首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TLRs are important for the recognition of conserved motifs expressed by invading bacteria. TLR4 is the signaling receptor for LPS, the major proinflammatory component of the Gram-negative cell wall, whereas CD14 serves as the ligand-binding part of the LPS receptor complex. Triggering of TLR4 results in the activation of two distinct intracellular pathways, one that relies on the common TLR adaptor MyD88 and one that is mediated by Toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF). Nontypeable Haemophilus influenzae (NTHi) is a common Gram-negative respiratory pathogen that expresses both TLR4 (LPS and lipooligosaccharide) and TLR2 (lipoproteins) ligands. To determine the roles of CD14, TLR4, and TLR2 during NTHi pneumonia, the following studies were performed: 1) Alveolar macrophages from CD14 and TLR4 knockout (KO) mice were virtually unresponsive to NTHi in vitro, whereas TLR2 KO macrophages displayed a reduced NTHi responsiveness. 2) After intranasal infection with NTHi, CD14 and TLR4 KO mice showed an attenuated early inflammatory response in their lungs, which was associated with a strongly reduced clearance of NTHi from the respiratory tract; in contrast, in TLR2 KO mice, lung inflammation was unchanged, and the number of NTHi CFU was only modestly increased at the end of the 10-day observation period. 3) MyD88 KO, but not TRIF mutant mice showed an increased bacterial load in their lungs upon infection with NTHi. These data suggest that the MyD88-dependent pathway of TLR4 is important for an effective innate immune response to respiratory tract infection caused by NTHi.  相似文献   

2.
Group B streptococcus (GBS) imposes a major health threat to newborn infants. Little is known about the molecular basis of GBS-induced sepsis. Both heat-inactivated whole GBS bacteria and a heat-labile soluble factor released by GBS during growth (GBS-F) induce nuclear translocation of NF-kappaB, the secretion of TNF-alpha, and the formation of NO in mouse macrophages. Macrophages from mice with a targeted disruption of MyD88 failed to secrete TNF-alpha in response to both heat-inactivated whole bacteria and GBS-F, suggesting that Toll-like receptors (TLRs) are involved in different aspects of GBS recognition. Immune cell activation by whole bacteria differed profoundly from that by secreted GBS-F. Whole GBS activated macrophages independently of TLR2 and TLR6, whereas a response to the secreted GBS-F was not observed in macrophages from TLR2-deficient animals. In addition to TLR2, TLR6 and CD14 expression were essential for GBS-F responses, whereas TLR1 and TLR4 or MD-2 did not appear to be involved. Heat lability distinguished GBS-F from peptidoglycan and lipoproteins. GBS mutants deficient in capsular polysaccharide or beta-hemolysin had GBS-F activity comparable to that of wild-type streptococci. We suggest that CD14 and TLR2 and TLR6 function as coreceptors for secreted microbial products derived from GBS and that cell wall components of GBS are recognized by TLRs distinct from TLR1, 2, 4, or 6.  相似文献   

3.
Toll‐like receptor 4 (TLR4) is responsible for the immediate response to Gram‐negative bacteria and signals via two main pathways by recruitment of distinct pairs of adaptor proteins. Mal‐MyD88 [Mal (MyD88‐adaptor‐like) ‐ MYD88 (Myeloid differentiation primary response gene (88))] is recruited to the plasma membrane to initiate the signaling cascade leading to production of pro‐inflammatory cytokines while TRAM‐TRIF [TRAM (TRIF‐related adaptor molecule)‐TRIF (TIR‐domain‐containing adapter‐inducing interferon‐β)] is recruited to early endosomes to initiate the subsequent production of type I interferons. We have investigated the dynamics of TLR4 and TRAM during lipopolysaccharide (LPS) stimulation. We found that LPS induced a CD14‐dependent immobile fraction of TLR4 in the plasma membrane. Total internal reflection fluorescence microscopy (TIRF) revealed that LPS stimulation induced clustering of TLR4 into small punctate structures in the plasma membrane containing CD14/LPS and clathrin, both in HEK293 cells and the macrophage model cell line U373‐CD14. These results suggest that laterally immobilized TLR4 receptor complexes are being formed and prepared for endocytosis. RAB11A was found to be involved in localizing TRAM to the endocytic recycling compartment (ERC) and to early sorting endosomes. Moreover, CD14/LPS but not TRAM was immobilized on RAB11A‐positive endosomes, which indicates that TRAM and CD14/LPS can independently be recruited to endosomes.   相似文献   

4.
Group B Streptococcus (GBS) is an important agent of life-threatening invasive infection. It has been previously shown that encapsulated type III GBS is easily internalized by dendritic cells (DCs), and that this internalization had an impact on cytokine production. The receptors underlying these processes are poorly characterized. Knowledge on the mechanisms used by type V GBS to activate DCs is minimal. In this work, we investigated the role of Toll-like receptor (TLR)/MyD88 signaling pathway, the particular involvement of TLR2, and that of the intracellular sensing receptor NOD2 in the activation of DCs by types III and V GBS. The role of capsular polysaccharide (CPS, one of the most important GBS virulence factors) in bacterial-DC interactions was evaluated using non-encapsulated mutants. Despite differences in the role of CPS between types III and V GBS in bacterial internalization and intracellular survival, no major differences were observed in their capacity to modulate release of cytokines by DC. For both serotypes, CPS had a minor role in this response. Production of cytokines by DCs was shown to strongly rely on MyD88-dependent signaling pathways, suggesting that DCs recognize GBS and become activated mostly through TLR signaling. Yet, GBS-infected TLR2-/- DCs only showed a partial reduction in the production of IL-6 and CXCL1 compared to control DCs. Surprisingly, CXCL10 release by type III or type V GBS-infected DCs was MyD88-independent. No differences in DC activation were observed between NOD2-/- and control DCs. These results demonstrate the involvement of various receptors and the complexity of the cytokine production pathways activated by GBS upon DC infection.  相似文献   

5.
Toll-like receptor 9 (TLR9) induces an inflammatory response by recognition of unmethylated CpG dinucleotides, mainly present in prokaryotic DNA. So far, TLR9-deficient mice have been shown to be more sensitive than wild-type mice to viral, but not to bacterial infections. Here, we show that mice deficient in TLR9 but not in TLR1, TLR2, TLR4 and TLR6 or IL-1R/IL-18R are more susceptible to a respiratory tract bacterial infection caused by Streptococcus pneumoniae. Intranasal challenge studies revealed that TLR9 plays a protective role in the lungs at an early stage of infection prior to the entry of circulating inflammatory cells. Alveolar as well as bone marrow-derived macrophages deficient in either TLR9 or the myeloid adaptor differentiation protein MyD88 were impaired in pneumococcal uptake and in pneumococcal killing. Our data suggest that in the airways, pneumococcal infection triggers a TLR9 and MyD88-dependent activation of phagocytic activity from resident macrophages leading to an early clearance of bacteria from the lower respiratory tract.  相似文献   

6.
Lipopolysaccharide (LPS) is the major pathogen-associated molecular pattern of Gram-negative bacterial infections, and includes smooth (S-LPS) and rough (R-LPS) chemotypes. Upon activation by LPS through CD14, TLR4/MD-2 heterodimers sequentially induce two waves of intracellular signaling for macrophage activation: the MyD88-dependent pathway from the plasma membrane and, following internalization, the TRIF-dependent pathway from endosomes. We sought to better define the role of scavenger receptors CD36 and CD204/SR-A as accessory LPS receptors that can contribute to pro-inflammatory and microbicidal activation of macrophages. We have found that CD36 differently regulates activation of mouse macrophages by S-LPS versus R-LPS. The ability of CD36 to substitute for CD14 in loading R-LPS, but not S-LPS onto TLR4/MD-2 allows CD14-independent macrophage responses to R-LPS. Conversely, S-LPS, but not R-LPS effectively stimulates CD14 binding to CD36, which favors S-LPS transfer from CD14 onto TLR4/MD-2 under conditions of low CD14 occupancy with S-LPS in serum-free medium. In contrast, in the presence of serum, CD36 reduces S-LPS binding to TLR4/MD-2 and the subsequent MyD88-dependent signaling, by mediating internalization of S-LPS/CD14 complexes. Additionally, CD36 positively regulates activation of TRIF-dependent signaling by both S-LPS and R-LPS, by promoting TLR4/MD-2 endocytosis. In contrast, we have found that SR-A does not function as a S-LPS receptor. Thus, by co-operating with CD14 in both R- and S-LPS loading onto TLR4/MD-2, CD36 can enhance the sensitivity of tissue-resident macrophages in detecting infections by Gram-negative bacteria. However, in later phases, following influx of serum to the infection site, the CD36-mediated negative regulation of MyD88-dependent branch of S-LPS-induced TLR4 signaling might constitute a mechanism to prevent an excessive inflammatory response, while preserving the adjuvant effect of S-LPS for adaptive immunity.  相似文献   

7.
Bacterial lipopolysaccharide (LPS) triggers innate immune responses through Toll-like receptor (TLR) 4, a member of the TLR family that participates in pathogen recognition. TLRs recruit a cytoplasmic protein, MyD88, upon pathogen recognition, mediating its function for immune responses. Two major pathways for LPS have been suggested in recent studies, which are referred to as MyD88-dependent and -independent pathways. We report in this study the characterization of the MyD88-independent pathway via TLR4. MyD88-deficient cells failed to produce inflammatory cytokines in response to LPS, whereas they responded to LPS by activating IFN-regulatory factor 3 as well as inducing the genes containing IFN-stimulated regulatory elements such as IP-10. In contrast, a lipopeptide that activates TLR2 had no ability to activate IFN-regulatory factor 3. The MyD88-independent pathway was also activated in cells lacking both MyD88 and TNFR-associated factor 6. Thus, TLR4 signaling is composed of at least two distinct pathways, a MyD88-dependent pathway that is critical to the induction of inflammatory cytokines and a MyD88/TNFR-associated factor 6-independent pathway that regulates induction of IP-10.  相似文献   

8.
Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus   总被引:17,自引:0,他引:17  
Aspergillus fumigatus causes life-threatening infections in patients with qualitative and quantitative defects in phagocytic function. Here, we examined the contribution of Toll-like receptor (TLR)-2, TLR4, the adapter protein MyD88, and CD14 to signaling in response to the three forms of A. fumigatus encountered during human disease: resting conidia (RC), swollen conidia (SC), and hyphae (H). Compared with elicited peritoneal macrophages obtained from wild-type and heterozygous mice, TLR2(-/-) and MyD88(-/-) macrophages produced significantly less tumor necrosis factor-alpha (TNFalpha) following A. fumigatus stimulation. In contrast, following stimulation with RC, SC, and H, TLR4(-/-) and CD14(-/-) macrophages exhibited no defects in tumor necrosis factor-alpha release. TLR2(-/-), TLR4(-/-), MyD88(-/-), and CD14(-/-) macrophages bound similar numbers of RC and SC compared with wild-type macrophages. RC, SC, and H stimulated greater activation of a nuclear factor kappa B (NFkappaB)-dependent reporter gene and greater release of tumor necrosis factor-alpha from the human monocytic THP-1 cell line stably transfected with CD14 compared with control cells stably transfected with empty vector. A. fumigatus stimulated NFkappaB-dependent reporter gene activity in the human embryonic kidney cell line, HEK293, only if the cells were transfected with TLR2. Moreover, activity increased when TLR2 and CD14 were co-transfected. Taken together, these data suggest that optimal signaling responses to A. fumigatus require TLR2 in both mouse and human cells. In contrast, a role for CD14 was found only in the human cells. MyD88 acts as a central adapter protein mediating signaling responses following stimulation with RC, SC, and H.  相似文献   

9.
Flavopiridol is a cyclin-dependent kinase inhibitor and inhibits the growth of various cancer cells. The effect of flavopiridol on lipopolysaccharide (LPS)-induced proinflammatory mediator production was examined in RAW 264.7 macrophage-like cells. Flavopiridol significantly reduced the production of tumor necrosis factor-α and, to a lesser extent, nitric oxide in LPS-stimulated cells. Flavopiridol inhibited the activation of nuclear factor-κB and IκB kinase in response to LPS. Flavopiridol also inhibited the activation of a series of mitogen-activated protein kinases, such as p38, stress-activated protein kinase/c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2 in response to LPS. However, flavopiridol did not alter the expression of tumor necrosis factor receptor-associated factor 6, myeloid differentiation factor 88 (MyD88) or CD14/toll-like receptor (TLR) 4. Flavopiridol inhibited nitric oxide production induced by a MyD88-dependent TLR2 ligand, but not a MyD88-independent TLR3 ligand. Further, flavopiridol did not alter the phosphorylation of interferon regulatory factor 3 in the MyD88-independent pathway. Therefore, it was suggested that flavopiridol exclusively inhibited the activation of nuclear factor-κB and mitogen-activated protein kinases in the MyD88-dependent pathway. Flavopiridol might be useful for the prevention of LPS-induced inflammatory response.  相似文献   

10.
MyD88-dependent signalling is important for secretion of early inflammatory cytokines and host protection in response to Legionella pneumophila infection. Although toll-like receptor (TLR)2 contributes to MyD88-dependent clearance of L. pneumophila , TLR-independent functions of MyD88 could also be important. To determine why MyD88 is critical for host protection to L. pneumophila , the contribution of multiple TLRs and IL-18 receptor (IL-18R)-dependent interferon-gamma (IFN-γ) production in a mouse was examined. Mice deficient for TLR5 or TLR9, or deficient for TLR2 along with either TLR5 or TLR9, were competent for controlling bacterial replication and had no apparent defects in cytokine production compared with control mice. MyD88-dependent production of IFN-γ in the lung was mediated primarily by natural killer cells and required IL-18R signalling. Reducing IFN-γ levels did not greatly affect the kinetics of L. pneumophila replication or clearance in infected mice. Additionally, IFN-γ-deficient mice did not have a susceptibility phenotype as severe as the MyD88-deficient mice and were able to control a pulmonary infection by L. pneumophila . Thus, MyD88-dependent innate immune responses induced by L. pneumophila involve both TLR-dependent responses and IL-18R-dependent production of IFN-γ by natural killer cells, and these MyD88-dependent pathways can function independently to provide host protection against an intracellular pathogen.  相似文献   

11.
Toxoplasma gondii-derived heat shock protein 70 (T.g.HSP70) induced maturation of bone marrow-derived dendritic cells (DCs) of wild-type (WT) C57BL/6 mice as evidenced by an increase in surface expression of MHC class I and II molecules and costimulatory molecules such as CD40, CD80, and CD86. Functionally, decreased phagocytic ability and increased alloreactive T cell stimulatory ability were observed in T.g.HSP70-stimulated DCs. These phenotypic and functional changes of T.g.HSP70-stimulated DCs were demonstrated in Toll-like receptor (TLR) 2- and myeloid differentiation factor 88 (MyD88)-deficient but not TLR4-deficient C57BL/6 mice. DCs from WT and TLR2-deficient but not TLR4-deficient mice produced IL-12 after T.g.HSP70 stimulation. T.g.HSP70-stimulated DCs from WT, TLR2-deficient, and MyD88-deficient, but not TLR4-deficient mice expressed IFN-beta mRNA. Thus, T.g.HSP70 stimulates murine DC maturation via TLR4 through the MyD88-independent signal transduction cascade.  相似文献   

12.
13.
14.
Chlamydia pneumoniae is the causative agent of respiratory tract infections and a number of chronic diseases. Here we investigated the involvement of the common TLR adaptor molecule MyD88 in host responses to C. pneumoniae-induced pneumonia in mice. MyD88-deficient mice were severely impaired in their ability to mount an acute early inflammatory response toward C. pneumoniae. Although the bacterial burden in the lungs was comparable 5 days after infection, MyD88-deficient mice exhibited only minor signs of pneumonia and reduced expression of inflammatory mediators. MyD88-deficient mice were unable to up-regulate proinflammatory cytokines and chemokines, demonstrated delayed recruitment of CD8+ and CD4+ T cells to the lungs, and were unable to clear the pathogen from their lungs at day 14. At day 14 the MyD88-deficent mice developed a severe, chronic lung inflammation with elevated IL-1beta and IFN-gamma leading to increased mortality, whereas wild-type mice as well as TLR2- or TLR4-deficient mice recovered from acute pneumonia and did not show delayed bacterial clearance. Thus, MyD88 is essential to recognize C. pneumoniae infection and initiate a prompt and effective immune host response against this organism leading to clearance of bacteria from infected lungs.  相似文献   

15.
Toll-like receptors (TLRs) are involved in pathogen recognition by the innate immune system. Different TLRs and the adaptor molecule myeloid differentiation factor 88 (MyD88) were previously shown to mediate in vitro cell activation induced by group B streptococcus (GBS). The present study examined the potential in vivo roles of TLR2 and MyD88 during infection with GBS. When pups were infected locally with a low bacterial dose, none of the TLR2- or MyD88-deficient mice, but all of the wild-type ones, were able to prevent systemic spread of GBS from the initial focus. Bacterial burden was higher in MyD88- than in TLR2-deficient mice, indicating a more profound defect of host defense in the former animals. In contrast, a high bacterial dose induced high level bacteremia in both mutant and wild-type mice. Under these conditions, however, TLR2 or MyD88 deficiency significantly protected mice from lethality, concomitantly with decreased circulating levels of TNF-alpha and IL-6. Administration of anti-TNF-alpha Abs to wild-type mice could mimic the effects of TLR2 or MyD88 deficiency and was detrimental in the low dose model, but protective in the high dose model. In conclusion, these data highlight a dual role of TLR2 and MyD88 in the host defense against GBS sepsis and strongly suggest TNF-alpha as the molecular mediator of bacterial clearance and septic shock.  相似文献   

16.
17.
In cystic fibrosis (CF), bacteria of the Burkholderia cepacia complex (Bcc) can induce a fulminant inflammation with pneumonitis and sepsis. Lipopolysaccharide (LPS) may be an important virulence factor associated with this decline but little is known about the molecular pathogenesis of Bcc LPS. In this study we have investigated the inflammatory response to highly purified LPS from different Bcc clinical isolates and the cellular signalling pathways employed. The inflammatory response (TNFalpha, IL-6) was measured in human MonoMac 6 monocytes and inhibition experiments were used to investigate the Toll-like receptors and associated adaptor molecules and pathways utilized. LPS from all clinical Bcc isolates induced significant pro-inflammatory cytokines and utilized TLR4 and CD14 to mediate activation of mitogen-activated protein kinase pathways, IkappaB-alpha degradation and NFkappaB activation. However, LPS from different clinical isolates of the same clonal strain of Burkholderia cenocepacia were found to induce a varied inflammatory response. LPS from clinical isolates of Burkholderia multivorans was found to activate the inflammatory response via MyD88-independent pathways. This study suggests that LPS alone from clinical isolates of Bcc is an important virulence factor in CF and utilizes TLR4-mediated signalling pathways to induce a significant inflammatory response.  相似文献   

18.
Proteinase-activated receptor 2 (PAR(2)), a seven-transmembrane G protein-coupled receptor, is activated at inflammatory sites by proteolytic cleavage of its extracellular N terminus by trypsin-like enzymes, exposing a tethered, receptor-activating ligand. Synthetic agonist peptides (AP) that share the tethered ligand sequence also activate PAR(2), often measured by Ca(2+) release. PAR(2) contributes to inflammation through activation of NF-kappaB-regulated genes; however, the mechanism by which this occurs is unknown. Overexpression of human PAR(2) in HEK293T cells resulted in concentration-dependent, PAR(2) AP-inducible NF-kappaB reporter activation that was protein synthesis-independent, yet blocked by inhibitors that uncouple G(i) proteins or sequester intracellular Ca(2+). Because previous studies described synergistic PAR(2)- and TLR4-mediated cytokine production, we hypothesized that PAR(2) and TLR4 might interact at the level of signaling. In the absence of TLR4, PAR(2)-induced NF-kappaB activity was inhibited by dominant negative (DN)-TRIF or DN-TRAM constructs, but not by DN-MyD88, findings confirmed using cell-permeable, adapter-specific BB loop blocking peptides. Co-expression of TLR4/MD-2/CD14 with PAR(2) in HEK293T cells led to a synergistic increase in AP-induced NF-kappaB signaling that was MyD88-dependent and required a functional TLR4, despite the fact that AP exhibited no TLR4 agonist activity. Co-immunoprecipitation of PAR(2) and TLR4 revealed a physical association that was AP-dependent. The response to AP or lipopolysaccharide was significantly diminished in TLR4(-/-) and PAR (-/-)(2) macrophages, respectively, and SW620 colonic epithelial cells exhibited synergistic responses to co-stimulation with AP and lipopolysaccharide. Our data suggest a unique interaction between two distinct innate immune response receptors and support a novel paradigm of receptor cooperativity in inflammatory responses.  相似文献   

19.
Lipopolysaccharide (LPS) is recognized by CD14 with Toll-like receptor 4 (TLR4), and initiates 2 major pathways of TLR4 signaling, the MyD88-dependent and TRIF-dependent signaling pathways. The MyD88-dependent pathway induces inflammatory responses such as the production of TNF-α, IL-6, and IL-12 via the activation of NFκB and MAPK. The TRIF-dependent pathway induces the production of type-I IFN, and RANTES via the activation of IRF-3 and NFκB, and is also important for the induction of adaptive immune responses. CD14 plays a critical role in initiating the TRIF-dependent signaling pathway response to LPS, to support the internalization of LPS via endocytosis. Here, we clearly demonstrate that intracellular delivery of LPS by LPS-formulated liposomes (LPS-liposomes) initiate only TRIF-dependent signaling via clathrin-mediated endocytosis, independent of CD14. In fact, LPS-liposomes do not induce the production of TNF-α and IL-6 but induce RANTES production in peritoneal macrophages. Additionally, LPS-liposomes could induce adaptive immune responses effectively in CD14-deficient mice. Collectively, our results strongly suggest that LPS-liposomes are useful as a TRIF-dependent signaling-based immune adjuvant without inducing unnecessary inflammation.  相似文献   

20.
Blood monocytes recognize Gram-negative bacteria through the TLR4, which signal via MyD88- and TRIF-dependent pathway to trigger an immune-inflammatory response. However, a dysregulated inflammatory response by these cells often leads to severe pathologies such as sepsis. We investigated the role of CD16 in the regulation of human monocyte response to Gram-negative endotoxin and sepsis. Blood monocytes from sepsis patients demonstrated an upregulation of several TRIF-dependent genes as well as a selective expansion of CD16-expressing (CD16(+)) monocytes. Gene expression and biochemical studies revealed CD16 to regulate the TRIF-dependent TLR4 pathway in monocytes by activating Syk, IFN regulatory factor 3, and STAT1, which resulted in enhanced expression of IFNB, CCL5, and CXCL10. CD16 also upregulated the expression of IL-1R-associated kinase M and IL-1 receptor antagonist, which are negative regulators of the MyD88-dependent pathway. CD16 overexpression or small interfering RNA knockdown in monocytes confirmed the above findings. Interestingly, these results were mirrored in the CD16(+) monocyte subset isolated from sepsis patients, providing an in vivo confirmation to our findings. Collectively, the results from the current study demonstrate CD16 as a key regulator of the TRIF-dependent TLR4 pathway in human monocytes and their CD16-expressing subset, with implications in sepsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号