首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The program of gene expression during the life cycle of Dictyostelium discoideum has been assessed by molecular hybridization of cDNA probes with polysomal RNA extracted at the following different stages of development: vegetative growth, interphase (2.5 hr), aggregation (8 hr), postaggregation (12 hr), and preculmination (18 hr). Several different cDNA probes were used. Two probes were prepared from vegetative stage poly(A+) RNA, one representing all species present and the other enriched for abundant species. A third cDNA probe was prepared from preculmination stage polysomal RNA and a fourth probe consisted of the preculmination stage cDNA depleted in those species also present at the vegetative stage. Hybridization of the various probes with the different polysomal RNA preparations has revealed developmental changes in the mRNA populations. These changes were not detected in an aggregation less mutant under similar conditions of starvation. Abundant RNA species of vegetative cells were found to drop to low levels, especially during the aggregation period. Fifty percent by mass of the RNA present in polysomes at 18 hr is not present during vegetative growth. Some of the new RNA species appeared during interphase and the remaining during the postaggregation period. A gradual increase in the number of copies per cell of certain RNA species comprising both new species as well as some shared with vegetative cells was observed throughout development. Other results indicated that the composition of polysomal and cytoplasmic RNA is similar during vegetative growth but differs markedly at 18 hr of development. Also, cytoplasmic RNA at 18 hr contained, in addition to polysomal RNA, a large proportion by mass of nonpolysomal RNA similar to vegetative RNA. The number of polysomal RNA species detected by this analysis during vegetative growth and during the preculmination stage were estimated to be 3000 and 3700, respectively. The number of copies of these RNA species ranged between 30 and 2000 per cell during vegetative growth and 3 to 300 per cell in polysomes at 18 hr. Developmentally induced RNAs which were preferentially distributed among abundant and intermediate classes were estimated to number 700–900 species.  相似文献   

3.
4.
5.
6.
7.
The appearance of newly formed messenger RNA in polyribosomes of HeLa cells Is inhibited by over 85% by 3′deoxyadenosine (Penman, Rosbash &; Penman, 1970) probably due to the failure of normal attachment of poly(A) to heterogeneous nuclear RNA in the presence of this drug (Darnell, Philipson, Wall &; Adesnik, 1971). Results presented here show that the labeled RNA which does reach polysomes in the presence of 3′deoxyadenosine can be characterized as messenger RNA which contains smaller poly(A) segments than normal messenger RNA. The results of the present experiments suggest that all, or almost all, HeLa cell messenger RNA molecules (except for histone messenger RNA) are derived from nuclear RNA molecules which contain poly (A).  相似文献   

8.
9.
Poly(A)+ protamine mRNA (pmRNA) components were isolated after separation on denaturing preparative polyacrylamide gels. The four size classes of protamine mRNA described previously were found to contain poly(A) tracts of different lengths. The pmRNA1 was found to be associated with (A)110, pmRNA2 with (A)90, pmRNA3 with (A)85, and pmRNA4 with (A)69. Following deadenylation with RNase H after duplex formation with oligo-dT, the isolated mRNAs were found to be still heterogeneous, although highly enriched in certain of the deadenylated components. DNA complementary to the isolated mRNAs (cDNA) was synthesized in vitro. Following depurination, the oligopyrimidine maps indicated that C7T4, corresponding to an Arg-Arg-Gly-Gly sequence in protamine and originally thought to be characteristic of all mRNA components, is present in only one or possibly tow of the components. Cross-hybridizations between the cDNAs and the four poly(A)+ pmRNAs indicated that a basic polynucleotide unit of substantial length is common to all four mRNAs and that the existing nucleotide sequence variations probably originate from one or both of the non-coding portions of the mRNA molecules.  相似文献   

10.
11.
12.
13.
Sheep oocytes were microinjected with tobacco mosaic virus RNA (TMV-RNA) and isotopically labelled with L-[35S]methionine. Total incorporation of labelled methionine was similar in TMV-RNA-injected and in carrier-injected control oocytes, whether injections were performed during the period of high protein synthesis at maturation or during the period of reduced synthesis at a time equivalent to the mid-cleavage transition (48 h after germinal vesicle breakdown). Varying the amount of TMV-RNA injected from 2.5 to 10 pg had little effect on the overall level of amino acid incorporation. Furthermore TMV-RNA appeared to be very stable in oocytes and eggs; the proportion of total polypeptide synthesis directed by TMV-RNA did not diminish during the first 48 h after injection. Synthesis of most endogenous proteins was uniformly reduced to compensate for the synthesis of TMV-polypeptides. Our results suggest, therefore, that the translational capacity of sheep oocytes is fully saturated during maturation.  相似文献   

14.
15.
16.
The control of protein synthesis in oocytes of Xenopus laevis has been investigated by injecting oocytes with mRNA and polysomes followed by labeling with 14C-amino acid mixtures. Contrary to previous reports in which injected oocytes were labeled with 3H-histidine, injected globin mRNA is found to decrease amino acid incorporation into endogenous proteins competitively at all concentrations tested. No increase in overall amino acid incorporation is detected when more mRNA is supplied. Similar results are obtained after labeling injected oocytes with leucine, methionine, proline or valine individually. An explanation is presented for the conflicting results obtained when histidine is used as a label.When reticulocyte polysomes are injected, rather than purified globin mRNA, incorporation of amino acids into endogenous proteins remains roughly constant and overall incorporation increases. Similarly, when encephalomyocarditis viral RNA is injected together with either globin mRNA or reticulocyte polysomes, the globin mRNA causes decreased amino acid incorporation into encephalomyocarditis proteins, but the polysomes do not do so. The results demonstrate that different types of mRNA compete for a strictly limited translational capacity which is saturated in the normal oocyte. The limiting component is present in polysomes and is not message-specific. The constraint on protein synthesis in the amphibian oocyte cannot be fully explained by masked mRNA.  相似文献   

17.
Serotonin receptors induced by exogenous messenger RNA in Xenopus oocytes   总被引:15,自引:0,他引:15  
When poly(A)+-mRNA, extracted from rat brain, was injected into Xenopus laevis oocytes, it induced the appearance of serotonin receptors in the oocyte membrane. Application of serotonin to injected oocytes elicited, after a long delay, oscillations in membrane current. The equilibrium potential of this current corresponded with the chloride equilibrium potential. It appears that rat brain mRNA encodes the translation of serotonin receptors into the oocyte membrane. The combination of serotonin with these receptors leads to the opening of membrane channels.  相似文献   

18.
Experiments using a monospecific antibody directed against one type of epidermis-specific keratin from adult skin of the amphibian Xenopus laevis have demonstrated that polysomes synthesizing this protein first appear within larval skin during natural metamorphosis. Further experiments demonstrated that the synthesis of keratin within larval skin could be induced precociously by the thyroid hormone, 3,3′,5-triiodo-l-thyronine, both in vivo and when the isolated larval skin is cultured in vitro. The earliest developmental age responsive to such hormone induction appeared to be Stage 5052 of larval development. This is about 20–24 days before keratin would normally make its appearance within the skin during natural metamorphosis. Hormone treatment of tadpoles at this age will also cause a precocious increase in the amount of keratin messenger RNA present within larval skin. This has been demonstrated directly by the isolation of poly(A)-containing messenger RNA from hormone-treated larvae and its translation in a wheat germ cell-free system to give immunoprecipitable keratin. Peptide analysis of the in vitro translation product indicates that the hormone-induced mRNA probably codes for an initial protein product that is slightly larger than keratin itself.  相似文献   

19.
A wheat germ cell-free translation system has been used to analyze populations of abundant messenger RNA from sea urchin eggs and embryos and from amphibian oocytes and ovaries. We show directly that sea urchin eggs and embryos contain translatable mRNA of three general classes: poly(A)+ mRNA, poly(A)? histone mRNA, and poly(A)? nonhistone mRNA. Additionally, some histone synthesis appears to be promoted by poly(A)+ RNA. Sea urchin eggs seem to contain a higher proportion of prevalent poly(A)? nonhistone mRNAS than do embryos. Some differences in the proteins encoded by poly(A)+ and poly(A)? RNAs are detectable. Many coding sequences in the egg appear to be represented in both poly(A)+ and poly(A)? RNAs, since the translation products of the two RNA classes exhibit many common bands when run on one-dimensional polyacrylamide gels. However, some of this overlap is probably due to fortuitous comigration of nonidentical proteins. Distinct stage-specific changes in the spectra of prevalent translatable mRNAs of all three classes occur, although many mRNAs are detectable throughout early development. Particularly striking is the presence of an egg poly(A)? mRNA, encoding a 70,000–80,000 molecular weight protein, which is not detected in morula or later-stage embryos. In amphibian (Xenopus laevis and Triturus viridescens) ovary RNA, the translation assay detects the following three mRNA classes: poly(A)+ nonhistone mRNA, poly(A)? histone mRNA, and poly(A)+ histone mRNA. Amphibian ovary RNA appearently lacks an abundant poly(A)? nonhistone mRNA component of the magnitude detectable in sea urchin eggs. mRNA encoding histone-like proteins is found in the very earliest (small stage 1) oocytes of Xenopus as well as in later stage oocytes. During oogenesis there appear to be no striking qualitative changes in the spectra of prevalent translatable mRNAs which are detected by the cell-free translation assay.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号