首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of 14 healthy subjects and 15 schizophrenic patients was conducted under visual backward masking conditions. Sensory thresholds were identified using the method of constant stimuli. A special modification of the backward masking technique with lateralized presentation of test and masking stimuli was used to study the lateral characteristics of visual attention. It was found that the thresholds of letter stimulus identification were significantly higher in patients with schizophrenia than in healthy subjects. Only in patients the asymmetry of visual perception was revealed with the higher recognition thresholds in the left visual hemifield. The overall data analysis suggests an association between increased recognition thresholds in schizophrenic patients and changes in the interruption mechanism functioning at the neocortex level.  相似文献   

2.
Recognition of shape of natural objects was studied during lateralized tachistoscopic presentation and different degree of noise-like ("rain drops") masking in 15 healthy subjects. Two sets of figures were used: halftone and contour ones. In all masking conditions, the mean group data showed a significantly better recognition of contour images by the left hemisphere as compared to the right hemisphere. The probability of correct response decreased with increase in the degree of masking. Contour figures were recognized significantly better than halftone figures. Gender differences in recognition were revealed. Male subjects displayed no hemispheric preference in recognition of both types of stimuli in both masking conditions. Possible neurophysiological mechanisms and functional significance of the findings are discussed.  相似文献   

3.
In psychophysical and neurophysiological experiments, the subjects recognized images of two categories, “animals” and “objects.” The images of the same categories differing from the target stimuli were used as the masking stimuli. We found that the efficacy of forward-masking depended on categorical similarity of the masking and target stimuli. The probability of a correct response was lower and the reaction time and its variance were higher when we used stimuli of the same category compared with presentation of stimuli of different categories. Categorical similarity of masking and target stimuli induced difficulties with response, which were accompanied by decreases in the amplitudes of the N2 and P3 components of the evoked potentials. These effects were more pronounced during recognition of animals compared to objects. The results are discussed from the point of view of negative priming and the distractor effect.  相似文献   

4.
BACKGROUND: Recent claims in neuroscience and evolutionary biology suggest that the aesthetic sense reflects preferences for image signals whose characteristics best fit innate brain mechanisms of visual recognition. RESULTS: This hypothesis was tested by behaviourally measuring, for a set of initially unfamiliar images, the effects of category learning on preference judgements by humans, and by relating the observed data to computationally reconstructed internal representations of categorical concepts. Category learning induced complex shifts in preference behaviour. Two distinct factors - complexity and bilateral symmetry - could be identified from the data as determinants of preference judgements. The effect of the complexity factor varied with object knowledge acquired through category learning. In contrast, the impact of the symmetry factor proved to be unaffected by learning experience. Computer simulations suggested that the preference for pattern complexity relies on active (top-down) mechanisms of visual recognition, whereas the preference for pattern symmetry depends on automatic (bottom-up) mechanisms. CONCLUSIONS: Human visual preferences are not fully determined by (objective) structural regularities of image stimuli but also depend on their learned (subjective) interpretation. These two aspects are reflected in distinct complementary factors underlying preference judgements, and may be related to complementary modes of visual processing in the brain.  相似文献   

5.
We define a new measure of sensory stimuli which has the following properties: It is cross modal, performance based, robust, and well defined. We interpret this measure as the intricacy or complexity of the stimuli, yet its validity is independent of its interpretation. We tested the validity and cross modality of our measure using three olfactory and one visual experiment. In order to test the link between our measure and cognitive performance we also conducted an additional visual experiment. We found that our measure is correlated with the results of the well-established Rapid Serial Visual Presentation masking experiment. Specifically, ranking stimuli according to our measure was correlated at r = 0.75 (p < 0.002) with masking effectiveness. Thus, our novel measure of sensory stimuli provides a new quantitative tool for the study of sensory processing.  相似文献   

6.
Põder E 《Spatial Vision》2004,17(4-5):257-268
In the present research, the roles of lateral masking and central processing limitations in visual search were studied. Two search conditions were used: (1) target differed from distractors by presence/absence of a simple feature; (2) target differed by relative position of the same components only. The number of displayed stimuli (set-size) and the distance between neighbouring stimuli were varied as independently as possible in order to measure the effect of both. The effect of distance between stimuli (lateral masking) was found to be similar in both conditions. The effect of set-size was much larger for relative position stimuli. The results support the view that perception of relative position of stimulus components is limited mainly by the capacity of central processing.  相似文献   

7.
Psychophysiological experiments were carried out to study the probability and latency of the recognition of significant and insignificant stimuli, namely, partially masked images of household items during their tachystoscopic presentation to subjects with normal vision. Data on a group of 16 subjects showed that the probability of recognition of significant stimuli was substantially higher as compared to the recognition of insignificant stimuli. The recognition latencies for significant stimuli were significantly higher as compared to insignificant stimuli. These effects were found using analysis of the distribution of the respective values and ANOVA. We did not find any gender effects. We suppose that these differences were related to a longer and more detailed recall and comparison of significant stimuli with other images of the set used, as well as to the effect of selective visual attention and interaction between the recognitions of significant and insignificant stimuli on the final result of identification of images.  相似文献   

8.
Considerable research has been carried out on visual search, with single or multiple targets. However, most studies have used artificial stimuli with low ecological validity. In addition, little is known about the effects of target complexity and expertise in visual search. Here, we investigate visual search in three conditions of complexity (detecting a king, detecting a check, and detecting a checkmate) with chess players of two levels of expertise (novices and club players). Results show that the influence of target complexity depends on level of structure of the visual display. Different functional relationships were found between artificial (random chess positions) and ecologically valid (game positions) stimuli: With artificial, but not with ecologically valid stimuli, a “pop out” effect was present when a target was visually more complex than distractors but could be captured by a memory chunk. This suggests that caution should be exercised when generalising from experiments using artificial stimuli with low ecological validity to real-life stimuli.  相似文献   

9.
Natural visual scenes are rich in information, and any neural system analysing them must piece together the many messages from large arrays of diverse feature detectors. It is known how threshold detection of compound visual stimuli (sinusoidal gratings) is determined by their components' thresholds. We investigate whether similar combination rules apply to the perception of the complex and suprathreshold visual elements in naturalistic visual images. Observers gave magnitude estimations (ratings) of the perceived differences between pairs of images made from photographs of natural scenes. Images in some pairs differed along one stimulus dimension such as object colour, location, size or blur. But, for other image pairs, there were composite differences along two dimensions (e.g. both colour and object-location might change). We examined whether the ratings for such composite pairs could be predicted from the two ratings for the respective pairs in which only one stimulus dimension had changed. We found a pooling relationship similar to that proposed for simple stimuli: Minkowski summation with exponent 2.84 yielded the best predictive power (r=0.96), an exponent similar to that generally reported for compound grating detection. This suggests that theories based on detecting simple stimuli can encompass visual processing of complex, suprathreshold stimuli.  相似文献   

10.
We measured recognition thresholds of incomplete figure perception (the Gollin test). This test we regarded as a visual masking problem. Digital image processing permits us to measure the spatial properties and spatial frequency spectrum of the absent part of the image as the mask. Using a noise paradigm, we have measured the signal/noise ratio for Incomplete Figure. Recognition was worse with better spectral "similarity" between the figure and the "invisible" mask. At threshold, the spectrum of the fragmented image was equally similar to that of the "invisible" mask and complete image. We think the recognition thresholds for Gollin stimuli reflect the signal/noise ratio.  相似文献   

11.
The recovery of visual disturbances provoked by partial neocortical deafferentation was studied in dogs with two sets of visual patterns: figures and differently oriented lines. The disturbances were more prominent, when the dogs had to solve the most complex visual tasks (6 stimuli showed to a dog simultaneously). There was a distinct recovery of figure recognition in the process of compensation, i. e. in 4--6 months after the neocortical deafferentation. On the contrary, recognition of oriented lines did not improve. Probably the differences between the two sorts of recognition mentioned above may be explained by various changes of their mechanisms' properties in the process of compensation.  相似文献   

12.
The sparse representation-based classification (SRC) has been proven to be a robust face recognition method. However, its computational complexity is very high due to solving a complex -minimization problem. To improve the calculation efficiency, we propose a novel face recognition method, called sparse representation-based classification on k-nearest subspace (SRC-KNS). Our method first exploits the distance between the test image and the subspace of each individual class to determine the nearest subspaces and then performs SRC on the selected classes. Actually, SRC-KNS is able to reduce the scale of the sparse representation problem greatly and the computation to determine the nearest subspaces is quite simple. Therefore, SRC-KNS has a much lower computational complexity than the original SRC. In order to well recognize the occluded face images, we propose the modular SRC-KNS. For this modular method, face images are partitioned into a number of blocks first and then we propose an indicator to remove the contaminated blocks and choose the nearest subspaces. Finally, SRC is used to classify the occluded test sample in the new feature space. Compared to the approach used in the original SRC work, our modular SRC-KNS can greatly reduce the computational load. A number of face recognition experiments show that our methods have five times speed-up at least compared to the original SRC, while achieving comparable or even better recognition rates.  相似文献   

13.
Thresholds of the event-related potentials (ERPs) appearance were measured for one stationary and four moving auditory images presented in silence or under forward masking conditions. The difference between thresholds in silence and after noise masker was considered as masking level. Under the forward masking, the amplitude of the ERP to the first click in the test series decreased in guinea pig auditory cortex. Masking level decreased with the time lag between signal and masker and didn't depend on the fused auditory image localization that corresponded to the first click in different test signals. This fact can support the hypothesis that for the long test signals the initial part can be masked more than the final one. The ERPs amplitude to next clicks in test series depended on interaction of two factors: forward masking in the "masker-signal" system and interaction of separate ERPs in the series evoked by the test signal.  相似文献   

14.
Several recent demonstrations using visual adaptation have revealed high-level aftereffects for complex patterns including faces. While traditional aftereffects involve perceptual distortion of simple attributes such as orientation or colour that are processed early in the visual cortical hierarchy, face adaptation affects perceived identity and expression, which are thought to be products of higher-order processing. And, unlike most simple aftereffects, those involving faces are robust to changes in scale, position and orientation between the adapting and test stimuli. These differences raise the question of how closely related face aftereffects are to traditional ones. Little is known about the build-up and decay of the face aftereffect, and the similarity of these dynamic processes to traditional aftereffects might provide insight into this relationship. We examined the effect of varying the duration of both the adapting and test stimuli on the magnitude of perceived distortions in face identity. We found that, just as with traditional aftereffects, the identity aftereffect grew logarithmically stronger as a function of adaptation time and exponentially weaker as a function of test duration. Even the subtle aspects of these dynamics, such as the power-law relationship between the adapting and test durations, closely resembled that of other aftereffects. These results were obtained with two different sets of face stimuli that differed greatly in their low-level properties. We postulate that the mechanisms governing these shared dynamics may be dissociable from the responses of feature-selective neurons in the early visual cortex.  相似文献   

15.
Although rodents are the first-choice animal model in the life sciences, they are rarely used to study higher visual functions. It is unclear to what extent rodents follow complex visual strategies to solve visual object recognition and discrimination tasks [1-5]. We report the performance of rats in a visual discrimination task applying the multivariate "Bubbles" paradigm previously used in highly visual species such as humans, monkeys, and pigeons [6-8]. We demonstrate a relationship between accuracy and local occlusion of stimuli by bubbles, as such revealing the strategies or "templates" that underlie visual discrimination behavior. Performance was guided by relatively simple, screen-centered templates as well as more adaptive templates reflecting context dependency and tolerance for changes in stimulus position. These findings demonstrate the complexity of visual strategies followed by rats and reveal interesting similarities (e.g., potential for position tolerance) as well as differences (overall efficiency of visual processing) compared to primates. In conclusion, this study illustrates the feasibility of investigating visual cognition in rats with multivariate behavioral paradigms, with the ultimate aim to use a comparative approach to explore the anatomical and neurophysiological basis of vision, also for those visual abilities that are traditionally studied in humans and monkeys.  相似文献   

16.
The influence of the surrounding images on recognition of test objects was studied in psychophysical experiments. Low-contrast Landolt C’s with sizes of 1.1, 1.5, and 2.3 angular degrees whose centers were located at 13.2 angular degrees away from the fixation point were used as test objects. Similar Landolt C’s or rings without gaps were the surrounding objects. The distance between the centers of the test and the additional objects varied between 2.2 and 13.2 angular degrees. In one experiment, the observer’s task was to identify simultaneously both the test and the surrounding objects; in the other experiment, recognition of only the test stimuli was required. In both experiments, deterioration of recognition of the test stimuli was found at all distances between the test objects and the additional images, which was stronger when the observer performed the dual task. The data give evidence of the size of the inhibitory areas exceeding those predicted by the Bouma law and show the contribution of the attention to peripheral crowding effect.  相似文献   

17.
A growing body of evidence suggests that conscious visual awareness is not a prerequisite for human fear learning. For instance, humans can learn to be fearful of subliminal fear relevant images – images depicting stimuli thought to have been fear relevant in our evolutionary context, such as snakes, spiders, and angry human faces. Such stimuli could have a privileged status in relation to manipulations used to suppress usually salient images from awareness, possibly due to the existence of a designated sub-cortical ‘fear module’. Here we assess this proposition, and find it wanting. We use binocular masking to suppress awareness of images of snakes and wallabies (particularly cute, non-threatening marsupials). We find that subliminal presentations of both classes of image can induce differential fear conditioning. These data show that learning, as indexed by fear conditioning, is neither contingent on conscious visual awareness nor on subliminal conditional stimuli being fear relevant.  相似文献   

18.
Are the information processing steps that support short-term sensory memory common to all the senses? Systematic, psychophysical comparison requires identical experimental paradigms and comparable stimuli, which can be challenging to obtain across modalities. Participants performed a recognition memory task with auditory and visual stimuli that were comparable in complexity and in their neural representations at early stages of cortical processing. The visual stimuli were static and moving Gaussian-windowed, oriented, sinusoidal gratings (Gabor patches); the auditory stimuli were broadband sounds whose frequency content varied sinusoidally over time (moving ripples). Parallel effects on recognition memory were seen for number of items to be remembered, retention interval, and serial position. Further, regardless of modality, predicting an item's recognizability requires taking account of (1) the probe's similarity to the remembered list items (summed similarity), and (2) the similarity between the items in memory (inter-item homogeneity). A model incorporating both these factors gives a good fit to recognition memory data for auditory as well as visual stimuli. In addition, we present the first demonstration of the orthogonality of summed similarity and inter-item homogeneity effects. These data imply that auditory and visual representations undergo very similar transformations while they are encoded and retrieved from memory.  相似文献   

19.
The visual system has a remarkable ability to extract categorical information from complex natural scenes. In order to elucidate the role of low-level image features for the recognition of objects in natural scenes, we recorded saccadic eye movements and event-related potentials (ERPs) in two experiments, in which human subjects had to detect animals in previously unseen natural images. We used a new natural image database (ANID) that is free of some of the potential artifacts that have plagued the widely used COREL images. Color and grayscale images picked from the ANID and COREL databases were used. In all experiments, color images induced a greater N1 EEG component at earlier time points than grayscale images. We suggest that this influence of color in animal detection may be masked by later processes when measuring reation times. The ERP results of go/nogo and forced choice tasks were similar to those reported earlier. The non-animal stimuli induced bigger N1 than animal stimuli both in the COREL and ANID databases. This result indicates ultra-fast processing of animal images is possible irrespective of the particular database. With the ANID images, the difference between color and grayscale images is more pronounced than with the COREL images. The earlier use of the COREL images might have led to an underestimation of the contribution of color. Therefore, we conclude that the ANID image database is better suited for the investigation of the processing of natural scenes than other databases commonly used.  相似文献   

20.
We show that complex visual tasks, such as position- and size-invariant shape recognition and navigation in the environment, can be tackled with simple architectures generated by a coevolutionary process of active vision and feature selection. Behavioral machines equipped with primitive vision systems and direct pathways between visual and motor neurons are evolved while they freely interact with their environments. We describe the application of this methodology in three sets of experiments, namely, shape discrimination, car driving, and robot navigation. We show that these systems develop sensitivity to a number of oriented, retinotopic, visual-feature-oriented edges, corners, height, and a behavioral repertoire to locate, bring, and keep these features in sensitive regions of the vision system, resembling strategies observed in simple insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号