首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene encoding the fructosyl-amino acid oxidase (fructosyl-alpha-L-amino acid: oxygen oxidoreductase (defructosylating); EC 1.5.3) of Corynebacterium sp. 2-4-1 was cloned and expressed in Escherichia coli. The gene consists of 1,116 nucleotides and encodes a protein of 372 amino acids with a predicted molecular mass of 39,042. The open reading frame was confirmed as the gene of the fructosyl-amino acid oxidase by comparison with the N-terminal amino acid sequence of the purified fructosyl-amino acid oxidase from Corynebacterium sp. 2-4-1. The sequence of the AMP-binding motif, GXGXXG, was found in the deduced N-terminal region. The amino acid sequence of the fructosyl-amino acid oxidase showed no similarity to that of fungal fructosyl-amino acid oxidases. In addition, substrate specificities of this fructosyl-amino acid oxidase were different from those of other fructosyl-amino acid oxidases. The fructosyl-amino acid oxidase of Corynebacterium sp. 2-4-1 is an enzyme that has unique substrate specificity and primary structure in comparison with fungal fructosyl-amino acid oxidases.  相似文献   

2.
The peroxisomal acyl-CoA oxidase family plays an essential role in lipid metabolism by catalyzing the conversion of acyl-CoA into trans-2-enoyl-CoA during fatty acid beta-oxidation. Here, we report the X-ray structure of the FAD-containing Arabidopsis thaliana acyl-CoA oxidase 1 (ACX1), the first three-dimensional structure of a plant acyl-CoA oxidase. Like other acyl-CoA oxidases, the enzyme is a dimer and it has a fold resembling that of mammalian acyl-CoA oxidase. A comparative analysis including mammalian acyl-CoA oxidase and the related tetrameric mitochondrial acyl-CoA dehydrogenases reveals a substrate-binding architecture that explains the observed preference for long-chained, mono-unsaturated substrates in ACX1. Two anions are found at the ACX1 dimer interface and for the first time the presence of a disulfide bridge in a peroxisomal protein has been observed. The functional differences between the peroxisomal acyl-CoA oxidases and the mitochondrial acyl-CoA dehydrogenases are attributed to structural differences in the FAD environments.  相似文献   

3.
《Biotechnology advances》2017,35(6):657-668
Enantiomerically pure amino acids are of increasing interest for the fine chemical, agrochemicals and pharmaceutical industries. During past years l-amino acids have been produced from deracemization of dl-solution employing the stereoselective flavoenzyme d-amino acid oxidase. On the other hand, the isolation of corresponding d-isomer was hampered by the scarce availability of a suitable l-amino acid oxidase activity. On this side, l-amino acid deaminase (LAAD), only present in the Proteus bacteria, represents a suitable alternative. This FAD-containing enzyme catalyzes the deamination of l-amino acids to the corresponding α-keto acids and ammonia, with no hydrogen peroxide production (a potentially dangerous oxidizing species) since the electrons of the reduced cofactor are transferred to a membrane-bound cytochrome. Very recently the structure of LAAD has been solved: in addition to a FAD-binding domain and to a substrate-binding domain, it also possesses an N-terminal putative transmembrane α-helix (residues 8–27, not present in the crystallized protein variant) and a small α + β subdomain (50–67 amino acids long, named “insertion module”) strictly interconnected to the substrate binding domain. Structural comparison showed that LAAD resembles the structure of several soluble amino acid oxidases, such as l-proline dehydrogenase, glycine oxidase or sarcosine oxidase, while only a limited structural similarity with d- or l-amino acid oxidase is apparent. In this review, we present an overview of the structural and biochemical properties of known LAADs and describe the advances that have been made in their biotechnological application also taking advantage from improved variants generated by protein engineering studies.  相似文献   

4.
Acetylspermidine oxidase (ASOD) belongs to a family of FAD-containing amine oxidases and catalyzes the oxidation of N-acetylated spermidine in polyamine metabolism. ASOD was purified to apparent homogeneity from cells of the methylotrophic yeast Candida boidinii grown on spermidine as the sole nitrogen source. C. boidinii ASOD catalyzed the oxidation of only N(1)-acetylspermidine. Based on partial amino acid sequences, oligonucleotide primers were designed for polymerase chain reaction, and the ASOD-encoding gene, ASO1, was cloned. The open reading frame encoding ASO1 was 1530 bp long and corresponded to a protein of 509 amino acid residues (calculated molecular mass=57167 Da). ASO1 contained a FAD-binding motif of G-A-G-I-A-G in the N-terminal region and carried an amino acid sequence of -S-K-L at the C-terminal, representing a typical peroxisome targeting signal 1. ASOD was localized in the peroxisomes in overexpressed C. boidinii. To our knowledge, this is the first report on the gene coding for ASOD that can catalyze the oxidation of N-acetylated polyamine as a substrate, from any type of organism.  相似文献   

5.
Crude extract of Aspergillus niger AKU 3302 mycelia incubated with methylamine showed a single amine oxidase activity band in a developed polyacrylamide gel that weakly cross-reacted with the antibody against a copper/topa quinone-containing amine oxidase (AO-II) from the same strain induced by n-butylamine. Since the organism cannot grow on methylamine and the already known quinoprotein amine oxidases of the organism cannot catalyze oxidation of methylamine, the organism was forced to produce another enzyme that could oxidize methylamine when the mycelia were incubated with methylamine. The enzyme was separated and purified from the already known two quinoprotein amine oxidases formed in the same mycelia. The purified enzyme showed a sharp symmetric sedimentation peak in analytical ultracentrifugation showing S20,w0 of 6.5s. The molecular mass of 133 kDa estimated by gel chromatography and 66.6 kDa found by SDS-PAGE confirmed the dimeric structure of the enzyme. The purified enzyme was pink in color with an absorption maximum at 494 nm. The enzyme readily oxidized methylamine, n-hexylamine, and n-butylamine, but not benzylamine, histamine, or tyramine, favorite substrates for the already known two quinoprotein amine oxidases. Inactivation by carbonyl reagents and copper chelators suggested the presence of a copper/topa quinone cofactor. Spectrophotometric titration by p-nitrophenylhydrazine showed one reactive carbonyl group per subunit and redox-cyclic quinone staining confirmed the presence of a quinone cofactor. pH-dependent shift of the absorption spectrum of the enzyme-p-nitrophenylhydrazone (469 nm at neutral to 577 nm at alkaline pH) supported the identity of the cofactor with topaquinone. Nothern blot analysis indicated that the methylamine oxidase encoding gene is largely different from the already known amine oxidase in the organism.  相似文献   

6.
In the respiratory chains of mitochondria and many aerobic prokaryotes, heme-copper oxidases are the terminal enzymes that couple the reduction of molecular oxygen to proton pumping, contributing to the protonmotive force. The cbb(3) oxidases belong to the superfamily of enzymes that includes all of the heme-copper oxidases. Sequence analysis indicates that the cbb(3) oxidases are missing an active-site tyrosine residue that is absolutely conserved in all other known heme-copper oxidases. In the other heme-copper oxidases, this tyrosine is known to be subject to an unusual post-translational modification and to play a critical role in the catalytic mechanism. The absence of this tyrosine in the cbb(3) oxidases raises the possibility that the cbb(3) oxidases utilize a different catalytic mechanism from that of the other members of the superfamily. Using homology modeling, quantum chemistry, and molecular dynamics, a model of the structure of subunit I of a cbb(3) oxidase (Vibrio cholerae) was constructed. The model predicts that a tyrosine residue structurally analogous to the active-site tyrosine in other oxidases is present in the cbb(3) oxidases but that the tyrosine originates from a different transmembrane helix within the protein. The predicted active-site tyrosine is conserved in the sequences of all of the known cbb(3) oxidases. Mutagenesis of the tyrosine to phenylalanine in the V. cholerae oxidase resulted in a fully assembled enzyme with nativelike structure but lacking catalytic activity. These findings strongly suggest that all of the heme-copper oxidases utilize the same catalytic mechanism and provide an unusual example in which a critical active-site residue originates from different places within the primary sequence for different members of the same superfamily.  相似文献   

7.
Molecular cloning of a cDNA for rat liver monoamine oxidase B   总被引:4,自引:0,他引:4  
The cDNA for rat monoamine oxidase B mRNA was isolated from liver cDNA library in lambda gt11 using specific antibody and oligonucleotide probes derived from FAD-containing peptide of the enzyme. The primary structure of the protein, deduced from the nucleotide sequence, consisted of 520 amino acid residues and its molecular weight was calculated to be 58.4 kD which is in good agreement with that of the in vitro-synthesized peptide. FAD-binding site is located in the carboxy-terminal region. There is no typical structural feature common to the targeting signals for mitochondria, the periodic distribution of basic amino acids spaced by several uncharged residues, at its amino-terminal region. This region has an uninterrupted stretch of 14 hydrophobic residues.  相似文献   

8.
The gene encoding the flavin-containing monoamine oxidase (MAO-N) of the filamentous fungus Aspergillus niger was cloned. MAO-N is the first nonvertebrate monoamine oxidase described to date. Three partial cDNA clones, isolated from an expression library, were used to identify and clone the structural gene (maoN) from an A. niger genomic DNA library. The maoN gene was sequenced, and analysis revealed an open reading frame that codes for a protein of 495 amino acids with a calculated molecular mass of 55.6 kDa. Sequencing of an internal proteolytic fragment of the purified enzyme confirmed the derived amino acid sequence. Analysis of the deduced amino acid sequence indicates that MAO-N is structurally related to the human monoamine oxidases MAO-A and MAO-B. In particular, the regions known to be involved in the binding of the FAD cofactor show a high degree of homology; however, the conserved cysteine residue to which the flavin cofactor is covalently bound in the mammalian forms is absent in the fungal enzyme. MAO-N has the C-terminal tripeptide Ala-Arg-Leu, which corresponds to the consensus targeting sequence found in many peroxisomal enzymes. The full-length cDNA for MAO-N was expressed in Escherichia coli from the T7 promoter of the expression vector pET3a, yielding a soluble and fully active enzyme form.  相似文献   

9.
The gene encoding the flavin-containing monoamine oxidase (MAO-N) of the filamentous fungus Aspergillus niger was cloned. MAO-N is the first nonvertebrate monoamine oxidase described to date. Three partial cDNA clones, isolated from an expression library, were used to identify and clone the structural gene (maoN) from an A. niger genomic DNA library. The maoN gene was sequenced, and analysis revealed an open reading frame that codes for a protein of 495 amino acids with a calculated molecular mass of 55.6 kDa. Sequencing of an internal proteolytic fragment of the purified enzyme confirmed the derived amino acid sequence. Analysis of the deduced amino acid sequence indicates that MAO-N is structurally related to the human monoamine oxidases MAO-A and MAO-B. In particular, the regions known to be involved in the binding of the FAD cofactor show a high degree of homology; however, the conserved cysteine residue to which the flavin cofactor is covalently bound in the mammalian forms is absent in the fungal enzyme. MAO-N has the C-terminal tripeptide Ala-Arg-Leu, which corresponds to the consensus targeting sequence found in many peroxisomal enzymes. The full-length cDNA for MAO-N was expressed in Escherichia coli from the T7 promoter of the expression vector pET3a, yielding a soluble and fully active enzyme form.  相似文献   

10.
Aryl-alcohol oxidase (AAO) involved in lignin degradation by Pleurotus pulmonarius has been purified and characterized. The enzyme was produced in glucose-peptone medium and isolated in a sole chromatographic step using Sephacryl S-200. The purified enzyme is an extracellular glycoprotein with 14% N-carbohydrate content and an estimated molecular mass of 70.5 kDa and pI of 3.95. The kinetic studies showed the highest enzyme affinity against p-anisyl alcohol, with constants similar to those of Pleurotus eryngii and Bjerkandera adusta AAO but different from the intracellular AAO described in Phanerochaete chrysosporium, which present the highest activity on m-anisyl alcohol. Simultaneously, the cDNA of P. pulmonarius AAO has been cloned and sequenced. The translation of this sequence consisted of 593 amino acids including a signal peptide of 27 amino acids. The comparison with other alcohol oxidases, 35% amino acid identity with glucose oxidase, showed highly conserved amino acid sequences in N-terminal and C-terminal regions, in spite of differences in substrate specificity. Crystallization of AAO, carried out for the first time using the P. pulmonarius enzyme, will permit to obtain a molecular model for this oxidase and establish some characteristic of its catalytic site and general structure.  相似文献   

11.
Genomes of nucleocytoplasmic large DNA viruses (NCLDVs) encode enzymes that catalyze the formation of disulfide bonds between cysteine amino acid residues in proteins, a function essential for the proper assembly and propagation of NCLDV virions. Recently, a catalyst of disulfide formation was identified in baculoviruses, a group of large double-stranded DNA viruses considered phylogenetically distinct from NCLDVs. The NCLDV and baculovirus disulfide catalysts are flavin adenine dinucleotide (FAD)-binding sulfhydryl oxidases related to the cellular Erv enzyme family, but the baculovirus enzyme, the product of the Ac92 gene in Autographa californica multiple nucleopolyhedrovirus (AcMNPV), is highly divergent at the amino acid sequence level. The crystal structure of the Ac92 protein presented here shows a configuration of the active-site cysteine residues and bound cofactor similar to that observed in other Erv sulfhydryl oxidases. However, Ac92 has a complex quaternary structural arrangement not previously seen in cellular or viral enzymes of this family. This novel assembly comprises a dimer of pseudodimers with a striking 40-degree kink in the interface helix between subunits. The diversification of the Erv sulfhydryl oxidase enzymes in large double-stranded DNA viruses exemplifies the extreme degree to which these viruses can push the boundaries of protein family folds.  相似文献   

12.
Summary Amine oxidases can be classified as Cu and FAD-amine oxidases. Representatives from each of these types have now been isolated in a pure form. Current results which are concerned with the molecular, mechanistic and preliminary immunological properties of the amine oxidases are presented and are discussed in this review article.An invited article  相似文献   

13.
Short-chain acyl-CoA oxidases are beta-oxidation enzymes that are active on short-chain acyl-CoAs and that appear to be present in higher plant peroxisomes and absent in mammalian peroxisomes. Therefore, plant peroxisomes are capable of performing complete beta-oxidation of acyl-CoA chains, whereas mammalian peroxisomes can perform beta-oxidation of only those acyl-CoA chains that are larger than octanoyl-CoA (C8). In this report, we have shown that a novel acyl-CoA oxidase can oxidize short-chain acyl-CoA in plant peroxisomes. A peroxisomal short-chain acyl-CoA oxidase from Arabidopsis was purified following the expression of the Arabidopsis cDNA in a baculovirus expression system. The purified enzyme was active on butyryl-CoA (C4), hexanoyl-CoA (C6), and octanoyl-CoA (C8). Cell fractionation and immunocytochemical analysis revealed that the short-chain acyl-CoA oxidase is localized in peroxisomes. The expression pattern of the short-chain acyl-CoA oxidase was similar to that of peroxisomal 3-ketoacyl-CoA thiolase, a marker enzyme of fatty acid beta-oxidation, during post-germinative growth. Although the molecular structure and amino acid sequence of the enzyme are similar to those of mammalian mitochondrial acyl-CoA dehydrogenase, the purified enzyme has no activity as acyl-CoA dehydrogenase. These results indicate that the short-chain acyl-CoA oxidases function in fatty acid beta-oxidation in plant peroxisomes, and that by the cooperative action of long- and short-chain acyl-CoA oxidases, plant peroxisomes are capable of performing the complete beta-oxidation of acyl-CoA.  相似文献   

14.
Acyl-CoA dehydrogenases and acyl-CoA oxidases are two closely related FAD-containing enzyme families that are present in mitochondria and peroxisomes, respectively. They catalyze the dehydrogenation of acyl-CoA thioesters to the corresponding trans-2-enoyl-CoA. This review examines the structure of medium chain acyl-CoA dehydrogenase, as a representative of the dehydrogenase family, with respect to the catalytic mechanism and its broad chain length specificity. Comparing the structures of four other acyl-CoA dehydrogenases provides further insights into the structural basis for the substrate specificity of each of these enzymes. In addition, the structure of peroxisomal acyl-CoA oxidase II from rat liver is compared to that of medium chain acyl-CoA dehydrogenase, and the structural basis for their different oxidative half reactions is discussed.  相似文献   

15.
Distribution of membrane-bound monoamine oxidase in bacteria.   总被引:6,自引:1,他引:5       下载免费PDF全文
Y Murooka  N Doi    T Harada 《Applied microbiology》1979,38(4):565-569
The distribution of membrane-bound monoamine oxidase in 30 strains of various bacteria was studied. Monoamine oxidase was determined by using an ammonia-selective electrode; analyses were sensitive and easy to perform. The enzyme was found in some strains of the family Enterobacteriaceae, such as Klebsiella, Enterobacter, Escherichia, Salmonella, Serratia, and Proteus. Among strains of other families of bacteria tested, only Pseudomonas aeruginosa IFO 3901, Micrococcus luteus IFO 12708, and Brevibacterium ammoniagenes IAM 1641 had monoamine oxidase activity. In all of these bacteria except B. ammoniagenes, monoamine oxidase was induced by tyramine and was highly specific for tyramine, octopamine, dopamine, and norepinephrine. The enzyme in two strains oxidized histamine or benzylamine. Correlations between the distributions of membrane-bound monoamine oxidase and arylsulfatase synthesized in the presence of tyramine were discussed.  相似文献   

16.
The distribution of membrane-bound monoamine oxidase in 30 strains of various bacteria was studied. Monoamine oxidase was determined by using an ammonia-selective electrode; analyses were sensitive and easy to perform. The enzyme was found in some strains of the family Enterobacteriaceae, such as Klebsiella, Enterobacter, Escherichia, Salmonella, Serratia, and Proteus. Among strains of other families of bacteria tested, only Pseudomonas aeruginosa IFO 3901, Micrococcus luteus IFO 12708, and Brevibacterium ammoniagenes IAM 1641 had monoamine oxidase activity. In all of these bacteria except B. ammoniagenes, monoamine oxidase was induced by tyramine and was highly specific for tyramine, octopamine, dopamine, and norepinephrine. The enzyme in two strains oxidized histamine or benzylamine. Correlations between the distributions of membrane-bound monoamine oxidase and arylsulfatase synthesized in the presence of tyramine were discussed.  相似文献   

17.
Copper amine oxidase from lentil (Lens esculenta) seedlings was shown to catalyze the oxidative deamination of tyramine and three similar aromatic monoamines, benzylamine, phenylethylamine and 4-methoxyphenylethylamine. Tyramine, an important plant intermediate, was found to be both a substrate and an irreversible inhibitor of the enzyme whereas the other amines were not inhibitory. In the course of tyramine oxidation the enzyme gradually became inactivated with the concomitant appearance of a new absorption at 560 nm due to the formation of a stable adduct. Inactivation took place only in the presence of oxygen and was probably due to the reaction of the enzyme with the oxidation product of tyramine, p-hydroxyphenylacetaldehyde. The kinetic data obtained in this study indicate that tyramine represents a new interesting type of physiological mechanism-based inhibitor for plant copper amine oxidases.  相似文献   

18.
Cytochrome caa3, a cytochrome c oxidase from Thermus thermophilus, is a two-subunit enzyme containing the four canonical metal centers of cytochrome c oxidases (cytochromes a and a3; copper centers CuA and CuB) and an additional cytochrome c. The smaller subunit contains heme C and was termed the C-protein. We have cloned the genes encoding the subunits of the oxidase and determined the nucleotide sequence of the C-protein gene. The gene and deduced primary amino acid sequences establish that both the gene and the protein are fusions with a typical subunit II sequence and a characteristic cytochrome c sequence; we now call this subunit IIc. The protein thus appears to represent a covalent joining of substrate (cytochrome c) to its enzyme (cytochrome c oxidase). In common with other subunits II, subunit IIc contains two hydrophobic segments of amino acids near the amino terminus that probably form transmembrane helices. Variability analysis of the Thermus and other subunit II sequences suggests that the two putative transmembrane helices in subunit II may be located on the surface of the hydrophobic portion of the intact cytochrome oxidase protein complex. Also in common with other subunits II is a relatively hydrophilic intermembrane domain containing a set of conserved amino acids (2 cysteines and 2 histidines) which have previously been proposed by others to serve as ligands to the CuA center. We compared the subunit IIc sequence with that of related proteins. N2O reductase of Pseudomonas stutzeri, a multi-copper protein that appears to contain a CuA site (Scott, R.A., Zumft, W.G., Coyle, C.L., and Dooley, D.M. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4082-4086), contains a 59-residue sequence element that is homologous to the "CuA sequence motif" found in cytochrome oxidase subunits II, including all four putative copper ligands. By contrast, subunit II of the Escherichia coli quinol oxidase, cytochrome bo, also contains a region homologous to the CuA motif, but it lacks the proposed metal binding histidine and cysteine residues; this is consistent with the apparent absence of CuA from cytochrome bo.  相似文献   

19.
The reduction of molecular oxygen to water is catalyzed by complicated membrane-bound metallo-enzymes containing variable numbers of subunits, called cytochrome c oxidases or quinol oxidases. We previously described the cytochrome c oxidase II from the hyperthermophilic bacterium Aquifex aeolicus as a ba(3)-type two-subunit (subunits I and II) enzyme and showed that it is included in a supercomplex involved in the sulfide-oxygen respiration pathway. It belongs to the B-family of the heme-copper oxidases, enzymes that are far less studied than the ones from family A. Here, we describe the presence in this enzyme of an additional transmembrane helix "subunit IIa", which is composed of 41 amino acid residues with a measured molecular mass of 5105 Da. Moreover, we show that subunit II, as expected, is in fact longer than the originally annotated protein (from the genome) and contains a transmembrane domain. Using Aquifex aeolicus genomic sequence analyses, N-terminal sequencing, peptide mass fingerprinting and mass spectrometry analysis on entire subunits, we conclude that the B-type enzyme from this bacterium is a three-subunit complex. It is composed of subunit I (encoded by coxA(2)) of 59000 Da, subunit II (encoded by coxB(2)) of 16700 Da and subunit IIa which contain 12, 1 and 1 transmembrane helices respectively. A structural model indicates that the structural organization of the complex strongly resembles that of the ba(3) cytochrome c oxidase from the bacterium Thermus thermophilus, the IIa helical subunit being structurally the lacking N-terminal transmembrane helix of subunit II present in the A-type oxidases. Analysis of the genomic context of genes encoding oxidases indicates that this third subunit is present in many of the bacterial oxidases from B-family, enzymes that have been described as two-subunit complexes.  相似文献   

20.
The D- and L-specific nicotine oxidases are flavoproteins involved in the oxidative degradation of nicotine by the Gram-positive soil bacterium Arthrobacter nicotinovorans. Their structural genes are located on a 160-kbp plasmid together with those of other nicotine-degrading enzymes. They are structurally unrelated at the DNA as well as at the protein level. Each of these oxidases possesses a high degree of substrate specificity; their catalytic stereoselectivity is absolute, although they are able to bind both enantiomeric substrates with a similar affinity. It appears that the existence of these enzymes is the result of convergent evolution. The amino acid sequence of 6-hydroxy-l-nicotine oxidase (EC 1.5.3.6) as derived from the respective structural gene shows considerable structural similarity with eukaryotic monoamine oxidases (EC 1.4.3.4) but not with monoamine oxidases from prokaryotic bacteria including those of the genus Arthrobacter. These similarities are not confined to the nucleotide-binding sites. A 100-amino acid stretch at the N-terminal regions of 6-hydroxy-l-nicotine oxidase and human monoamine oxidases A possess a 35% homology. Overall, 27.0, 26.9, and 25.8% of the amino acid positions of the monoamine oxidases of Aspergillus niger (N), humans (A), and rainbow trout (Salmo gairdneri) are identical to those of 6-hydroxy-l-nicotine oxidase (Smith–Waterman algorithm). In addition, the G+C content of the latter enzyme is in the range of that of eukaryotic monoamine oxidases and definitely lower than that of the A. nicotinovorans DNA and even that of the pAO1 DNA. The primary structure of 6-hydroxy-d-nicotine oxidase (EC 1.5.3.5) does not reveal its evolutionary history as easily. Significant similarities are found with a mitomycin radical oxidase from Streptomyces lavendulae (23.3%) and a ``hypothetical protein' from Mycobacterium tuberculosis (26.0%). It is proposed that the plasmid-encoded gene of 6-hydroxy-l-nicotine oxidase evolved after horizontal transfer from an eukaryotic source. Received: 6 March 1998 / Accepted: 15 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号