membranes and not sequestered inside organelles. The fluorescence signal from resting cells indicates a [Ca2+]i of near 120 nM. The millimolar loadings of quin2 needed for accurately calibrated signals do not seem to perturb steady-state [Ca2+]i, but do somewhat slow or blunt [Ca2+]i transients. Loadings of up to 2mM are without serious toxic effects, though above this level some lowering of cellular ATP is observed. [Ca2+]i was well stabilized in the face of large changes in external Ca2+. Alterations of Na+ gradients, membrane potential, or intracellular pH had little effect. Mitochondrial poisons produced a small increase in [Ca2+]i, probably due mostly to the effects of severe ATP depletion on the plasma membrane. Thus intracellulary trapped chelators like quin2 offer a method to measure or buffer [Ca2+]i in hitherto intractable cell types.  相似文献   

10.
Time-resolved X-ray equatorial diffraction studies on a single frog skeletal muscle fiber were performed with a 10 ms time resolution using synchrotron radiation in order to compare the time courses of the molecular changes of contractile proteins and the intracellular Ca2+ transient during an isometric twitch contraction at 2.7 degrees C. Measurements of the Ca2+ transient using aequorin as an intracellular Ca2+ indicator were conducted separately just before and after the X-ray experiments under very similar experimental conditions. The results, which showed a similar time course of tension to that observed in the X-ray experiment, were compared with the aequorin light signal, tension and the intensity changes of the 1,0 and 1,1 equatorial reflections. No appreciable change in both reflection spacings indicated that the effect of internal shortening of the muscle was minimized during contraction. The intensity change of the equatorial reflections generally occurred after the aequorin light signal. In the rising phase, the time course of increase in the 1,1 intensity paralleled that of the rise of the light signal and the intensity peak occurred 20-30 ms after the peak of the light signal. The decrease in the 1,0 intensity showed a time course similar to that of tension and the intensity minimum roughly coincided with the tension peak, coming at 80-90 ms and about 60 ms after the peaks of the light signal and the 1,1 intensity change, respectively. In the relaxation phase, the 1,1 intensity seemed to fall rapidly just before the tension peak and then returned to the original level in parallel with the decay of tension. The 1,0 intensity returned more slowly than the tension relaxation. Thus, the change of the 1,1 intensity was faster than that of the 1,0 intensity in both the rising and relaxation phases. When the measured aequorin light signal was corrected for the kinetic delay of the aequorin reaction with a first-order rate constant of either 50 or 17 s-1, the peak of the corrected light signal preceded that of the measured one by approx. 30 ms. Thus, the peak of the Ca2+ transient appeared earlier than the peaks of the 1,1 and 1,0 intensity changes by 50-60 and 110-120 ms, respectively. The time lag between the extent of structural change and the Ca2+ transient is discussed in relation to the double-headed attachment of a cross-bridge to actin.  相似文献   

11.
In gastrin-stimulated, aequorin-loaded parietal cells from guinea pig gastric mucosa, a rapid but transient increase in the cytosolic free Ca2+ concentration ([Ca2+]i), owing to Ca2+ released from the store(s), and a more prolonged Ca2+ entry from outside the cells were observed. However, there was a little increase in [Ca2+]i when similar measurements were assessed by quin 2 or fura-2 in physiological saline. However, depletion or elimination of Na+ from the incubation medium caused a significant increase in the [Ca2+]; response to gastrin as measured by quin 2. These findings suggest that aequorin and quin 2 (or fura-2) provide information about different aspects of Ca2+ homeostasis and that there is an inhomogeneity of [Ca2+]i in the cytoplasm during gastrin stimulation. By the gastrin stimulation, the intracellular Ca2+ gradients were shifted from the unidentified portion(s) to the restricted apical cytoplasm, as determined by electron probe X-ray microanalysis. Therefore, localization and identification of the source of intracellular Ca2+ as a pool were determined by an X-ray microanalyzer. In the resting state, the tubulovesicle had high Ca2+ concentration compared with the level in the apical cytoplasm. Cells treated with the Ca2+ ionophore ionomycin had a decreased tubulovesicular Ca2+ level, followed by a reciprocal increase in area of the canalicular membrane. The secretory canaliculus in stimulated cells had lower Ca2+ or higher K+ and Cl- concentrations than that of tubulovesicles or cytoplasm in the resting state, respectively. These findings suggest that the Ca2+ pool of the parietal cell is in the tubulovesicles and (or) luminal cell membrane and that the Ca2+ released from the store(s) may mediate a flow of K+ or Cl- into the secretory canaliculus.  相似文献   

12.
We have investigated the effects of mitogenic lectins on human T-lymphocytes, isolated from peripheral blood, and cells from the T-cell clone, HPB-ALL, using the fluorescent dyes, bis-thiobarbiturate tri-methineoxonol (bisoxonol) and quin2 to sense changes in membrane potential and intracellular free [Ca2+], respectively. The resting potential of both cell types is close to the K+ equilibrium potential. Changes from the resting level occur when mitogenic concentrations of either concanavalin A or phytohaemagglutinin are added. T-lymphocytes undergo a decrease in emission, maximal at 1 to 2 min, corresponding to a small membrane hyperpolarization. This is followed by a depolarization to approximately the resting level. HPB-ALL cells, on the other hand, respond to the mitogens by a sustained increase in fluorescence, denoting a depolarization, that is maximal at 4 to 5 min and 7 to 9 min, respectively. The Ca2+-dependence of these phenomena indicates that the membrane potential response, in both cell types, is the resultant of two opposing effects: a Ca2+-sensitive ion movement tending to hyperpolarize the cells and a Ca2+-insensitive effect that generates a depolarization. Our results suggest that Ca2+-activated K+ channels are responsible for the first effect and that an inward Na+ movement accounts for the depolarization signal in T-lymphocytes. In HPB-ALL cells only part of the depolarization is Na+-dependent. Although the effects elicited by phytohaemagglutinin occur more slowly than those produced by concanavalin A, similar membrane potential and [Ca2+]i changes occur.  相似文献   

13.
The Ca2+-sensitive photoprotein aequorin (Mr = 20,000) was introduced into human blood platelets by incubation with 10 mM EGTA and 5 mM ATP. Platelet cytoplasmic and granule contents were retained during the loading procedure, and platelet morphology, aggregation, and secretion in response to agonists were normal after aequorin loading. Luminescence indicated an apparent resting cytoplasmic ionized calcium concentration [( Cai2+]) of 2-4 microM in media containing 1 mM Ca2+ and of 0.8-2 microM in 2-4 mM EGTA. The Ca2+ ionophore A23187 and the enzyme thrombin produced dose-related luminescent signals in both Ca2+-containing and EGTA-containing media. Peak [Cai2+] after A23187 or thrombin stimulation of aequorin-loaded platelets was 2-10 microM, while peak [Cai2+] determined using Quin 2 as the [Cai2+] indicator was at least 1 log unit lower. In platelets loaded with both aequorin and Quin 2, the aequorin signal was delayed but not reduced in amplitude. Aequorin loading of Quin 2-loaded cells had no effect on the Quin 2 signal. Ca2+ buffering by Quin 2 (intracellular concentration greater than 1 mM) is also supported by a reciprocal relationship between [Quin 2] and peak [Cai2+] stimulated by A23187 in the presence of EGTA. Parallel experiments with Quin 2 and aequorin may identify inhomogeneous [Cai2+] in platelets and give a more complete picture of platelet Ca2+ homeostasis than either indicator alone.  相似文献   

14.
The calcium ion has been implicated as a cytosolic signal or regulator in phagocytosis. Using the Ca++-sensitive photoprotein aequorin we have measured intracellular free Ca++ ion concentration ([Ca++]i) in thioglycolate-elicited mouse peritoneal macrophages during phagocytosis and IgG-induced spreading. Macrophages plated on glass were loaded with aequorin and [Ca++]i was then measured from cell populations, both as previously described (McNeil, P. L., and D. L. Taylor, 1985, Cell Calcium, 6:83-92). Aequorin indicated a resting [Ca++]i in adherent macrophages of 84 nM and was responsive to changes in [Ca++]i induced by the addition of Mg-ATP (0.1 mM) or serum to medium. However, during the 15 min required for phagocytosis of seven or eight IgG-coated erythrocytes per macrophage loaded with aequorin, we measured no change in [Ca++]i. Similarly, the ligation of Fc-receptors that occurs when macrophages spread on immune complex-coated coverslips did not change macrophage [Ca++]i. In contrast, a rise in [Ca++]i of macrophages was measured during phagocytosis occurring in a serum-free saline of pH 7.85, and as a consequence of incubation with quin2 A/M. We estimate that had a change in [Ca++]i occurred during phagocytosis, aequorin would have detected a rise from 0.1 to 1.0 microM taking place in as little as 2% of the macrophage's cytoplasmic volume. We therefore suggest that either Ca++ is not involved as a cytoplasmic signal for phagocytosis or that increases in [Ca++]i during phagocytosis are confined to such small regions of cytoplasm as to be below the limits of detection by our cellular averaging method. Our data emphasizes, moreover, the need for well-defined, nonperturbing conditions in such measurements of [Ca++]i.  相似文献   

15.
Human platelets labelled with either [14C]arachidonic acid or [32P]orthophosphate were loaded or not with the Ca2+ fluorescent indicator quin 2. They were then incubated in the presence or in the absence of human thrombin (1 U/ml) in a medium where Ca2+ concentration was adjusted near zero or to 1 mM. Under these conditions, phospholipase A2 activity, as detected by the release of [14C]arachidonate and of its metabolites, or by the hydrolysis of [14C]phosphatidylcholine, was severely impaired in quin 2-loaded platelets upon removal of external Ca2+. However, Ca2+ was not required in non-loaded platelets, where a maximal phospholipase A2 activity was detected in the absence of external Ca2+. In contrast, phospholipase C action, as determined from the amounts of [14C]diacylglycerol, [14C]- or [32P]phosphatidic acid formed, appeared to be much less sensitive to the effects of quin 2 loading and of Ca2+ omission. By using various concentrations of quin 2, it was found that the inhibitory effect exerted against phospholipase A2 could be overcome by external Ca2+ only when the intracellular concentration of the calcium chelator did not exceed 2 mM. At higher concentrations averaging 3.5 mM of quin 2, phospholipase A2 activity was fully suppressed even in the presence of external Ca2+, whereas phospholipase C was still active, although partly inhibited. It is concluded that platelet phospholipase A2 requires higher Ca2+ concentrations than phospholipase C to display a maximal activity. By comparing platelet phospholipase A2 activity under various conditions with the values of cytoplasmic free Ca2+ as detected by quin 2 fluorescence, it is proposed that cytoplasmic free Ca2+ in control platelets stimulated with thrombin can attain concentrations above 1 microM, probably close to 5-10 microM, as recently determined with the photoprotein aequorin (Johnson, P.C., Ware, J.A., Cliveden, P.B., Smith, M., Dvorak, A.M. and Salzman, E.W. (1985) J. Biol. Chem. 260, 2069-2076).  相似文献   

16.
T J Hallam  T J Rink 《FEBS letters》1985,186(2):175-179
Agonists such as thrombin, PAF (platelet-activating factor) and ADP are known to cause a larger elevation in [Ca2+]i in quin2-loaded platelets in the presence of extracellular Ca2+ than in its absence. The simplest interpretation of these observations is that in the presence of extracellular calcium there is an influx component across the cell surface. In the presence of Mn2+, a divalent cation which is known to avidly bind to quin2 and to quench its fluorescence, the agonists produce a small initial rise in quin2 fluorescence followed by a decrease in fluorescence to well below the resting level. The result indicates entry of Mn2+, presumably through some form of receptor-operated Ca2+ channel.  相似文献   

17.
The effect of 55 mM K+ and nicotine on intracellular free calcium was monitored in bovine adrenal chromaffin cells microinjected with aequorin. In contrast to results with quin 2, which suggested that stimulation of chromaffin cells resulted in sustained rises in free calcium, aequorin measurements showed that 55 mM K+ and nicotine resulted in a transient (60-90 s) elevation of free calcium. The peak free calcium and duration of the transient elicited by nicotine were dose-dependent. The concentration of nicotine (10 microM) giving a maximal secretory response gave a peak rise in free calcium of up to 1 microM. 55 mM K+ which only releases 30% of the catecholamine released by 10 microM nicotine generated a calcium transient indistinguishable from that due to 10 microM nicotine. These results support the idea that nicotine agonists generate an alternative second messenger in addition to the rise in free calcium.  相似文献   

18.
Intact frog skeletal muscle fibers were injected with the Ca2+ indicator fura-2 conjugated to high molecular weight dextran (fura dextran, MW approximately 10,000; dissociation constant for Ca2+, 0.52 microM), and the fluorescence was measured from cytoplasm (17 degrees C). The fluorescence excitation spectrum of fura dextran measured in resting fibers was slightly red-shifted compared with the spectrum of the Ca(2+)-free indicator in buffer solutions. A simple comparison of the spectra in the cytoplasm and the in vitro solutions indicates an apparently "negative" cytoplasmic [Ca2+], which probably reflects an alteration of the indicator properties in the cytoplasm. To calibrate the indicator's fluorescence signal in terms of cytoplasmic [Ca2+], we applied beta-escin to permeabilize the cell membrane of the fibers injected with fura dextran. After treatment with 5 microM beta-escin for 30-35 min, the cell membrane was permeable to small molecules (e.g., Ca2+, ATP), whereas the 10-kD fura dextran only slowly leaked out of the fiber. It was thus possible to estimate calibration parameters in the indicator fluorescence in the fibers by changing the bathing solution [Ca2+] to various levels; the average values for the fraction of Ca(2+)-bound indicator in the resting fibers and the dissociation constant for Ca2+ (KD) were, respectively, 0.052 and 1.0 microM. For the comparison, the KD value was also estimated by a kinetic analysis of the indicator fluorescence change after an action potential stimulation in intact muscle fibers, and the average value was 2.5 microM. From these values estimated in the fibers, resting cytoplasmic [Ca2+] in frog skeletal muscle fibers was calculated to be 0.06-0.14 microM. The range lies between the high estimates from other tetracarboxylate indicators (0.1-0.3 microM; Kurebayashi, N., A. B. Harkins, and S. M. Baylor. 1993. Biophysical Journal. 64:1934-1960; Harkins, A. B., N. Kurebayashi, and S. M. Baylor. 1993. Biophysical Journal. 65:865-881) and the low estimate from the simultaneous use of aequorin and Ca(2+)-sensitive microelectrodes (< 0.04-0.06 microM; Blatter, L. A., and J. R. Blinks. 1991. Journal of General Physiology. 98:1141-1160) recently reported for resting cytoplasmic [Ca2+] in frog muscle fibers.  相似文献   

19.
《The Journal of cell biology》1994,125(5):1127-1135
To image changes in intraciliary Ca controlling ciliary motility, we microinjected Ca Green dextran, a visible wavelength fluorescent Ca indicator, into eggs or two cell stages of the ctenophore Mnemiopsis leidyi. The embryos developed normally into free-swimming, approximately 0.5 mm cydippid larvae with cells and ciliary comb plates (approximately 100 microns long) loaded with the dye. Comb plates of larvae, like those of adult ctenophores, undergo spontaneous or electrically stimulated reversal of beat direction, triggered by Ca influx through voltage-sensitive Ca channels. Comb plates of larvae loaded with Ca Green dextran emit spontaneous or electrically stimulated fluorescent flashes along the entire length of their cilia, correlated with ciliary reversal. Fluorescence intensity peaks rapidly (34-50 ms), then slowly falls to resting level in approximately 1 s. Electrically stimulated Ca Green emissions often increase in steps to a maximum value near the end of the stimulus pulse train, and slowly decline in 1-2 s. In both spontaneous and electrically stimulated flashes, measurements at multiple sites along a single comb plate show that Ca Green fluorescence rises within 17 ms (1 video field) and to a similar relative extent above resting level from base to tip of the cilia. The decline of fluorescence intensity also begins simultaneously and proceeds at similar rates along the ciliary length. Ca-free sea water reversibly abolishes spontaneous and electrically stimulated Ca Green ciliary emissions as well as reversed beating. Calculations of Ca diffusion from the ciliary base show that Ca must enter the comb plate along the entire length of the ciliary membranes. The voltage-dependent Ca channels mediating changes in beat direction are therefore distributed over the length of the comb plate cilia. The observed rapid and virtually instantaneous Ca signal throughout the intraciliary space may be necessary for reprogramming the pattern of dynein activity responsible for reorientation of the ciliary beat cycle.  相似文献   

20.
Ca2+ homoeostasis was investigated in pheochromocytoma neurosecretory (PC12) cells both before and after treatment with nerve growth factor, which induces a neuronal-like differentiation accompanied by a large increase in the number of muscarinic receptors. The resting concentration of free cytosolic Ca2+, [Ca2+]i, measured by the quin2 technique, was found to be higher and more variable in differentiated cells. Moreover, the [Ca2+]i rises induced by the Ca2+ ionophore ionomycin and by depolarizing concentrations of KC1 were greater and more transient. Exposure to carbachol induced modest, but long-lasting, [Ca2+]i rises, which were faster and greater in differentiated than in non-differentiated cells. These effects were due to the activation of the muscarinic receptor, because they were unaffected by nicotinic blockers (hexamethonium and D-tubocurarine) and completely eliminated by low concentrations of the muscarinic antagonists atropine and pirenzepine [IC50 (concn. causing 50% inhibition) = 2 and 60 nM respectively]. The muscarinic-receptor-dependent [Ca2+]i rises were the result of two concomitant processes: (1) redistribution of Ca2+ from cytoplasmic stores to the cytosol, possibly mediated by generation of inositol 1,4,5-trisphosphate as a consequence of the muscarinic-receptor-coupled hydrolysis of polyphosphoinositides, and (2) increased Ca2+ influx through a pathway of the plasmalemma insensitive to verapamil and thus different from the voltage-dependent Ca2+ channel. The existence of this second process was documented: (a) by the difference of the [Ca2+]i responses brought about by carbachol in Ca2+-containing and Ca2+-free media; (b) by the occurrence of [Ca2+]i rise and increased 45Ca accumulation in cells exposed to 1 mM-CaCl2 after having been treated for 2 min with carbachol in Ca2+-free medium; (c) by typical differences in the quin2 signal kinetics observed in parallel samples of PC12 cells loaded with different concentrations of the dye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号