首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glycogen synthase kinase 3 (GSK-3) is a constitutively active kinase that negatively regulates its substrates, one of which is beta-catenin, a downstream effector of the Wnt signaling pathway that is required for dorsal-ventral axis specification in the Xenopus embryo. GSK-3 activity is regulated through the opposing activities of multiple proteins. Axin, GSK-3, and beta-catenin form a complex that promotes the GSK-3-mediated phosphorylation and subsequent degradation of beta-catenin. Adenomatous polyposis coli (APC) joins the complex and downregulates beta-catenin in mammalian cells, but its role in Xenopus is less clear. In contrast, GBP, which is required for axis formation in Xenopus, binds and inhibits GSK-3. We show here that GSK-3 binding protein (GBP) inhibits GSK-3, in part, by preventing Axin from binding GSK-3. Similarly, we present evidence that a dominant-negative GSK-3 mutant, which causes the same effects as GBP, keeps endogenous GSK-3 from binding to Axin. We show that GBP also functions by preventing the GSK-3-mediated phosphorylation of a protein substrate without eliminating its catalytic activity. Finally, we show that the previously demonstrated axis-inducing property of overexpressed APC is attributable to its ability to stabilize cytoplasmic beta-catenin levels, demonstrating that APC is impinging upon the canonical Wnt pathway in this model system. These results contribute to our growing understanding of how GSK-3 regulation in the early embryo leads to regional differences in beta-catenin levels and establishment of the dorsal axis.  相似文献   

2.
In Xenopus, axis development is initiated by dorsally elevated levels of cytoplasmic beta-catenin, an intracellular factor regulated by GSK3 kinase activity. Upon fertilization, factors that increase beta-catenin stability are translocated to the prospective dorsal side of the embryo in a microtubule-dependent process. However, neither the identity of these factors nor the mechanism of their movement is understood. Here, we show that the GSK3 inhibitory protein GBP/Frat binds kinesin light chain (KLC), a component of the microtubule motor kinesin. Upon egg activation, GBP-GFP and KLC-GFP form particles and exhibit directed translocation. KLC, through a previously uncharacterized conserved domain, binds a region of GBP that is required for GBP translocation and for GSK3 binding, and competes with GSK3 for GBP. We propose a model in which conventional kinesin transports a GBP-containing complex to the future dorsal side, where GBP dissociates and contributes to the local stabilization of beta-catenin by binding and inhibiting GSK3.  相似文献   

3.
4.
5.
6.
The non-canonical Wnt/Ca2+ signaling pathway has been implicated in the regulation of axis formation and gastrulation movements during early Xenopus laevis embryo development, by antagonizing the canonical Wnt/beta-catenin dorsalizing pathway and specifying ventral cell fate. However, the molecular mechanisms involved in this antagonist crosstalk are not known. Since Galphaq is the main regulator of Ca2+ signaling in vertebrates and from this perspective probably involved in the events elicited by the non-canonical Wnt/Ca2+ pathway, we decided to study the effect of wild-type Xenopus Gq (xGalphaq) in dorso-ventral axis embryo patterning. Overexpression of xGalphaq or its endogenous activation at the dorsal animal region of Xenopus embryo both induced a strong ventralized phenotype and inhibited the expression of dorsal-specific mesoderm markers goosecoid and chordin. Dorsal expression of an xGalphaq dominant-negative mutant reverted the xGalphaq-induced ventralized phenotype. Finally, we observed that the Wnt8-induced secondary axis formation is reverted by endogenous xGalphaq activation, indicating that it is negatively regulating the Wnt/beta-catenin pathway.  相似文献   

7.
Protein kinase CK2 is required for dorsal axis formation in Xenopus embryos   总被引:2,自引:0,他引:2  
Dorsal axis formation in Xenopus embryos is dependent upon asymmetrical localization of beta-catenin, a transducer of the canonical Wnt signaling pathway. Recent biochemical experiments have implicated protein kinase CK2 as a regulator of members of the Wnt pathway including beta-catenin. Here, we have examined the role of CK2 in dorsal axis formation. CK2 was present in the developing embryo at an appropriate time and place to participate in dorsal axis formation. Overexpression of mRNA encoding CK2 in ventral blastomeres was sufficient to induce a complete ectopic axis, mimicking Wnt signaling. A kinase-inactive mutant of CK2alpha was able to block ectopic axis formation induced by XWnt8 and beta-catenin and was capable of suppressing endogenous axis formation when overexpressed dorsally. Taken together, these studies demonstrate that CK2 is a bona fide member of the Wnt pathway and has a critical role in the establishment of the dorsal embryonic axis.  相似文献   

8.
9.
Germline LKB1/STK11 mutations are associated with the cancer-prone Peutz-Jeghers syndrome (PJS) in humans, and nullizygosity provokes a poorly understood constellation of developmental perturbations in the mid-gestational mouse. To gain a better understanding of the processes regulated by LKB1, we have exploited the experimental merits of the developing Xenopus embryo. Here, specific inhibition of XEEK1, the Xenopus orthologue of LKB1, engendered developmental anomalies - shortened body axis and defective dorsoanterior patterning - associated previously with aberrant Wnt signalling. In line with this, LKB1/XEEK1 cooperates with the Wnt-beta-catenin signalling in axis induction and modulates the expression of Wnt-responsive genes in both Xenopus embryos and mammalian cells. We establish that LKB1/XEEK1 acts upstream of beta-catenin in the Wnt-beta-catenin pathway in vivo. LKB1/XEEK1 regulates glycogen synthase kinase (GSK)3beta phosphorylation and it is physically associated in vivo with GSK3beta and protein kinase C (PKC)-zeta, a known GSK3 kinase. These studies show that LKB1/XEEK1 is required for Wnt-beta-catenin signalling in frogs and mammals and provides novel insights into its role in vertebrate developmental patterning and carcinogenesis.  相似文献   

10.
11.
Effects of rat Axin domains on axis formation in Xenopus embryos   总被引:1,自引:0,他引:1  
Wnt signaling plays an important role in axis formation in early vertebrate development. Axin is one Wnt signaling regulator that inhibits this pathway. The effects of the injection of mRNA of several rat Axin (rAxin) mutants on axis formation in Xenopus embryos were examined. It was found that rAxin mutants containing only a regulation of G-protein signaling (RGS) domain fragment or with deletion of the RGS domain induced axis formation. Because the RGS domain is a major adenomatous polyposis coli gene product (APC)-binding domain, APC association with glycogen synthase kinase 3beta (GSK3beta) on the Axin molecule may be important in inhibition of axis formation. The ventralizing activities of wild-type rAxin and a mutant in which the Dishevelled and Axin (DIX) domain was deleted (deltaDIX mutant) were examined. Histological examination and gene expression revealed that the ventralizing activity of the deltaDIX mutant was weaker than that of wild-type rAxin. This finding suggests that the C-terminus of rAxin contributes to the inhibition of Wnt signaling in Xenopus embryos. Furthermore, an rAxin mutant that contained both the RGS and GSK3beta-binding domains affected both the dorsal and ventral sides of blastomeres, mediated ectodermal fate and induced expansion of notochord and/or endoderm, but did not induce axis formation.  相似文献   

12.
In zebrafish, the program for dorsal specification begins soon after fertilization. Dorsal determinants are localized initially to the vegetal pole, then transported to the blastoderm, where they are thought to activate the canonical Wnt pathway, which induces the expression of dorsal-specific genes. We identified a novel maternal-effect recessive mutation, tokkaebi (tkk), that affects formation of the dorsal axis. Severely ventralized phenotypes, including a lack of dorso-anterior structures, were seen in 5-100% of the embryos obtained from tkk homozygous transmitting females. tkk embryos displayed defects in the nuclear accumulation of beta-catenin on the dorsal side, and reduced or absent expression of dorsal-specific genes. Mesoderm and endoderm formation outside the dorsal axis was not significantly affected. Injection of RNAs for activated beta-catenin, dominant-negative forms of Axin1 and GSK3beta, and wild-type Dvl3, into the tkk embryos suppressed the ventralized phenotypes and/or dorsalized the embryos, and restored or induced an ectopic and expanded expression of bozozok/dharma and goosecoid. However, dorsalization by wnt RNAs was affected in the tkk embryos. Inhibition of cytoplasmic calcium release elicited an ectopic and expanded expression of chordin in the wild-type, but did not restore chordin expression efficiently in the tkk embryos. These data indicate that the tkk gene product functions upstream of or parallel to the beta-catenin-degradation machinery to control the stability of beta-catenin. The tkk locus was mapped to chromosome 16. These data provide genetic evidence that the maternally derived canonical Wnt pathway upstream of beta-catenin is involved in dorsal axis formation in zebrafish.  相似文献   

13.
In Xenopus, the dorsal factor in the vegetal cortical cytoplasm (VCC) of the egg is responsible for axis formation of the embryo. Previous studies have shown that VCC dorsal factor has properties similar to activators of the Wnt/beta-catenin-signaling pathway. In this study, we examined the relationship of the VCC dorsal factor with components of the pathway. First, we tested whether beta-catenin protein, which is known to be localized on the dorsal side of early embryos, accounts for the dorsal axis activity of VCC. Reduction of beta-catenin mRNA and protein in oocytes did not diminish the activity of VCC to induce a secondary axis in recipient embryos. The amount of beta-catenin protein was not enriched in VCC compared to animal cortical cytoplasm, which has no dorsal axis activity. These results indicate that beta-catenin is unlikely to be the VCC dorsal axis factor. Secondly, we examined the effects of four Wnt-pathway-interfering constructs (dominant-negative Xdsh, XGSK3, Axin, and dominant-negative XTcf3) on the ability of VCC to induce expression of the early Wnt target genes, Siamois and Xnr3. The activity of VCC was inhibited by Axin and dominant negative XTcf3 but not by dominant negative Xdsh or XGSK3. We also showed that VCC decreased neither the amount nor the activity of exogenous XGSK3, suggesting that the VCC dorsal factor does not act by affecting XGSK3 directly. Finally, we tested six Wnt-pathway activating constructs (Xwnt8, Xdsh, dominant negative XGSK3, dominant negative Axin, XAPC and beta-catenin) for their responses to the four Wnt-pathway-interfering constructs. We found that only XAPC exhibited the same responses as VCC; it was inhibited by Axin and dominant negative XTcf3 but not by dominant negative Xdsh or XGSK3. Although the connection between XAPC and the VCC dorsal factor is not yet clear, the fact that APC binds Axin suggests that the VCC dorsal factor could act on Axin rather than XGSK3.  相似文献   

14.
15.
In Xenopus, an asymmetric distribution of Wnt activity that follows cortical rotation in the fertilized egg leads to the dorsal-ventral (DV) axis establishment. However, how a clear DV polarity develops from the initial difference in Wnt activity still remains elusive. We report here that the Teashirt-class Zn-finger factor XTsh3 plays an essential role in dorsal determination by enhancing canonical Wnt signaling. Knockdown of the XTsh3 function causes ventralization in the Xenopus embryo. Both in vivo and in vitro studies show that XTsh3 substantially enhances Wnt signaling activity in a beta-catenin-dependent manner. XTsh3 cooperatively promotes the formation of a secondary axis on the ventral side when combined with weak Wnt activity, whereas XTsh3 alone has little axis-inducing ability. Furthermore, Wnt1 requires XTsh3 for its dorsalizing activity in vivo. Immunostaining and protein analyses indicate that XTsh3 is a nuclear protein that physically associates with beta-catenin and efficiently increases the level of beta-catenin in the nucleus. We discuss the role of XTsh3 as an essential amplifying factor of canonical Wnt signaling in embryonic dorsal determination.  相似文献   

16.
17.
Chou HY  Howng SL  Cheng TS  Hsiao YL  Lieu AS  Loh JK  Hwang SL  Lin CC  Hsu CM  Wang C  Lee CI  Lu PJ  Chou CK  Huang CY  Hong YR 《Biochemistry》2006,45(38):11379-11389
Although prominent FRAT/GBP exhibits a limited degree of homology to Axin, the binding sites on GSK3 for FRAT/GBP and Axin may overlap to prevent the effect of FRAT/GBP in stabilizing beta-catenin in the Wnt pathway. Using a yeast two-hybrid screen, we identified a novel protein, GSK3beta interaction protein (GSKIP), which binds to GSK3beta. We have defined a 25-amino acid region in the C-terminus of GSKIP that is highly similar to the GSK3beta interaction domain (GID) of Axin. Using an in vitro kinase assay, our results indicate that GSKIP is a good GSK3beta substrate, and both the full-length protein and a C-terminal fragment of GSKIP can block phosphorylation of primed and nonprimed substrates in different fashions. Similar to Axin GID(381-405) and FRATtide, synthesized GSKIPtide is also shown to compete with and/or block the phosphorylation of Axin and beta-catenin by GSK3beta. Furthermore, our data indicate that overexpression of GSKIP induces beta-catenin accumulation in the cytoplasm and nucleus as visualized by immunofluorescence. A functional assay also demonstrates that GSKIP-transfected cells have a significant effect on the transactivity of Tcf-4. Collectively, we define GSKIP as a naturally occurring protein that is homologous with the GSK3beta interaction domain of Axin and is able to negatively regulate GSK3beta of the Wnt signaling pathway.  相似文献   

18.
19.
20.
Choi SC  Han JK 《The EMBO journal》2005,24(5):985-996
The Wnt/beta-catenin signaling pathway is critical for the establishment of organizer and embryonic body axis in Xenopus development. Here, we present evidence that Xenopus Rap2, a member of Ras GTPase family, is implicated in Wnt/beta-catenin signaling during the dorsoventral axis specification. Ectopic expression of XRap2 can lead to neural induction without mesoderm differentiation. XRap2 dorsalizes ventral tissues, inducing axis duplication, organizer-specific gene expression and convergent extension movements. Knockdown of XRap2 causes ventralized phenotypes including shortened body axis and defective dorsoanterior patterning, which are associated with aberrant Wnt signaling. In line with this, XRap2 depletion inhibits beta-catenin stabilization and the induction of ectopic dorsal axis and Wnt-responsive genes caused by XWnt8, Dsh or beta-catenin, but has no effect on the signaling activities of a stabilized beta-catenin. Its knockdown also disrupts the vesicular localization of Dsh, thereby inhibiting Dsh-mediated beta-catenin stabilization and the membrane recruitment and phosphorylation of Dsh by frizzled signaling. Taking together, we suggest that XRap2 is involved in Wnt/beta-catenin signaling as a modulator of the subcellular localization of Dsh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号