首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following opercular amputation in Pomatoceros lamarckii Quatrefages, wound healing is initiated from a predetermined point on the peduncle. The events of abscission, cell migration and cuticle deposition during wound healing have been studied by light and electron microscopy. Abscission occurs at a predetermined point on the peduncle indicated by specialized epidermal cells, the easy break-point cells (EBP). Following detachment of tissues distal to the EBP cells, the resultant wound is plugged by a knot of coelomocytes which provide a substratum over which epidermal cells migrate to seal and restore the epidermis. During their migration, the epidermal cells undergo differentiation and deposit a new cuticle. Cuticle formation is initiated by the deposition of a finely filamentous matrix. The fine filaments subsequently coalesce to form thicker fibrils which become aggregated into layers of orthogonally-arranged fibril bundles. The mechanisms involved in abscission, cell migration and cuticle deposition during wound healing of the opercular filament are discussed.  相似文献   

2.
A morphological study of in vitro wound healing has been performed by light, transmission and scanning electron microscopy in dorsal thoraco-lumbar skin of 7-day chick embryos. A circular wound, 750 microns in diameter, was punched out of dorsal skin, removing epidermis and the underlying dense dermis. Wound closure was completed within 96 to 120 hours. Feather bud development was not observed at the wound site. The epidermis began to migrate some 24 h after the wounding; the migration of peridermal cells preceded that of basal epidermal cells by some 12 hours. Mechanisms of the epidermal migration were similar to those observed in situ during wound healing of the integument in 5-day chick embryos (THEVENET, 1981), Superficial epithelization of bare dermis occurred as soon as 12 h after the injury. Cytoplasm of dermal cells exhibited many microtubules and a dilated rough endoplasmic reticulum. During the first 48 h, the epidermal cells established direct contacts and zones of close parallel apposition with epithelized dermal cell processes. The basement membrane lamina densa was maintained at the edges of the wound without retraction or ruffling. It was reconstituted concomitantly with the epidermal migration within 72 h. Cytoplasm of migratory epidermal and epithelized dermal cells exhibited many cytoskeleton structures.  相似文献   

3.
动物细胞的培养技术是1907年哈里逊在淋巴块中对蛙的神经板培养成功开始的,其后近一个世纪以来,陆续成功地培养了哺乳动物、昆虫等各种动物细胞,并广泛用于生物科学的各个分支。鱼类的细胞培养的系统研究和建系实践大约起始于60年代,被公认的真骨鱼类的第一个永久性的细胞系——虹鳟性腺细胞系(RTG-2)是由Wolf建立的。随后各种鱼类细胞系相继建立,涉及的组织来源有吻端、肾脏、卵巢、尾鳍、性腺、肝脏、胚胎、囊胚、原肠胚、鳍条等,同时也进行了细胞体外培养条件、  相似文献   

4.
The vertebrate fin fold, the presumptive evolutionary antecedent of the paired fins, consists of two layers of epidermal cells extending dorsally and ventrally over the trunk and tail of the embryo, facilitating swimming during the embryonic and larval stages. Development of the fin fold requires dramatic changes in cell shape and adhesion during early development, but the proteins involved in this process are completely unknown. In a screen of mutants defective in fin fold morphogenesis, we identified a mutant with a severe fin fold defect, which also displays malformed pectoral fins. We find that the cause of the defect is a non-sense mutation in the zebrafish lama5 gene that truncates laminin α5 before the C-terminal laminin LG domains, thereby preventing laminin α5 from interacting with its cell surface receptors. Laminin is mislocalized in this mutant, as are the membrane-associated proteins, actin and β-catenin, that normally form foci within the fin fold. Ultrastructural analysis revealed severe morphological abnormalities and defects in cell-cell adhesion within the epidermis of the developing fin fold at 36 hpf, resulting in an epidermal sheet that can not extend away from the body. Examining the pectoral fins, we find that the lama5 mutant is the first zebrafish mutant identified in which the pectoral fins fail to make the transition from an apical epidermal ridge to an apical fold, a transformation that is essential for pectoral fin morphogenesis. We propose that laminin α5, which is concentrated at the distal ends of the fins, organizes the distal cells of the fin fold and pectoral fins in order to promote the morphogenesis of the epidermis. The lama5 mutant provides novel insight into the role of laminins in the zebrafish epidermis, and the molecular mechanisms driving fin formation in vertebrates.  相似文献   

5.
Osmotic cues from the environment mediate rapid detection of epithelial breaches by leukocytes in larval zebrafish tail fins. Using intravital luminescence and fluorescence microscopy, we now show that osmolarity differences between the interstitial fluid and the external environment trigger ATP release at tail fin wounds to initiate rapid wound closure through long-range activation of basal epithelial cell motility. Extracellular nucleotide breakdown, at least in part mediated by ecto-nucleoside triphosphate diphosphohydrolase 3 (Entpd3), restricts the range and duration of osmotically induced cell migration after injury. Thus, in zebrafish larvae, wound repair is driven by an autoregulatory circuit that generates pro-migratory tissue signals as a function of environmental exposure of the inside of the tissue.  相似文献   

6.
Healing of skin wounds in the African catfish Clarias gariepinus   总被引:1,自引:0,他引:1  
The African catfish Clarias gariepinus was used as a model for wound healing and tissue regeneration in a scale-less fish. A temporal framework of histological and cell proliferation markers was established after wound induction in the dorsolateral cranial region, by removing the epidermal and dermal layers, including stratum adiposum (SA). Wound closure and epidermis formation was initiated within 3 h post-procedure (hpp) with migration and concomitant proliferation of epidermal cells from the wound borders. The wound was covered by this primary epidermal front 12 hpp and fusion of the opposing epidermal fronts occurred within 24 hpp. Attachment of the newly formed epidermal layer to the underlying dermis was observed 48 hpp concomitant with a second wave of cell proliferation at the wound edge. Normal epidermal thickness within the wound was achieved 72 hpp. Formation of a basement membrane occurred by 120 hpp with concomitant emergence of the SA from the wound borders. Wound healing in C. gariepinus skin involved closure of the wound and re-epithelization through cell migration with a single wave of early cell proliferation not documented in other species. Furthermore, covering of the wound by epithelium as well as the reappearance of the basement membrane and SA occurred sooner than in other fish species.  相似文献   

7.
S. L. Johnson  J. A. Weston 《Genetics》1995,141(4):1583-1595
When amputated, the fins of adult zebrafish rapidly regenerate the missing tissue. Fin regeneration proceeds through several stages, including wound healing, establishment of the wound epithelium, recruitment of the blastema from mesenchymal cells underlying the wound epithelium, and differentiation and outgrowth of the regenerate. We screened for temperature-sensitive mutations that affect the regeneration of the fin. Seven mutations were identified, including five that fail to regenerate their fins, one that causes slow growth during regeneration, and one that causes dysmorphic bumps or tumors to develop in the regenerating fin. reg5 mutants fail to regenerate their caudal fins, whereas reg6 mutants develop dysmorphic bumps in their regenerates at the restrictive temperature. Temperature-shift experiments indicate that reg5 and reg6 affect different stages of regeneration. The critical period for reg5 occurs during the early stages of regeneration before or during establishment of the blastema, resulting in defects in subsequent growth of the blastema and failure to differentiate bone-forming cells. The critical period for reg6 occurs after the onset of bone differentiation and during early stages of regenerative outgrowth. Both reg5 and reg6 also show temperature-sensitive defects in embryonic development or in ontogenetic outgrowth of the juvenile fin.  相似文献   

8.
Wound repair in planarians is mainly characterized by two cell-migratory events involving the epidermis adjacent to the wound and its basement membrane. The first event is the migration of epidermal cells to cover the wound surface; the second one is the migration of newly differentiating replacement epidermal cells from the parenchyma to the epidermis. In addition to these events, migration of fixed parenchymal cells is observed during wound healing. All migrating cells were characterized by the presence of actin, as shown by the results obtained by means of indirect immunolocalization with fluorescent and electron microscopy. Migrating cells were heavily labeled with gold particles, which clustered at the level of cell-matrix and cell-cell contacts.  相似文献   

9.
Using transmission electron microscopy and serial sections with light-microscopic autoradiography, I have investigated the ultrastructure of wound healing, the distribution of cells preparing for proliferation, and the fates of cells labelled with exogenous tritiated thymidine ([3H]T) in Microstomum lineare undergoing wound healing and regeneration. Immediately after decapitation the open wound was reduced to a minimum by strong contraction of circular muscle fibers. The wound epidermis was cellular, consisting of thin parts of epidermal cells from the epidermis around the wound. These epidermal cells maintained close adhesive contact with one another through zonulae adherentes and septate junctions. No proliferating cells were found in the old epidermis. The only cells taking up [3H]T were mesenchymal and gastrodermal neoblasts which proliferated and migrated towards the surface. The final epidermis was formed by conjunction of the wound epidermis and newly differentiated epidermal cells. Regeneration in Microstomum, in contrast to that of planarians, occurs mainly by morphallaxis, without the formation of a regeneration blastema, but also through continuous cell proliferation, migration, and differentiation.  相似文献   

10.
Cell migration is a rate-limiting event in skin wound healing. In unwounded skin, cells are nourished by plasma. When skin is wounded, resident cells encounter serum for the first time. As the wound heals, the cells experience a transition of serum back to plasma. In this study, we report that human serum selectively promotes epidermal cell migration and halts dermal cell migration. In contrast, human plasma promotes dermal but not epidermal cell migration. The on-and-off switch is operated by transforming growth factor (TGF) beta3 levels, which are undetectable in plasma and high in serum, and by TGFbeta receptor (TbetaR) type II levels, which are low in epidermal cells and high in dermal cells. Depletion of TGFbeta3 from serum converts serum to a plasmalike reagent. The addition of TGFbeta3 to plasma converts it to a serumlike reagent. Down-regulation of TbetaRII in dermal cells or up-regulation of TbetaRII in epidermal cells reverses their migratory responses to serum and plasma, respectively. Therefore, the naturally occurring plasma-->serum-->plasma transition during wound healing orchestrates the orderly migration of dermal and epidermal cells.  相似文献   

11.
Epidermal cell migration during wound healing in Dugesia lugubris   总被引:1,自引:0,他引:1  
The epidermal cells that migrate over the surface during the wound closure stage of head regeneration in Dugesia lugubris s.l. were examined by scanning electron microscopy. The effect of cytochalasin B on epidermal cell migration was also examined. During the first few hours after decapitation epidermal cells at the edges of the wound showed significant changes of shape related to the process of migration that was accomplished approximately 10 h after wounding. Flattening of the marginal cells was associated with active epidermal spreading throughout the healing period. Suitable support for migrating cells appeared to be a rhabditic network attached to the wound tissue. Epidermal cell migration was inhibited by cytochalasin B. These results demonstrate that the basis for cell movement in planarians is similar to that of many other systems.  相似文献   

12.
When gametes or embryos are not available, somatic cells should be considered for fish genome cryobanking of valuable or endangered fish. The objective of this work was to develop a method for fin explant culture with an assessed reliability, and to assess fin cells ability to cryopreservation. Anal fins from goldfish (Carassius auratus) were minced and gently loosened with collagenase before explants were plated at 20 degrees C in L-15 medium supplemented with fetal bovine serum and pH buffering additives. Quantification of cell-donor explants per fin rated the culture success. Cells were successfully obtained from every cultured anal fin (mean = 65% cell-donor explant per fin). All other fin types were suitable except the dorsal fin. Explant plating could be deferred 3 days from fin collecting. Fins from seven other fish species were successfully cultured with the method. After 2-3 weeks, sub-confluent fin cells from goldfish were cryopreserved. Cryopreservation with dimethyl sulfoxide and sucrose at a slow freezing rate allowed the recovery of half the goldfish fin cells. Cells displayed the same viability as fresh ones. 1,2-propanediol was unsuitable when a fast freezing rate was used. The procedure could now be considered for cryobanking with only minimal adaptation to each new species.  相似文献   

13.
Urodele larval chondrocytes can be successfully maintained in long-term in vitro cultures with successive serial subculturing. In the monolayered cultures the chondrocytes actively synthesize DNA and undergo mitotic divisions, but no synthesis of mucopolysaccharide matrix takes place. The majority of the cells maintain their normal chromosome complement. Chondrocytes from short-term primary cultures, when implanted into the tail fins of host larvae, organize morphologically into typical cartilage tissue with cellular lacunae and a mucopolysaccharide matrix. When chondrocytes, which have been in monolayered cultures for long periods, are implanted as pellets into the in vivo conditions of the tail fin, they form a discrete trabecularized mass. The cells now display the capability of mucopolysaccharide matrix synthesis, but have apparently lost their histogenetic capability of forming typical cartilage tissue.  相似文献   

14.
An established line of human oral epithelial cells exhibits chemotaxis to epidermal growth factor (EGF). The directed migration of these cells is time dependent with an approximate 10-fold increase in the number of cells responding to the chemoattractant by 6 h. Cell migration occurs in a concentration dependent manner with maximal response at ≈ 1 ng/ml. This maximal chemotactic response occurs within the physiologic concentration range for EGF found in human saliva. These data suggest that EGF may be important for the maintenance of an intact oral epithelial (mucosal) barrier, and may play a vital role in oral mucosal wound healing.  相似文献   

15.
Wound healing in the integument of the sea cucumber, Thyone briareus, was studied for up to 50 days after inflicting wide excisional wounds and for 14 days after producing incisional wounds. Rapid re-epithelialization of the wound was effected by the migration of epidermal cells and pigment cells from the periphery of the wound margin. This occurred without apparent evidence of concomitant mitotic activity. Dermal wound healing was completed by the fourteenth day in the incision wounds but occurred very slowly in the broad excision wounds. Morula cells seem to be involved in both epidermal and dermal wound healing, although their precise role is unknown. In excisional wounds the integument was never completely restored to its normal appearance during 50 days of observation.  相似文献   

16.
Plasma fibronectin (FN) of flounder Paralichthys olivacem was purified and characterized. Flounder FN was purified by a combination of affinity chromatography using Sepharose coupled with flounder gelatin and gel filtration on Superose 6. Flounder FN was found to be a disulphide-linked heterodimer of 220 and 230 kDa polypeptides. It had cell-spreading activity for baby hamster kidney (BHK) cells, which was inhibited by the synthetic peptide, Gly-Arg-Gly-Asp-Ser-Pro. In flounder explants, anti-flounder FN antiserum distinguished fibroblast-like cells from epithelial cells; indirect immunofluorescence showed that the fibroblast-like cells exhibited a fibrous staining to the antiserum, but that epithelial cells did not. These results suggest that flounder FN is a homologue of mammalian FN.
The localization of FN during re-epithelialization at the site of a severed fin was investigated. When the top of the fin was cut, epidermal cells covered the surface of the wound within 1 h. FN is detected at the wound site during epidermal cell migration, suggesting that it serves as a cell-adhesion factor for prompt re-epithelialization at wound sites.  相似文献   

17.
The pattern of expression of Heat Shock Protein 70 (Hsp70), a highly conserved cellular protein chaperone, was investigated in Chaetognatha, a very important phylum of marine worms, which play a major role in marine food webs. The in toto distribution of Hsp70-like immunoreactivity was assessed in both intact and experimentally wounded specimens of Spadella cephaloptera Busch, 1851 that have been cut transversally just above the seminal vesicles. In intact animals, the ciliary organs, the corona ciliata, the coronal nerve and the spermatocytes express Hsp70 proteins. The kinetic of the expression pattern has been followed during the wound healing from the lesion to 5 days after. The Hsp70 immunoreactivity was observed according to time in the cerebral and suboesophageal ganglia and in the plexuses of the hood, the mouth, the neck and the tail region. At the wound level, the time-dependent Hsp70 expression was detected in the epidermal cells and along numerous muscle fibres of the tail region. Five days after the tail section, two Hsp70 immunoreactive areas were observed on both sides of the healed wound that correspond to the sites of formation of two new seminal vesicles. It is suggested that, in Chaetognaths, Hsp70 may be implicated in the regulation of several cellular processes especially at the level of the spermatocytes in intact and wounded specimens, and of the nervous system and muscular apparatus during the wound healing. It appears that chaetognaths are a good model as indicator of stress responses for experimental studies at the level of a whole organism.  相似文献   

18.
It was previously discovered that tail fin rays of larval amphioxus are long ciliary rootlets in posterior epidermal cells. This work describes the heretofore unknown origin and fate of these organelles in the Florida amphioxus (Branchiostoma floridae). In late embryos, epidermal cells at the posterior end of the body increase in height, thus producing a tail fin. One ciliary rootlet in each cell elongates and also rotates through about 90°, soon becoming oriented parallel to the long axis of the cell and running continuously from the apical to the basal plasma membrane. During the subsequent growth of the larval tail, the rootlets and epidermal cells housing them reach lengths up to 120 μm. At metamorphosis, the rootlets become vacuolated and rapidly decrease in length along with the height of the tail epidermis. Contemporaneously, abundant extracellular dermal matrix accumulates in the sagittal plane of the body to produce a predominantly dermal tail fin. Throughout postmetamorphic life, the posterior epidermal cells, now without ciliary rootlets, thinly cover a largely dermal tail flange. Thus, the specialized morphology of the amphioxus tail fin is generated by two different cellular mechanisms, involving different cell populations (ectodermal and mesodermal), at different life‐history stages.  相似文献   

19.
鲈鲤仔鱼的异速生长模式   总被引:4,自引:0,他引:4  
采用实验生态学方法研究了鲈鲤(Percocypris pingi pingi)仔鱼(0~57日龄)的异速生长模式.结果显示:鲈鲤仔鱼全长由慢速生长到快速生长的转折点为25日龄;其多数外部器官均具有异速生长特点,头部和尾部的生长快于躯干部,均在22 ~ 27日龄出现生长拐点;眼径在14 ~ 15日龄较早出现生长拐点,促使眼睛充分发育,以提高早期仔鱼开口期摄食外源食物的能力;吻长在33~34日龄出现生长拐点,促进了口的充分发育,以适应不同的饵料环境;胸鳍、背鳍、尾鳍、臀鳍和腹鳍分别在13~14日龄、31~32日龄、32 ~33日龄、38 ~39日龄、43 ~ 44日龄出现生长拐点,除胸鳍和尾鳍外,其余各鳍的鳍条均在拐点处分化完全,即鲈鲤仔鱼的游泳能力已得到大幅提高.研究表明,鲈鲤仔鱼的异速生长模式,保证了各重要功能器官的充分发育,以适应多变的环境,有效地保障了其早期的生存,可为育苗生产和野生早期资源的保护提供技术支撑.  相似文献   

20.
Rabbits are unique among mammals in that their ears can regenerate tissues from the margins of full thickness holes which grow in and completely fill the opening in about two months. The circular blastema that forms around the edges of the hole differentiates a new sheet of cartilage as it regenerates in a centripetal direction. Similar holes in other mammals fail to regenerate and form scar tissue instead of a blastema. Histological studies of the healing around the edges of rabbit ear holes reveal that during the second week, when the epidermis is completing its migration across the wound from the opposite sides of the ear, conspicuous tongues of epidermal cells grow down into the underlying tissues at the edges of the wound. These epidermal downgrowths are situated between the original intact dermis of the skin and the more central tissues which give rise to the blastema. Such downgrowths are of a transient nature, and are no longer found once the blastema rounds up toward the end of the second week. Since they are not found in the healing of similar wounds in rabbit ears prevented from regenerating by prior removal of their cartilaginous sheets, nor in the naturally nonregenerating ears of sheep and dogs, it is considered that these downgrowths of healing epidermis may play a role in the unusual regenerative response of ear tissues in the rabbit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号