首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[3H]uridine-labeled extracellular West Nile virus (WNV) particles produced by cell cultures obtained from genetically resistant C3H/RV and congenic susceptible C3H/HE mice were compared by sucrose density gradient centrifugation as well as by analysis of the particle RNA. Defective interfering (DI) WNV particles were observed among progeny produced during acute infections in both C3H/RV and C3H/HE cells. Although only a partial separation of standard and DI particles was achieved, the DI particles were found to be more dense than the standard virions. Particles containing several species of small RNAs consistently constituted a major proportion of the total population of virus progeny produced by C3H/RV cells, but a minor proportion of the population produced by C3H/HE cells. Decreasing the multiplicity of infection or extensive plaque purification of the WNV inoculum decreased the proportion of small RNAs found in the progeny virus. The ratio of DI particles to standard virus observed in progeny virus was determined by the cell type used to grow the virus. The ratio could be shifted by passaging virus from one cell type to the other. Homologous interference could be demonstrated with WNV produced by C3H/RV cells but not with virus produced by C3H/HE cells. Continued passage of WNV in C3H/HE cells resulted in a cycling of infectivity. However, passage in C3H/RV cells resulted in the complete loss of infectious virus. Four size classes of small viral RNA, with sedimentation coefficients of about 8, 15, 26, and 34S, were observed in the extracellular particles. A preliminary analysis of these RNAs by oligonucleotide fingerprinting indicated that the smaller RNAs were less complex than the 40S RNA and differed from each other. The data are consistent with the conclusion that WNV DI particles interfere more effectively with standard virus replication and are amplified more efficiently in C3H/RV cells than in congenic C3H/HE cells. The relevance of these findings to the further understanding of genetically controlled resistance to flaviviruses is discussed.  相似文献   

2.
3.
P Y Shi  W Li    M A Brinton 《Journal of virology》1996,70(9):6278-6287
The first 96 nucleotides of the 5'noncoding region (NCR) of West Nile virus (WNV) genomic RNA were previously reported to form thermodynamically predicted stem-loop (SL) structures that are conserved among flaviviruses. The complementary minus-strand 3' NCR RNA, which is thought to function as a promoter for the synthesis of plus-strand RNA, forms a corresponding predicted SL structure. RNase probing of the WNV 3' minus-strand stem-loop RNA [WNV (-)3' SL RNA] confirmed the existence of a terminal secondary structure. RNA-protein binding studies were performed with BHK S100 cytoplasmic extracts and in vitro-synthesized WNV (-)3' SL RNA as the probe. Three RNA-protein complexes (complexes 1,2, and 3) were detected by a gel mobility shift assay, and the specificity of the RNA-protein interactions was confirmed by gel mobility shift and UV-induced cross-linking competition assays. Four BHK cell proteins with molecular masses of 108, 60, 50, and 42 kDa were detected by UV-induced cross-linking to the WNV (-)3' SL RNA. A preliminary mapping study indicated that all four proteins bound to the first 75 nucleotides of the WNV 3' minus-strand RNA, the region that contains the terminal SL. A flavivirus resistance phenotype was previously shown to be inherited in mice as a single, autosomal dominant allele. The efficiencies of infection of resistant cells and susceptible cells are similar, but resistant cells (C3H/RV) produce less genomic RNA than congenic, susceptible cells (C3H/He). Three RNA-protein complexes and four UV-induced cross-linked cell proteins with mobilities identical to those detected in BHK cell extracts with the WNV (-)3' SL RNA were found in both C3H/RV and C3H/He cell extracts. However, the half-life of the C3H/RV complex 1 was three times longer than that of the C3H/He complex 1. It is possible that the increased binding activity of one of the resistant cell proteins for the flavivirus minus-strand RNA could result in a reduced synthesis of plus-strand RNA as observed with the flavivirus resistance phenotype.  相似文献   

4.
Vaccinia virus, strain WR, was propagated in HeLa cells, L mouse fibroblats, or primary chicken embryo fibroblasts in the presence of [5- (3)H]uridine. Carefully purified virions were found to contain significant amounts of labeled trichloroacetic acid-precipitable material which was rendered acid soluble when digested with pancreatic RNase or hydrolyzed in alkali. Controlled degradation of virions with Nonidet P-40 and 2-mercaptoethanol demonstrated that 65 to 80% of the [5- (3)H]uridine-labeled molecules resided in the viral core. When the total nucleic acids were extracted from viral cores prepared from virions propagated in HeLa cells, 30 to 50% of the total incorporated [5- (3)H]uridine was found in RNA; in L mouse fibroblasts, 40 to 50%; in primary chicken embryo fibroblasts, 50 to 60%. The RNA molecules do not appear to be covalently linked to the viral DNA genome but sediment in sodium dodecyl sulfate-sucrose gradients as 8 to 10S species relative to ribosomal RNA.  相似文献   

5.
Alleles at the Flv locus determine disease outcome after a flavivirus infection in mice. Although comparable numbers of congenic resistant and susceptible mouse embryo fibroblasts (MEFs) are infected by the flavivirus West Nile virus (WNV), resistant MEFs produce approximately 100- to 150-fold lower titers than susceptible ones and flavivirus titers in the brains of resistant and susceptible animals can differ by >10,000-fold. The Flv locus was previously identified as the 2'-5' oligoadenylate synthetase 1b (Oas1b) gene. Oas gene expression is up-regulated by interferon (IFN), and after activation by double-stranded RNA, some mouse synthetases produce 2-5A, which activates latent RNase L to degrade viral and cellular RNAs. To determine whether the lower levels of intracellular flavivirus genomic RNA from resistant mice detected in cells at all times after infection were mediated by RNase L, RNase L activity levels in congenic resistant and susceptible cells were compared. Similar moderate levels of RNase L activation by transfected 2-5A were observed in both types of uninfected cells. After WNV infection, the mRNAs of IFN-beta and three Oas genes were up-regulated to similar levels in both types of cells. However, significant levels of RNase L activity were not detected until 72 h after WNV infection and the patterns of viral RNA cleavage products generated were similar in both types of cells. When RNase L activity was down-regulated in resistant cells via stable expression of a dominant negative RNase L mutant, approximately 5- to 10-times-higher yields of WNV were produced. Similarly, about approximately 5- to 10-times-higher virus yields were produced by susceptible C57BL/6 RNase L-/- cells compared to RNase L+/+ cells that were either left untreated or pretreated with IFN and/or poly(I) . poly(C). The data indicate that WNV genomic RNA is susceptible to RNase L cleavage and that RNase L plays a role in the cellular antiviral response to flaviviruses. The results suggest that RNase L activation is not a major component of the Oas1b-mediated flavivirus resistance phenotype.  相似文献   

6.
More [3H]uridine was incorporated into RNA of SV40-infected than into uninfected cells 31 h after infection. When the specific activity of the uridine triphosphate pools in infected and uninfected cells was equated by the addition of appropriate amounts of exogenous unlabelled uridine, no difference in the rate of [3H]uridine incorporation into RNA was observed. Although no difference in [3H]uridine entry or phosphorylation was demonstrable, the apparently smaller pools of endogenous RNA precursors in infected cells resulted in less isotope dilution and thus to synthesis of uridine triphosphate and RNA of higher specific activity.  相似文献   

7.
8.
RNA synthesis in response to exogenous nucleoside precursors was studied in a suspension culture of rose cells. Exponentially growing and resting cells were prelabeled with [3H] uridine, an excess of unlabeled uridine added, and subsequent isotopic incorporation into nuclear and ribosomal fractions measured. The data were compared to control values in cells continuously labeled in the absence of unlabeled uridine. Addition of uridine to the growing culture reduced the further uptake, and incorporation of [3H] uridine into RNA. In contrast, in resting cells, the addition of uridine (or, purine nucleosides) enhanced the apparent utilization of [3H] uridine in RNA synthesis by 2- to 4-fold.  相似文献   

9.
Insulin stimulated total RNA accretion and the incorporation of [3H]uridine into RNA in L6 skeletal-muscle myoblasts. Incorporation of uridine into the rRNA was measured after either separation of 18 S and 28 S rRNA species by agarose-gel electrophoresis or separation of dissociated 40 S and 60 S ribosomal subunits on sucrose density gradients. Both methods showed a stimulation by insulin of uridine incorporation into the RNA of the two subunits. Two non-steroidal anti-inflammatory drugs, indomethacin and ibuprofen, which inhibit the metabolism of arachidonic acid by the cyclo-oxygenase pathway, inhibited the insulin-induced accretion of total cellular RNA and the incorporation of uridine into the RNA of both ribosomal subunits. The effect of insulin was observed both by using a tracer dose of [3H]uridine (5 microM) and in the presence of a high concentration (1 mM) of uridine to minimize possible changes in intracellular precursor pools. Neither insulin nor indomethacin was found to affect the incorporation of uridine into the total intracellular nucleotide pool, or the conversion of uridine into UTP. The ability of inhibitors of arachidonic acid metabolism to prevent insulin-induced increases in RNA metabolism suggests that a prostaglandin or other eicosanoid is involved in the signal mechanism whereby insulin stimulates RNA synthesis.  相似文献   

10.
ts20 is a temperature-sensitive mutant cell line derived from BALB/3T3 cells. DNA synthesis in the mutant decreased progressively after an initial increase during the first 3 h at the restrictive temperature. RNA and protein synthesis increased for 20 h and remained at a high level for 40 h. Cells were arrested in S phase as determined by flow microfluorimetry, and DNA chain elongation was retarded as measured by fiber autoradiography. Infection with polyomavirus did not bypass the defect in cell DNA synthesis, and the mutant did not support virus DNA replication at the restrictive temperature. After shift down to the permissive temperature, cell DNA synthesis was restored whereas virus DNA synthesis was not. Analysis of virus DNA synthesized at the restrictive temperature showed that the synthesis of form I and replicative intermediate DNA decreased concurrently and that the rate of completion of virus DNA molecules remained constant with increasing time at the restrictive temperature. These studies indicated that the mutation inhibited ongoing DNA synthesis at a step early in elongation of nascent chains. The defect in virus and cell DNA synthesis was expressed in vitro. [3H]dTTP incorporation was reduced, consistent with the in vivo data. The addition of a high-salt extract prepared from wild-type 3T3 cells preferentially stimulated the incorporation of [3H]dTTP into the DNA of mutant cells at the restrictive temperature. A similar extract prepared from mutant cells was less effective and was more heat labile as incubation of it at the restrictive temperature for 1 h destroyed its ability to stimulate DNA synthesis in vitro, whereas wild-type extract was not inactivated until incubated at that temperature for 3 h.  相似文献   

11.
Genome of porcine transmissible gastroenteritis virus.   总被引:10,自引:7,他引:3       下载免费PDF全文
The Purdue strain of transmissible gastroenteritis virus, a porcine coronavirus, was grown to titers of greater than 10(8) PFU/ml in a swine testicle cell line, and the RNA was isotopically labeled with [3H]uridine. The RNA was extracted from purified virus and was found to have the following properties. (i) It consisted primarily of a homogeneous large-molecular-weight species which electrophoretically migrated with an apparent molecular weight of 6.8 X 10(6) under denaturing conditions. (ii) It migrated electrophoretically at the same rate on nondenaturing gels before and after heat denaturation, suggesting that it does not consist of subunits. (iii) It was susceptible to pancreatic RNase A digestion in high (0.3 M) NaCl. (iv) It was polyadenylated to the extent that greater than 60% of the native RNA bound to oligodeoxythymidilic acid-cellulose under conditions of high (0.5 M) NaCl. RNA extracted from virions was infectious. This coronavirus can therefore be characterized as a positive-strand RNA virus.  相似文献   

12.
Bovine coronavirus genome.   总被引:8,自引:5,他引:3       下载免费PDF全文
The tissue culture-adapted strain (Mebus) of the bovine coronavirus was grown to titers of greater than 10(7) 50% tissue culture infective doses per ml in secondary bovine embryo kidney cells, and the RNA was isotopically labeled with [3H]uridine. The RNA was extracted from purified virus and was found to have the following properties. (i) It consisted primarily of a homogeneous large-molecular-weight species which comigrated electrophoretically with vesicular stomatitis viral RNA and therefore had an apparent molecular weight of 3.8 X 10(6). (ii) It remained as a 3.8 x 10(6)-molecular-weight molecule after heat denaturation when rapidly harvested virus was examined. (iii) It was 80% susceptible to pancreatic RNase A digestion in high (0.3 M) NaCl, and the 20% resistant fraction was 4S to 7S in size. (iv) It was polyadenylated to the extent that 40 and 60% of the native RNA bound to polyuridylic acid-Sepharose and oligodeoxythymidylic acid-cellulose, respectively, under conditions of high (0.5 M) NaCl.  相似文献   

13.
Periodate-oxidized adenosine and AMP were inhibitory to both RNA and DNA synthesis in Ehrlich tumor cells in culture. With periodate-oxidized adenosine, the inhibition of RNA synthesis paralleled the inhibition of DNA synthesis. Periodate-oxidized AMP, however, was more inhibitory to DNA synthesis than to RNA synthesis. With both compounds, there was a decrease in the conversion of [14C]cytidine nucleotides to [14C]deoxycytidine nucleotides in the acid-soluble pool. The borohy-dride-reduced trialcohol derivative of the periodate-oxidized adenosine compound was not inhibitory to DNA or RNA synthesis in the tumor cells. The incorporation of [3H]uridine into 28S and 18S ribosomal RNA was inhibited by both periodate-oxidized adenosine and AMP, but the incorporation of [3H]uridine in 45S, 5S, and 4S RNA was essentially unaffected by these compounds. Periodate-oxidized adenosine inhibited Ehrlich tumor cell growth in vivo.  相似文献   

14.
The effects of estrogen on the uridine uptake into cells were examined in primary cultures of liver parenchymal cells from Xenopus laevis. The total uptake of [3H]uridine into the estrogen-treated cells and its incorporation into RNA were about 1.5 times higher than the values for control cells. The uptake of [3H]adenosine and its incorporation into RNA were not affected by estrogen. An experiment in which liver parenchymal cells were double labeled with [3H]uridine and [3H]adenosine showed that estrogen elevated the specific radioactivity of the UTP pool 1.4-fold the value found for the control cells, but that of the ATP pool was not altered by estrogen. Short term labeling revealed that estrogen did not significantly alter the rate of the initial uptake of [3H]uridine into the cells, but it did stimulate [3H]uridine phosphorylation about 1.7-fold. Uridine kinase activity measured in cell-free extracts of hepatocytes treated with estrogen had a value 1.6 times that of the control cells. These data indicate that the stimulation of [3H]uridine uptake and phosphorylation in Xenopus laevis hepatocytes in the presence of estrogen is caused by the enhancement of uridine kinase activity.  相似文献   

15.
We have analyzed the structure of the rubella virus genome RNA and the virus-specific RNA species synthesized in B-Vero cells infected with rubella virus. A single-stranded, capped, and polyadenylated RNA species sedimenting at 40S in a sucrose gradient was released from purified virions treated with sodium dodecyl sulfate. This RNA species migrated with an Mr of about 3.8 X 10(6) in an agarose gel after denaturation with glyoxal and dimethyl sulfoxide. Infected cells labeled with [3H]uridine in the presence of actinomycin D contained, in addition to the 40S RNA, a single-stranded polyadenylated 24S RNA species as shown by sucrose gradient analysis. In a Northern blot analysis, this RNA hybridized to a cDNA probe derived from the 3' portion of the genomic 40S RNA. In vitro translation of the 24S RNA species yielded a 110,000-dalton polypeptide, in addition to some smaller products which were immunoprecipitated with an antiserum prepared against the structural proteins E1, E2a, E2b, and C. Since the sum of the molecular weights of the nonglycosylated envelope proteins and the capsid protein has been estimated to be about 116,000 (C. Oker-Blom et al., J. Virol. 46:964-973, 1983), these results suggest that the 24S RNA species represents a subgenomic mRNA coding for a precursor (p110) to the structural proteins of rubella virus. Thus, the strategy of gene expression of rubella virus appears to be similar to that of the alphaviruses.  相似文献   

16.
17.
Poxvirus replication is inhibited by streptovaricin. The most readily observed effect is the inhibition of incorporation of [3H]uridine into viral mRNA, suggesting an inhibition of RNA synthesis. Streptovaricin also inhibits the incorporation of [3H]uridine into cellular RNA but not as severely as viral RNA. On the other hand, [3H]uridine incorporation into the RNA of Semliki Forest virus (SFV), which contains a positive strand RNA genome, does not seem to be inhibited by streptovaricin. The inhibitory effect of streptovaricin is completely reversible after removal of the inhibitor. In addition to inhibiting RNA synthesis, streptovaricin also may inhibit the methylation of cellular RNA. Viral RNA is stable in the presence of streptovaricin.  相似文献   

18.
Some Syrian hamster cell lines persistently infected with lymphocytic choriomeningitis virus (LCMV) do not produce extracellular virus particles but do contain intracytoplasmic infectious material. The proteins of these cells were labeled with [35S]methionine or with [3H]glucosamine and [3H]mannose, and immunoprecipitates were prepared with anti-LCMV sera. A substantial amount of the LCMV nucleocapsid protein (molecular weight about 58,000) was detected, along with GP-C, the precursor of the virion glycoproteins GP-1 and GP-2. GP-1 and GP-2 themselves were not detected. A new method of transferring proteins electrophoretically from sodium dodecyl sulfate-polyacrylamide gels to diazotized paper in high yield revealed several additional LCMV proteins present specifically in the persistently infected cells, at apparent molecular weights (X10(3] of 112, 107, 103, 89, 71 (probably GP-C), 58 (nucleocapsid protein), 42 to 47 (probably GP-1), and 40 (possibly GP-2). By iodinating intact cells with I3, GP-1 but not GP-2 or GP-C was revealed on the surfaces of the persistently infected cells, whereas both GP-1 and GP-C were found on the surfaces of acutely infected cells. The absence of GP-C from the plasma membrane of the persistently infected cells might be related to defective maturation of the virus in these cells. Cytoplasmic viral nucleoprotein complexes were labeled with [3H]uridine in the presence or absence of actinomycin D, purified partially by sedimentation in D2O-sucrose gradients, and adsorbed to fixed Staphylococus aureus cells in the presence of anti-LCMV immunoglobulin G. Several discrete species of viral RNA were released from the immune complexes with sodium dodecyl sulfate. Some were appreciably smaller than the 31S and 23S species of standard LCMV virions, indicating that defective interfering viral RNAs are probably present in the persistently infected cells. Ribosomal 28S and 18S RNAs, labeled only in the absence of actinomycin D, were coprecipitated with anti-LCMV serum but not with control serum, indicating their association with LCMV nucleoproteins in the cells.  相似文献   

19.
Seven different tissue culture cells have been cultured with and without mycoplasma (M. hyorhinis) in the presence of various precursors of RNA. Total cellular RNA was isolated and analysed by electrophoresis on polyacrylamide gels. The results obtained with mycoplasma-infected cells can be summarized as follows:
1. 1. When cells are labelled with [8-3H]guanosine or [5-3H]uridine there is some incorporation into host cell 28S and 18S rRNA, but it is less than into mycoplasma 23S and 16S rRNA. [8-3H]guanosine or [5-3H]uridine are also incorporated into host cell and mycoplasma tRNA and mycoplasma 4.7S RNA, but the incorporation into host cell 5S rRNA and low molecular weight RNA components (LMW RNA) is reduced.
2. 2. [5-3H]uracil is not incorporated into host cell RNA but into mycoplasma tRNA, 4.7S RNA, a mycoplasma low molecular weight RNA component M1 and 23S and 16S rRNA.
3. 3. [3H]methyl groups are incorporated into mycoplasma tRNA, 23S and 16S rRNA, but not into host cell 28S, 18S, 5S rRNA nor into mycoplasma 4.7S RNA.
4. 4. With [32P]orthophosphate or [3H]adenosine as precursors, the labelling is primarily in the host RNA.
Mycoplasma infection influences the labelling of RNA primarily by an effect on the utilization of the exogenously added radioactive RNA precursors, since the generation time of mycoplasma infected cells is about the same as that of uninfected cells. Mycoplasma infection may completely prevent the identification of LMW RNA components.  相似文献   

20.
1. EDTA inhibited incorporation of [3H]uridine into RNA of lymphocytes, but did not decrease uptake into the cold-acid-soluble fraction of the cells. The inhibition by EDTA was largely reversible by simultaneous addition of Zn2+. 2. Low concentrations pf actinomycin D (3 ng/ml) added at the time of stimulation of the cells inhibited [3H]uridine incorporation into RNA, but concentrations of 50-100 ng/ml were required to produce the same degree of inhibition if addition of actinomycin D was delayed until just before the incorporation was measured. This difference in sensitivity did not reg within the cells. 3. When added immediately before phytohaemagglutinin, actinomycin D (3 ng/ml) and EDTA produced similar time-courses of inhibition of uridine incorporation. 4. Uridine incorporation at 32h was inhibited when actinomycin D (3 ng/ml) or EDTA was added just before stimulation of the cells, but was only slightly affected when they were added at 32h. At intermediate times the incorporation of uridine remained sensitive to addition of EDTA for longer than it was sensitive to actinomycin D. 5. Polyacrylamide-gel separation of RNA synthesized in EDTA-treated cultures in the presence or absence of added Zn2+ showed that lower availability of Zn2+ resulted in a decreased rate of transfer of radioactivity from 32S to 28S rRNA and decreased survival of 28S rRNA relative to 18S rRNA. 6. Close similarities have been shown to exist between the effects of EDTA and low concentrations of actinomycin D. Not all the effects of EDTA could be explained by postulating that Zn2+ was a constituent of RNA polymerase I, nor were the effects of actinomycin D readily explained by previously suggested mechanisms of action of this antibiotic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号