首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We adopted the estimate of the intraclass coefficient of reliability, R, to evaluate the reliability of smooth pursuit eye movement quantitative analysis. At a one-week interval, we recorded twice smooth pursuit eye movements from fifteen healthy subjects by means of the binocular electrooculographic technique. R was computed for the constant and the slope of the target velocity/gain relationships. R values were rated good for the slope and excellent for the constant. Finally, we computed for each parameter the maximum variability value according to two differing methods; on the basis of the within-subjects mean square values, we defined the normal range of biological test-retest variability for the two parameters.  相似文献   

2.
The Main Sequence of Saccades Optimizes Speed-accuracy Trade-off   总被引:1,自引:0,他引:1  
In primates, it is well known that there is a consistent relationship between the duration, peak velocity and amplitude of saccadic eye movements, known as the ‘main sequence’. The reason why such a stereotyped relationship evolved is unknown. We propose that a fundamental constraint on the deployment of foveal vision lies in the motor system that is perturbed by signal-dependent noise (proportional noise) on the motor command. This noise imposes a compromise between the speed and accuracy of an eye movement. We propose that saccade trajectories have evolved to optimize a trade-off between the accuracy and duration of the movement. Taking a semi-analytical approach we use Pontryagin’s minimum principle to show that there is an optimal trajectory for a given amplitude and duration; and that there is an optimal duration for a given amplitude. It follows that the peak velocity is also fixed for a given amplitude. These predictions are in good agreement with observed saccade trajectories and the main sequence. Moreover, this model predicts a small saccadic dead-zone in which it is better to stay eccentric of target than make a saccade onto target. We conclude that the main sequence has evolved as a strategy to optimize the trade-off between accuracy and speed.  相似文献   

3.
Our objective was to characterize the saccadic eye movements in patients with type 3 Gaucher disease (chronic neuronopathic) in relationship to neurological and neurophysiological abnormalities. For approximately 4 years, we prospectively followed a cohort of 15 patients with Gaucher type 3, ages 8-28 years, by measuring saccadic eye movements using the scleral search coil method. We found that patients with type 3 Gaucher disease had a significantly higher regression slope of duration vs amplitude and peak duration vs amplitude compared to healthy controls for both horizontal and vertical saccades. Saccadic latency was significantly increased for horizontal saccades only. Downward saccades were more affected than upward saccades. Saccade abnormalities increased over time in some patients reflecting the slowly progressive nature of the disease. Phase plane plots showed individually characteristic patterns of abnormal saccade trajectories. Oculo-manual dexterity scores on the Purdue Pegboard test were low in virtually all patients, even in those with normal cognitive function. Vertical saccade peak duration vs amplitude slope significantly correlated with IQ and with the performance on the Purdue Pegboard but not with the brainstem and somatosensory evoked potentials. We conclude that, in patients with Gaucher disease type 3, saccadic eye movements and oculo-manual dexterity are representative neurological functions for longitudinal studies and can probably be used as endpoints for therapeutic clinical trials. TRIAL REGISTRATION: ClinicalTrials.gov NCT00001289.  相似文献   

4.
The human horizontal eye movement system produces quick, precise, conjugate eye movements called saccades. These are important in normal vision. For example, reading tasks exclusively utilize saccadic eye movements. The majority of saccades have dynamic overshoot. The amplitude of this overshoot is independent of saccadic amplitude, and is such that it places the image of the stimulus within the retinal region of maximum acuity within a minimum of time. A computer based model of the saccadic mechanisms was used to study the origin of this overshoot. It was discussed that dynamic overshoot cannot be attributed to biomechanism properites of the eye movement mechanism, but must instead be explained by variations in the controlling nervous activity. The form of this neural controller signal is very similar to that required for a time optimal response of an inertial system.  相似文献   

5.
Various optimality principles have been proposed to explain the characteristics of coordinated eye and head movements during visual orienting behavior. At the same time, researchers have suggested several neural models to underly the generation of saccades, but these do not include online learning as a mechanism of optimization. Here, we suggest an open-loop neural controller with a local adaptation mechanism that minimizes a proposed cost function. Simulations show that the characteristics of coordinated eye and head movements generated by this model match the experimental data in many aspects, including the relationship between amplitude, duration and peak velocity in head-restrained and the relative contribution of eye and head to the total gaze shift in head-free conditions. Our model is a first step towards bringing together an optimality principle and an incremental local learning mechanism into a unified control scheme for coordinated eye and head movements.  相似文献   

6.
Recent studies provide evidence for task-specific influences on saccadic eye movements. For instance, saccades exhibit higher peak velocity when the task requires coordinating eye and hand movements. The current study shows that the need to process task-relevant visual information at the saccade endpoint can be, in itself, sufficient to cause such effects. In this study, participants performed a visual discrimination task which required a saccade for successful completion. We compared the characteristics of these task-related saccades to those of classical target-elicited saccades, which required participants to fixate a visual target without performing a discrimination task. The results show that task-related saccades are faster and initiated earlier than target-elicited saccades. Differences between both saccade types are also noted in their saccade reaction time distributions and their main sequences, i.e., the relationship between saccade velocity, duration, and amplitude.  相似文献   

7.
The predominance of anti-compensatory eye movements in vestibular nystagmus recorded during sinusoidal and post-rotational tests is interpreted in terms of a mathematical model of the vestibulo-ocular system. Namely, a direct pathway between the vestibular nuclei and the saccadic mechanism is assumed. In the range of frequencies of natural head movements this pathway carries on a signal proportional to head angular velocity. Therefore, during active head movements the saccadic mechanism is forced to produce quick eye rotations in the direction of head movement and, thus, to cooperate in the task of picking up visual targets outside the visual field. During passive head movements giving rise to nystagmus the assumed pathway contributes to reduce the error in eye resetting due to the saccadic delay. Analytical considerations and simulation results seem to prove the adequacy of the proposed model.Work supported by the National Research Council (C.N.R.), Rome, Italy  相似文献   

8.
To assess the effects of long-term support unload on gaze control, five subjects were tested for the successful touch of a light target unpredictably emerging in the peripheral field of vision before and immediately after a seven-day dry immersion. The test did not set time requirements on gaze fixation on the target or motor task implementation. Ocular movements were recorded with an infrared eye image analyzer at 100 Hz. Modification of the dependences of the maximum velocity and duration of a saccade towards a homolateral target at the amplitude following immersion pointed to the speeding-up of the saccadic eye movements.  相似文献   

9.
Using a piecewise linear approach, individual saccadic eye movements have been Fourier decomposed in an attempt to determine the effect of saccadic amplitude on frequency characteristics. These characteristics were plotted in the traditional Bode plot form, showing gain and phase as a function of frequency for various eye movement amplitudes. Up to about one octave beyond the -3 db gain frequency, the limiting system dynamics represented by the saccadic trajectory of a given amplitude may be considered linear and second order. The -3 db gain frequency was used as a measure of bandwidth, and the -90 degrees phase crossover frequency was used as a measure of undamped natural frequency. These two quantities were used to calculate the damping factor. Both bandwidth and undamped natural frequency decrease with increasing saccadic eye movement amplitude. The damping factor shows no trend with amplitude and indicates approximate critical damping. When compared with the normal variation of characteristics for a given movement, the frequency characteristics of fixed-amplitude saccades showed no generalized trends with changes in direction or DC operating level of movement.  相似文献   

10.
The present report considers goal directed human saccadic eye movements. It addresses the question how a given perceived target excentricity is transformed into the innervation pattern that creates the saccade to the target. More specifically, it investigates whether this pattern is an appropriately selected preprogram or whether it is continuously controlled by a local feedback loop that compares a non-visual eye position signal to the perceived target excentricity (a visual signal would be too slow). To this end, the relation between the accuracy of saccades aimed at a given target and their velocity and duration was examined. Duration and velocity were found to vary by as much as 60% while the amplitude showed no related variation and had an almost constant accuracy of about 90%. By administrating diazepam, the variability of saccade duration and velocity could be further increased, but still the amplitude remained almost constant. These results favour the hypothesis that saccadic innervation is controlled by a local feedback loop.This investigation was supported by Deutsche Forschungsgemeinschaft, SFB 70, Gruppe Ulm  相似文献   

11.
Simulation of the saccadic eye movement mechanism and, more recently, diagnosis of neuromuscular disorders associated with saccades rely on accurate recording and analysis of saccade characteristics. Traditionally, eye movements are monitored objectively by registering a transduced voltage correlate of eye position on a pen or cathode ray oscillograph. Analysis of the record obtained is tedious and often inaccurate. The advent of small digital computers with analog-to-digital capability permits more efficient recording. However, computer programs reviewed are limited to the analysis of specific saccade parameters or partly depend on manual operations. The computer program described stores the entire saccadic event of each eye between pre-defined limits including the pre- and post-saccade intervals. Preliminary operations including artifact identification, location of onset, elimination of RC decay, DC offset and amplitude scaling prepare the data for display and subsequent analysis. The program also includes a subroutine to derive the mean and standard deviation of successive saccades.  相似文献   

12.
During natural activities, two types of eye movements - saccades and vergence - are used in concert to point the fovea of each eye at features of interest. Some electrophysiological studies support the concept of independent neurobiological substrates for saccades and vergence, namely saccadic and vergence burst neurons. Discerning the interaction of these two components is complicated by the near-synchronous occurrence of saccadic and vergence components. However, by positioning the far target below the near target, it is possible to induce responses in which the peak velocity of the vertical saccadic component precedes the peak velocity of the horizontal vergence component by approximately 75 ms. When saccade-vergence responses are temporally dissociated in this way, the vergence velocity waveform changes, becoming less skewed. We excluded the possibility that such change in skewing was due to visual feedback by showing that similar behavior occurred in darkness. We then tested a saccade-related vergence burst neuron (SVBN) model proposed by Zee et al. in J Neurophysiol 68:1624-1641 (1992), in which omnipause neurons remove inhibition from both saccadic and vergence burst neurons. The technique of parameter estimation was used to calculate optimal values for responses from human subjects in which saccadic and convergence components of response were either nearly synchronized or temporally dissociated. Although the SVBN model could account for convergence waveforms when saccadic and vergence components were nearly synchronized, it could not when the components were temporally dissociated. We modified the model so that the saccadic pulse changed the parameter values of the convergence burst units if both components were synchronized. The modified model accounted for velocity waveforms of both synchronous and dissociated convergence movements. We conclude that both the saccadic pulse and omnipause neuron inhibition influence the generation of vergence movements when they are made synchronously with saccades.  相似文献   

13.
van Beers RJ 《PloS one》2008,3(4):e2070
The durations and trajectories of our saccadic eye movements are remarkably stereotyped. We have no voluntary control over these properties but they are determined by the movement amplitude and, to a smaller extent, also by the movement direction and initial eye orientation. Here we show that the stereotyped durations and trajectories are optimal for minimizing the variability in saccade endpoints that is caused by motor noise. The optimal duration can be understood from the nature of the motor noise, which is a combination of signal-dependent noise favoring long durations, and constant noise, which prefers short durations. The different durations of horizontal vs. vertical and of centripetal vs. centrifugal saccades, and the somewhat surprising properties of saccades in oblique directions are also accurately predicted by the principle of minimizing movement variability. The simple and sensible principle of minimizing the consequences of motor noise thus explains the full stereotypy of saccadic eye movements. This suggests that saccades are so stereotyped because that is the best strategy to minimize movement errors for an open-loop motor system.  相似文献   

14.
In twoMacaca rhesus monkeys that received repeated N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injections (single dose 0.2 mg/kg, i.m.; cumulative dose 11.2–13.3 mg), changes in characteristics of spontaneous saccadic eye movements and vestibulo-ocular reflex (VOR) were evaluated. With the development of severe behavioral disturbances, amplitude of spontaneous saccadic eye movements gradually decreased. Pronounced changes in duration of saccadic eye movements, frequency of spontaneous saccades, and their pattern were observed. No changes in parameters of VOR slow component were recorded, but high total MPTP doses suppressed fast phase of the reflex.Neirofiziologiya/Neurophysiology, Vol. 25, No. 3, pp. 184–190, May–June, 1993.  相似文献   

15.
The activity of antidromically identified abducens nucleus motoneurons and inter-nuclear neurons has been recorded during saccadic eye movements in the alert cat. The activity of these neurons has been demonstrated to be the sum of a velocity component proportional to eye velocity plus a position component proportional to instantaneous eye position during the movement. Results are discussed in relation to proposed models about the generation of saccadic eye movements.  相似文献   

16.
We recorded the smooth pursuit eye movements (SPEM) of 52 healthy subjects by binocular electrooculographic technique. The 52 subjects were homogeneously distributed from the 2nd to the 6th decade. The target moved over 60 deg of amplitude at constant velocity (ramp); different target velocities were used ranging from 10 to 50 deg/sec. All subjects were tested with the same 58 pseudo-random ramp sequence under the control of a Personal Computer (PC). The quantitative analysis of SPEM was carried out by an interactive program implemented on the same PC. Different equations were tested by a multiple regression analysis in order to describe the relationship between SPEM gain values and target velocities; two of these equations were chosen and used in order to find out if SPEM gain was influenced by target direction (the direction effect) and/or by subject age (the age effect). The statistical analyses we performed, demonstrated that SPEM gain values were influenced by aging but not by target direction: SPEM gain decreased as age increased.  相似文献   

17.
Age-related changes in characteristics of saccadic eye movements (latency, duration and percentage of multistep saccades) in healthy subjects and patients with Parkinson's disease were evaluated. Healthy volunteers were divided into 6 age groups (17-20 years, 21-30 years, 31-40 years, 41-50 years, 51-60 years, 61-75 years), parkinsonian patients into 3 age groups (41-50 years, 51-60 years, 61-75 years). According to our data, saccade characteristics depend upon age in both healthy subjects and parkinsonian patients. In healthy volunteers the percentage of multistep saccades and the mean saccade latency increase significantly after the age of 60. Values of these characteristics in patients with Parkinson's disease significantly exceed the values in the corresponding age groups of healthy subjects. The "disease" factor (MANOVA) has a greater influence on saccade latency and percentage of multistep saccades then the "age" factor. The duration of single saccades depends on age to a smaller extent and does not change in patients with Parkinson's disease. The peculiarities of neurodegenerative processes during normal aging and aging with Parkinson's disease are discussed.  相似文献   

18.
A model of the smooth pursuit eye movement system   总被引:18,自引:0,他引:18  
Human, horizontal, smooth-pursuit eye movements were recorded by the search coil method in response to Rashbass step-ramp stimuli of 5 to 30 deg/s. Eye velocity records were analyzed by measuring features such as the time, velocity and acceleration of the point of peak acceleration, the time and velocity of the peaks and troughs of ringing and steady-state velocity. These values were averaged and mean responses reconstructed. Three normal subjects were studied and their responses averaged. All showed a peak acceleration-velocity saturation. All had ringing frequencies near 3.8 Hz and the mean steady-state gain was 0.95.It is argued that a single, linear forward path with any transfer function G(s) and a 100 ms delay (latency) cannot simultaneously simulate the initial rise of acceleration and ring at 3.8 Hz based on a Bode analysis. Also such a simple negative feedback model cannot have a steady-state gain greater than 1.0; a situation that occurs frequently experimentally. L.R. Young's model, which employs internal positive feedback to eliminate the built-in unity negative feedback, was felt necessary to resolve this problem and a modification of that model is proposed which simulates the data base. Acceleration saturation is achieved by borrowing the idea of the local feedback model for saccades so that one nonlinearity can account for the acceleration-velocity saturation: the main sequence for pursuit. Motor plasticity or motor learning, recently demonstrated for pursuit, is also incorporated and simulated.It was noticed that the offset of pursuit did not show the ringing seen in the onset so this was quantified in one subject. Offset velocity could be characterized by a single exponential with a time constant of about 90 ms. This observation suggests that fixation is not pursuit at zero velocity and that the pursuit system is turned on when needed and off during fixation.  相似文献   

19.
The saccadic eye movement related potentials (SEMRPs) enable to study brain mechanisms of the sensorimotor integration. SEMRPs provide insight into various cognitive mechanisms related to planning, programming, generation and execution of the saccadic eye movements. SEMRPs can be used to investigate pathophysiological mechanisms of several disorders of the central nervous system. Here we shortly summarize basic findings concerning the significance of SEMRP components, their relationship to the functional brain asymmetry and visual attention level as well as changes related to certain neuropsychological disorders.  相似文献   

20.
Sinusoidal eye movements and potential saccadic eye movements are examined using the syntactic pattern recognition method presented previously. A few computer tests are presented for the verification of potential saccades from signals of sinusoidal eye movements. The technique was developed and tested with electro-oculographic signals. The verification of saccades consists of three tests: the estimation of average noise peaks in an eye movement signal; an angular velocity threshold; and the comparison between a sinusoidal eye movement signal and the corresponding stimulus signal. The technique is also efficient for noisy signals of eye movements, which were stimulated by both predictive and non-predictive sinusoidal stimulus movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号