首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The exact role of calbindin D9k in vitamin D-mediated calcium absorption has been debated but remains unsettled. In 129/OlaHsd mice, calbindin D9k was found highest in duodenum (36-50%) and kidney (24-34%) followed by stomach, lung and uterus. Age does not affect the relative distribution of calbindin D9k but it does decline with age in duodenum of both male and female 129/Ola mice. Recently, we produced a null calbindin D9k mutant 129/OlaHsd mouse; this mouse proved to be indistinguishable from the wild-type in phenotype and in a serum calcium level regardless of age or gender. We have now examined directly whether the mutant mouse can absorb calcium from the intestine in response to the active form of vitamin D. The calbindin D9k null mutant mouse is fully able to absorb calcium from the intestine in response to 1,25-dihydroxyvitamin D3. It is, therefore, clear that calbindin D9k is not required for vitamin D-induced intestinal calcium absorption.  相似文献   

2.
The effect of the X-linked Hyp mutation on 25-hydroxyvitamin D3 (25-OH-D3) metabolism in mouse renal cortical slices was investigated. Vitamin D replete normal mice and Hyp littermates fed the control diet synthesized primarily 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3); only minimal synthesis of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) was detected in both genotypes and 1,25-(OH)2D3 formation was not significantly greater in Hyp mice relative to normal littermates, despite hypophosphatemia and hypocalcemia in the mutants. Calcium-deficient diet fed to normal mice reduced serum calcium (p less than 0.01), increased renal 25-hydroxyvitamin D3-1-hydroxylase (1-OHase) activity (p less than 0.05), and decreased 25-hydroxyvitamin D3-24-hydroxylase (24-OHase) activity (p less than 0.05). In contrast, Hyp littermates on the calcium-deficient diet had decreased serum calcium (p less than 0.01), without significant changes in the renal metabolism of 25-OH-D3. Both normal and Hyp mice responded to the vitamin D-deficient diet with a fall in serum calcium (p less than 0.01), significantly increased renal 1-OHase, and significantly decreased renal 24-OHase activities. In Hyp mice, the fall in serum calcium on the vitamin D-deficient diet was significantly greater than that observed on the calcium-deficient diet. Therefore the ability of Hyp mice to increase renal 1-OHase activity when fed the vitamin D-deficient diet and their failure to do so on the calcium-deficient diet may be related to the resulting degree of hypocalcemia. The results suggest that although Hyp mice can respond to a disturbance of calcium homeostasis, the in vivo signal for the stimulation of renal 1-OHase activity may be set at a different threshold in the Hyp mouse; i.e. a lower serum calcium concentration is necessary for Hyp mice to initiate increased synthesis of 1,25(-OH)2D3.  相似文献   

3.
Recent studies have shown that cutaneous sterologenesis is autonomous from the influence of circulating sterols, and that the epidermis is an important site of sterologenesis which is regulated by permeability barrier requirements. In addition to barrier function, an additional, important function of the epidermis is to synthesize sterol precursors of vitamin D3. The present study was designed, first, to determine whether vitamin D status and/or circulating levels of 1,25-dihydroxyvitamin D3 might play a role in regulating cutaneous sterol synthesis in vivo and, second, whether 1,25-dihydroxyvitamin D3 modulates sterologenesis in cultured human keratinocytes. Hairless mice were maintained on a vitamin D-deficient diet in the dark and supplemented with various doses of vitamin D3/day. Despite demonstrating serum 25-hydroxyvitamin D3 levels ranging from less than 10 to 343 ng/ml, the incorporation of tritiated water into cholesterol and total nonsaponifiable lipids in both the epidermis and dermis was similar in the four groups of animals. Likewise, administration of various doses of 1,25-dihydroxyvitamin D3 to vitamin D-deficient mice resulted in serum levels of 1,25-dihydroxyvitamin D3 ranging from less than 10 to 85 pg/ml; yet, cholesterol and total nonsaponifiable lipid synthesis was similar in both the dermis and epidermis in all groups of animals. Moreover, administration of 0.6 micrograms/kg per day of 1,25-dihydroxyvitamin D3 to 'normal' vitamin D-replete mice also had no effect on cutaneous sterol synthesis. Furthermore, conversion of 7-dehydrocholesterol to cholesterol in vitamin D-deficient vs. supplemented animals did not differ. Finally, addition of 1,25-dihydroxyvitamin D3 to cultured keratinocytes over a concentration range of 10(-12)-10(-7) M did not affect sterologenesis, except at supraphysiologic doses (10(-7) M). Together, these results suggest that vitamin D status does not influence sterol synthesis in the skin.  相似文献   

4.
A possible role of calcium in vivo on intestinal calbindin-D 9-kDa mRNA levels has been studied in rats. In vitamin D-deficient rats, a marked increase in dietary calcium has a small but significant effect on calbindin-D 9-kDa mRNA levels, despite a dramatic increase in serum calcium concentration that clearly resulted from increased intestinal absorption of calcium. On the other hand, vitamin D under all circumstances increased calbindin-D 9-kDa mRNA levels, with the greatest levels found in animals on a low calcium diet where little or no calcium is available for absorption. These results strongly support the idea that 1,25-dihydroxyvitamin D is directly responsible for the induction of calbindin-D 9-kDa.  相似文献   

5.
Using a cDNA probe for rat renal 24-hydroxylase, expression of its mRNA was compared in the rat kidney and intestine. Vitamin D-deficient rats received a single injection of 1 alpha,25-dihydroxyvitamin D3. Expression of 24-hydroxylase mRNA was first detected in the kidney at 3-h post-injection and increased thereafter. Similarly, 24-hydroxylase mRNA was expressed in the intestine after 1 alpha,25-dihydroxyvitamin D3 injection. However, the dose level of 1 alpha,25-dihydroxyvitamin D3 required to induce the intestinal 24-hydroxylase mRNA expression was only 1/100 the amount required to induce renal 24-hydroxylase mRNA. Induction of intestinal 24-hydroxylase mRNA expression by 1 alpha,25-dihydroxyvitamin D3 was far more rapid than that of renal 24-hydroxylase mRNA. Thyroparathyroidectomy shortened the time required to induce expression of renal, but not intestinal, 24-hydroxylase mRNA. Administration of either parathyroid hormone or cAMP to vitamin D-deficient rats greatly reduced the expression of 24-hydroxylase mRNA in the kidney but not in the intestine. When rats were fed a vitamin D-repleted diet containing 0.7% (adequate) or 0.03% (low) calcium for 2 weeks, intestinal expression of 24-hydroxylase mRNA could be induced only in the low calcium group. In contrast, renal mRNA expression was preferentially stimulated in the adequate calcium group. These results clearly demonstrate that the expression of 24-hydroxylase mRNA is down-regulated by parathyroid hormone in the kidney but not in the intestine.  相似文献   

6.
24,24-Difluoro-1,25-dihydroxyvitamin D3 has been synthesized by in vitro incubation of vitamin D-deficient chick kidney homogenates with 24,24-difluoro-25-dihydroxyvitamin D3. The compound produced was isolated and purified by successive high-performance liquid chromatographic steps and then identified by means of ultraviolet absorption spectrophotometry and mass spectrometry. The difluoro analog of 1,25-dihydroxyvitamin D3 is found to be highly active in stimulating intestinal calcium transport and bone calcium mobilization in vitamin D3-deficient rats.  相似文献   

7.
Serum 1,25-dihydroxyvitamin D3 concentration and renal 25-hydroxyvitamin D 1 alpha-hydroxylase activity were measured in rats fed various levels of calcium, phosphorus and vitamin D3. Both calcium deprivation and phosphorus deprivation greatly increased circulating levels of 1,25-dihydroxyvitamin D3. The circulating level of 1,25-dihydroxyvitamin D3 in rats on a low-calcium diet increased with increasing doses of vitamin D3, whereas it did not change in rats on a low-phosphorus diet given increasing doses of vitamin D3. In concert with these results, the 25-hydroxyvitamin D 1 alpha-hydroxylase activity was markedly increased by vitamin D3 administration to rats on a low-calcium diet, whereas the same treatment of rats on a low-phosphorus diet had no effect and actually suppressed the 1 alpha-hydroxylase in rats fed an adequate-calcium/adequate-phosphorus diet. The administration of 1,25-dihydroxyvitamin D3 to vitamin D-deficient rats on a low-calcium diet also increased the renal 25-hydroxy-vitamin D 1 alpha-hydroxylase activity. These results demonstrate that the regulatory action of 1,25-dihydroxyvitamin D3 on the renal 25-hydroxyvitamin D3 1 alpha-hydroxylase is complex and not simply a suppressant of this system.  相似文献   

8.
We have used a specific cDNA to the mammalian 28,000 Mr vitamin D-dependent calcium binding protein (calbindin-D28k) to study the regulation of the expression of this mRNA in rat kidney and brain. The effects of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) and dietary alteration on genomic expression were characterized by both Northern and slot blot analysis. Administration of 1,25-(OH)2D3 for 7 days (25 ng/day) to vitamin D-deficient rats resulted in a marked increase in renal calbindin-DmRNA, renal calbindin, and serum calcium. When vitamin D-deficient rats were supplemented for 10 days with calcium (3% calcium gluconate in the water, 2% calcium in the diet) serum calcium levels were similar to the levels observed in the 1,25-(OH)2D3-treated rats. However, in the calcium-supplemented rats the levels of renal calbindin and renal calbindin mRNA were similar to the levels observed in the vitamin D-deficient rats, suggesting that calcium alone without vitamin D does not regulate renal calbindin gene expression in vivo. In dietary alteration studies in vitamin D-replete rats, renal calbindin protein and mRNA increased 2.5-fold in rats fed diets low in phosphate providing evidence that in the rat the nutritional induction of calbindin is accompanied by a corresponding alteration in the concentration of its specific mRNA. Under low dietary calcium conditions, the levels of renal calbindin protein and mRNA were similar to the levels observed in control rats, although 1,25-(OH)2D3 serum levels were markedly elevated, suggesting that factors in addition to 1,25-(OH)2D3 can modulate renal calbindin gene expression.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Vitamin D(3), via its active metabolite 1alpha,25-dihydroxyvitamin D(3), helps maintain normal calcium levels in the body. Apart from the maintenance of calcium homeostasis, the active form of vitamin D(3) is now known to be involved in a number of other functions including that of pancreatic beta cells. Low serum insulin levels and impaired glucose tolerance in a vitamin D-deficient state have been reported in experimental animals. Hypocalcemia is a major consequence of vitamin D deficiency. Whether the impairment observed is due to vitamin D deficiency per se or is secondary to low calcium is still a matter of controversy. The present study was conducted to delineate the roles of vitamin D and calcium in glucose intolerance associated with vitamin D deficiency in vivo. It was found that supplementation with either vitamin D(3) or high calcium alone to vitamin D-deficient rats could correct the defects. In addition, insulin sensitivity was found to be enhanced in the vitamin D-deficient group compared with vitamin D control or calcium-supplemented groups. Hence the present study demonstrates that calcium per se in the absence of vitamin D increases insulin secretion and normalizes intolerance to glucose seen in vitamin D deficiency.  相似文献   

10.
Intestinal cells were isolated by a combination of mechanical and enzymatic means, and their calcium uptake was assayed by a rapid filtration procedure. Calcium uptake was a time- and concentration-dependent process that was markedly elevated at 25 and 37°C, as compared to 0°C. Cells isolated from rat duodenum exhibited higher uptakes than cells from jejunum, which in turn took up more calcium than cells from the ileurn. Duodenal cells from vitamin D-deficient animals took up less calcium than cells from vitamin D-replete cells. In vivo vitamin D repletion with 1,25-dihydroxyvitamin D3 raised calcium uptake by duodenal cells from treated animals toward that of cells from replete rats. Furthermore, calcium uptake by duodenal cells from vitamin D-deficient animals approximated that of ileal cells from replete rats. These findings with isolated cells parallel prior findings of tissue calcium transport and suggest that cellular calcium uptake may be related to the saturable component of intestinal calcium absorption. Isolated intestinal cells may therefore constitute one experimental model for the study of transcellular calcium transport.  相似文献   

11.
Regulatory activities of 2 beta-(3-hydroxypropoxy)-1 alpha, 25-dihydroxyvitamin D3 [ED-71], a novel synthetic vitamin D3 derivative, on calcium metabolism were investigated. The compound behaved similar to 1 alpha, 25-dihydroxyvitamin D3 [1,25(OH)2D3] in the ex vivo intestinal calcium transport using rat everted gut sac and the in vivo bone mobilization using vitamin D-deficient rats. By means of Raisz's assay method, 45Ca releasing activity of ED-71 was not greater than that of 1,25(OH)2D3. The time course curve of ED-71 in plasma made a mild round shape compared with that of 1,25(OH)2D3 and the former's plasma concentration remained increased longer than the latter's. The therapeutic effect of ED-71 for the animal models with osteoporosis seemed to be better than that of 1,25(OH)2D3. The results suggest that ED-71 may be a promising drug for therapy of osteoporosis.  相似文献   

12.
Betamethasone (50 micrograms/kg body weight/day) given to young pigs reduced calcium absorption, growth and plasma vitamin D dependent calcium binding protein (CaBP) concentration. No changes occurred in plasma 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and intestinal CaBP concentrations. 1,25(OH)2D3 (0.1 microgram/kg body weight/day) given with betamethasone increased calcium absorption although growth and plasma CaBP concentrations remained low. Intestinal CaBP levels remained unchanged. Plasma CaBP concentrations were not consistently related to intestinal CaBP or calcium absorption in the presence of betamethasone. We conclude that betamethasone-induced depression of calcium absorption was not mediated by alterations in intestinal CaBP, but the mechanism remains obscure.  相似文献   

13.
To examine the question of whether 24-hydroxylation plays and importance role in the physiological functions of vitamin D, the biological activity of 24,24-difluoro-25-hydroxyvitamin D was compared with that of 25-hydroxyvitamin D in vitamin D-deficient rats. These two compounds were found almost identically active in the stimulation of intestinal calcium transport, the mobilization of calcium from bone, the healing of rachitic epiphyseal plate cartilage, the elevation of serum inorganic phosphorus, the mineralization of rachitic bone, and in the prevention of rachitogenesis in rats. Little or no difference was detected in the time course of response of intestinal calcium transport or bone calcium mobilization to the two forms of vitamin D. Therefore, in the rat no support could be obtained for the idea that 24,25-dihydroxyvitamin D3 plays an important role in the known physiological responses to the vitamin.  相似文献   

14.
A new fluoro analog of 1,25-dihydroxyvitamin D3, i.e., 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3, has been compared with the native hormone, 1,25-dihydroxyvitamin D3, in its biological potency, duration of action, and binding to the vitamin D transport protein and intestinal receptor protein. The fluoro analog is about 5 times more active than the native hormone in healing rickets and elevating serum inorganic phosphorus levels of rachitic rats. It is about 10 times more active than 1,25-dihydroxyvitamin D3 in increasing intestinal calcium transport and bone calcium mobilization of vitamin D-deficient rats fed a low-calcium diet. Furthermore, the higher biopotency is manifested in animals after oral dosing. Of great importance is that the action of the fluoro analog is longer lasting than that of 1,25-dihydroxyvitamin D3. This is especially apparent in the elevation of serum phosphorus and bone mineralization responses. The fluoro analog is only slightly less competent than 1,25-dihydroxyvitamin D3 in binding to the vitamin D transport protein in rat blood, and is one-third as competent as 1,25-dihydroxyvitamin D3 in binding to the chick intestinal cytosol receptor for 1,25-dihydroxyvitamin D3. These results suggest that the basis for increased potency of this analog is likely the result of less rapid metabolism.  相似文献   

15.

Background  

The active hormonal form of vitamin D (1,25-dihydroxyvitamin D) is the primary regulator of intestinal calcium absorption efficiency. In vitamin D deficiency, intestinal calcium absorption is low leading to an increased risk of developing negative calcium balance and bone loss. 1,25-dihydroxyvitamin D has been shown to stimulate calcium absorption in experimental animals and in human subjects. However, the molecular details of calcium transport across the enterocyte are not fully defined. Recently, two novel epithelial calcium channels (CaT1/ECaC2 and ECaC1/CaT2) have been cloned and suggested to be important in regulating intestinal calcium absorption. However, to date neither gene has been shown to be regulated by vitamin D status. We have previously shown that 1,25-dihydroxyvitamin stimulates transcellular calcium transport in Caco-2 cells, a human intestinal cell line.  相似文献   

16.
1,25-Dihydroxyvitamin D3-stimulated mRNAs in rat small intestine   总被引:5,自引:0,他引:5  
The technique of differential hybridization has been employed to study gene expression associated with vitamin D action on the mammalian intestine. A cDNA library consisting of 10(6) independent recombinants was constructed from poly(A)+ RNA extracted from vitamin D-deficient rats given 1,25-dihydroxyvitamin D3. A survey of 20,000 clones resulted in identification of four distinct cDNAs whose corresponding mRNAs are significantly increased 12 h after an intrajugular dose of 1,25-dihydroxyvitamin D3 given to vitamin D-deficient rats. DNA sequence analysis identified these mRNAs as mitochondrial ATP synthetase, vitamin D-dependent calcium binding protein, cytochrome oxidase subunit I, and cytochrome oxidase subunit III. The time course of response of three of these mRNAs was similar, with maximum values at 12 h after dosing, while that of cytochrome oxidase subunit I showed two peaks at 6 and 18 h following a single dose of 1,25-dihydroxyvitamin D3. The levels of all four mRNAs were elevated in rats supplied with vitamin D when hypocalcemia was produced by dietary calcium restriction.  相似文献   

17.
A variety of intestinal cell organelles and proteins have been proposed to mediate 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)-stimulated calcium absorption. In the present study biochemical analyses were undertaken to determine the subcellular localization of 45Ca after calcium transport in vivo in ligated duodenal loops of vitamin D-deficient chicks injected with 1.3 nmol of 1,25-(OH)2D3 or vehicle 15 h prior to experimentation. Separation of Golgi, mitochondria, basal lateral membrane, and lysosome fractions in the epithelial homogenates was achieved by differential sedimentation followed by centrifugation in Percoll gradients and evaluation of appropriate marker enzyme activities. Both vitamin D-deficient and 1,25-(OH)2D3-treated chicks had the highest levels of 45Ca-specific activity in lysosomal fractions. The lysosomes were also the only organelles to exhibit a 1,25-(OH)2D3-mediated difference in calcium content, increasing to 138% of controls. Lysosomes prepared from 1,25-(OH)2D3-treated chicks also contained the greatest levels of immunoreactive calbindin-D28k (calcium-binding protein). Chloroquine, a drug known to interfere with lysosomal function, was tested and found to inhibit 1,25-(OH)2D3-stimulated intestinal calcium absorption. Neither 1,25-(OH)2D3 nor chloroquine affected [3H]2O transport. In additional experiments, microsomal membranes (105,000 X g pellets) were subjected to gradient centrifugation. The highest levels of 45Ca-specific activity and calcium-binding protein in material from 1,25-(OH)2D3-treated chicks were found in fractions denser than endoplasmic reticulum and may represent endocytic vesicles. In studies on intestinal mucosa of 1,25-(OH)2D3-treated birds fractionated after 30 min of exposure to lumenal Ca2+ or Ca2+ plus chloroquine, 45Ca was found to accumulate in lysosomes and putative endocytic vesicles, relative to controls. A mechanism involving vesicular flow is proposed for 1,25-(OH)2D3-mediated intestinal calcium transport. Endocytic internalization of Ca2+, fusion of the vesicles with lysosomes, and exocytosis at the basal lateral membrane complete the transport process.  相似文献   

18.
The active metabolite of vitamin D, 1alpha,25-dihydroxyvitamin D(3), suppresses autoimmune disease in several animal models including experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. The molecular mechanism of this immunosuppression is at present unknown. While 1alpha,25-dihydroxyvitamin D(3) is believed to function through a single vitamin D receptor, there are reports of other vitamin D receptors as well as a "nongenomic" mode of action. We have prepared the EAE model possessing the vitamin D receptor null mutation and determined if 1alpha,25-dihydroxyvitamin D(3) can suppress this disease in the absence of a functional vitamin D receptor. Vitamin D receptor null mice develop EAE although the incidence rate is one-half that of wild-type controls. The administration of 1alpha,25-dihydroxyvitamin D(3) had no significant effect on the incidence of EAE in the vitamin D receptor null mice, while it completely blocked EAE in the wild-type mice. We conclude that 1alpha,25-dihydroxyvitamin D(3) functions to suppress EAE through the well-known VDR and not through an undiscovered receptor or through a "nongenomic" mechanism.  相似文献   

19.
25,26-Dihydroxycholecalciferol (25,26-dihydroxyvitamin D3), a metabolite of vitamin D3 preferentially active on intestine has been synthesized. This compound was prepared by converting 3β-hydroxy-27-norcholest-5-en-25-one to 25,26-epoxy-5-cholesten-3β-o1 and base-catalyzed hydrolysis of the latter to 5-cholestene-3β,25,26-triol; allylic bromination of the corresponding triacetate, and dehydrobromination gave the required 5,7-diene which yielded the vitamin derivative upon photolysis (Figure 3). The synthetic product shows the same activity pattern as the natural metabolite: at dose levels of 0.25 μg, the compound stimulates intestinal calcium transport, but has no effect on bone calcium mobilization in rats maintained on a vitamin D-deficient, low calcium didt. Higher doses (2.5 μg) elicit a more pronounced intestinal calcium transport response, but also have no significant effect on the bone mobilization system. The compound exhibits no biologial activity in nephrectomized animals.  相似文献   

20.
We synthesized a novel vitamin D analog, 22-hydroxyvitamin D3 9 and tested its biologic activity (and antivitamin properties) in vivo in vitamin D-deficient rats, and in vitro in the chick embryonic duodenum. We examined its ability to bind to the sterol carrier protein, vitamin D binding protein and the chick intestinal cytosol receptor for 1,25-dihydroxyvitamin D3. The new vitamin 9 was synthesized from 3 beta-hydroxy-22,23-dinorcholenic acid 1 in 12 steps. The vitamin 9 displayed no vitamin D agonist activity in the intestine or in bone in vivo and did not block the activity of vitamin D3 or 25-hydroxyvitamin D3. It was a weak vitamin D3 agonist in the chick embryonal duodenum in vitro. It did not antagonize the activity of 1,25-dihydroxyvitamin D3. Vitamin 9 bound to the chick intestinal cytosol receptor with low affinity. 22-Hydroxyvitamin D3 and various vitamin D sterols were bound to vitamin D binding protein in the following order: 25-hydroxyvitamin D3. (24R)-24,25-dihydroxyvitamin D3, and (25S)-25,26-dihydroxyvitamin D3 greater than 22-hydroxyvitamin D3 greater than 11 alpha-hydroxyvitamin D3 greater than 1,25-dihydroxyvitamin D3 greater than vitamin D3. We conclude that the introduction of a hydroxyl group at C-22 in the side chain of the vitamin D3 molecule decreases its biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号