首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P.J. Marangos  J. Patel 《Life sciences》1981,29(16):1705-1714
β-Carbolines are inhibitors of [3H] diazepam binding with the most potent inhibitor being β-carboline-3-carboxylate ethyl ester (β-CCE). In this report the binding of [3H] β-CCE to extensively washed rat forebrain membranes is characterized. [3H] ß-CCE binds with high affinity (KD = 1.4 nM) to an apparently homogenous population of benzodiazepine receptor. The rank order of potency for inhibition of [3H] ß-CCE binding by different benzodiazepines is clonazepam > diazepam > chlordiazepoxide, which is similar to that observed for inhibition of [3H] diazepam binding. In marked contrast to [3H] diazepam, the binding of [3H] ß-CCE is not modulated by GABA since concentrations of GABA as high as 10?3 M had no effect. [3H] ß-CCE is also less potent than [3H] diazepam in its interaction with the peripheral type kidney benzodiazepine receptor indicating that this ligand has a higher degree of specificity for the central brain type benzodiazepine receptor.  相似文献   

2.
An endogenous inhibitor of γ-aminobutyric acid (GABA) receptors was partially purified from bovine brain striatum. It was obtained as a low molecular weight fraction by gel filtration on Biogel P-2 and was adsorbed to Dowex AG 50W-X8, but not to Dowex AG 1-X8. It was ninhydrin-negative, basic, heat-stable substance. It caused dose-dependent inhibition of Na+-independent [3H]GABA bindings. Scatchard plot analysis of the [3H]GABA binding to GABA “B” receptor recognition site showed this inhibitor increased the Kd value (24.1 nM to 3.6 nM) without changing the Bmax. On the other hand, Scatchard plot analysis of the [3H]GABA binding to GABA “A” receptor recognition site showed that the inhibitor decreased number of binding sites (706 fmol/mg protein to 494 fmol/mg protein) without affecting the Kd value. These results suggest that the endogenous inhibitor functions as a modulator for GABAB and GABAA receptors.  相似文献   

3.
The effect of an acute swimming stress in rats on the amount of n-butyl-β-carboline-3-carboxylate, an endogenous benzodiazepine receptor binding inhibitor, was investigated. In 15 min this substance increased two fold in the cerebral cortex of the stressed rat and this increase was blocked by the previous injection of diazepam; however, no changes were observed in the cerebellum with stress. These results are discussed in relation to previous findings that, after the acute stress, [3H]flunitrazepam binding decreases in cerebral cortex and hippocampus, but not in cerebellum. A possible relationship between this benzodiazepine receptor binding inhibitor and the state of “anxiety” produced by stress is postulated.  相似文献   

4.
Our earlier observations showed thatl-lysine enhanced the activity of diazepam against seizures induced by pentylenetetrazol (PTZ), and increased the affinity of benzodiazepine receptor binding in a manner additive to that caused by -aminobutyric acid (GABA). The present paper provides additional evidence to show thatl-lysine has central nervous system depressant-like characteristics.l-lysine enhanced [3H]flunitrazepam (FTZ) binding in brain membranes was dose-dependent and stimulated by chloride, bromide and iodide, but not fluoride. Enhancement of [3H]FTZ binding byl-lysine at a fixed concentration was increased by GABA but inhibited by pentobarbital between 10–7 to 10–3M. While GABA enhancement of [3H]FTZ binding was inhibited by the GABA mimetics imidazole acetic acid and tetrahydroisoxazol pyridinol, the enhancement by pentobarbital andl-lysine of [3H]FTZ binding was dose-dependently increased by these two GABA mimetics. The above results suggest thatl-lysine and pentobarbital acted at the same site of the GABA/benzodiazepine receptor complex which was different from the GABA binding site. The benzodiazepine receptor antagonist imidazodiazepine Ro15-1788 blocked the antiseizure activity of diazepam against PTZ. Similar to pentobarbital, the anti-PTZ effect ofl-lysine was not blocked by Ro15-1788. Picrotoxinin and the GABA, receptor antagonist bicuculline partially inhibitedl-lysine's enhancement of [3H]FTZ binding with the IC50s of 2 M and 0.1 M, respectively. The convulsant benzodiazepine Ro5-3663 dose-dependently inhibited the enhancement of [3H]FTZ binding byl-lysine. This article shows the basic amino acidl-lysine to have a central nervous system depressant characteristics with an anti-PTZ seizure activity and an enhancement of [3H]FTZ binding similar to that of barbiturates but different from GABA.  相似文献   

5.
Theories on the neurochemical etiology for hepatic encephalopathy have recently focussed on activation of inhibitory neurotransmitter GABA systems. Modulators of the GABAA receptor complex, including diazepam binding inhibitor, are significantly and selectively altered in hepatic encephalopathy. In animals and humans, benzodiazepine receptor antagonists rapidly ameliorate this syndrome suggesting the possible existence of an endogenous benzodiazepine-like substance. Endogenous GABAergic modulators may contribute to the neurochemical pathogenesis of hepatic encephalopathy.Special issue dedicated to Dr. Erminio Costa  相似文献   

6.
The characteristics of the Na+-independent high-affinity binding of [3H]GABA to various types of crude synaptic membranes (CSM) prepared from rat brain cortex were studied. In freshly prepared CSM the content of GABA was so high that the high-affinity [3H]GABA binding could not be determined. In contrast when the frozen-thawed CSM were incubated at 37° for 30 min with or without Triton X-100 or phospholipase C and then washed repeatedly, there was a virtual disappearance of GABA from the supernatant extracts and the binding constants of [3H]GABA to CSM could be determined. Two apparent populations of [3H]GABA binding sites, one with a low- and the other with a high-affinity constant, were detected. The ratio of the number of high- to low-affinity binding sites varies with the method used to prepare the membranes. The lowest value of this ratio was observed with membranes incubated at 37° for 30 min. However, when frozen-thawed CSM were treated with 0.05% Triton X-100 repeatedly, the ratio of the number of high- to low-affinity binding sites increased progressively. This increase in ratio is due to a selective increase in the number of the high-affinity sites without significant changes in the number of the low-affinity sites. The extent of the increase in the number of sites that bind [3H]GABA with high affinity after repeated Triton X-100 treatments was paralleled by a decrease of an endogenous protein which inhibits GABA binding. The reapplication of this endogenous material to membranes repeatedly treated with Triton X-100 reduces the number of high-affinity binding sites for [3H]GABA to values similar to those measured in membranes that were not treated with Triton X-100. The inhibitory preparation extracted from CSM incubated with Triton X-100 was shown to be free of GABA or phospholipids. The gel filtration chromatography reveals the presence of two molecular forms of the inhibitor; of these, the high-molecular-weight material fails to bind GABA, whereas the low-molecular-weight material appears to bind GABA. The high-molecular-weight endogenous inhibitor has been termed GABA modulin.  相似文献   

7.
Abstract: We have investigated the effect of unsaturated free fatty acids (FFAs) on the brain GABA/benzodiazepine receptor chloride channel complex from mammalian, avian, amphibian, and fish species in vitro. Unsaturated FFAs with a carbon chain length between 16 and 22 carbon atoms enhanced [3H]diazepam binding in rat brain membrane preparations, whereas the saturated analogues had no effect. The enhancement of [3H]diazepam binding by oleic acid was independent of the incubation temperature (0-30°C) of the binding assay and not additive to the enhancement by high concentrations of C1. In rat brain preparations, the stimulation of [3H]diazepam binding by oleic acid (10?4M) was independent of the ontogenetic development. Phylogenetically, large differences were found in the effect of unsaturated FFAs on [3H]diazepam and [3H]muscimol binding: In mammals and amphibians, unsaturated FFAs enhanced both [3H]-muscimol and [3H]diazepam binding to 150-250% of control binding. In 17 fish species studied, oleic acid (10?4M) stimulation of [3H]diazepam binding was weak (11 species), absent (four species), or reversed to inhibition (two species), whereas stimulation of [3H]muscimol binding was of the same magnitude as in mammals and amphibians. In 10 bird species studied, only weak enhancement of [3H]muscimol binding (110–130% of control) by oleic acid (10?4M) was found, whereas [3H]diazepam binding enhancement was similar to values in mammal species. Radiation inactivation of the receptor complex in situ from frozen rat cortex showed that the functional target size for oleic acid to stimulate [3H]flunitrazepam binding has a molecular mass of ~200,000 daltons. Our data show that unsaturated FFAs have distinct effects on membranebound GABA/benzodiazepine receptors in vitro.  相似文献   

8.
Taurine at 10 mM had no effect on basal binding of [3H]diazepam to the membranes, while it significantly inhibited a GABA-stimulated binding of [3H]diazepam in cerebral cortex, hippocampus, but not in cerebellum. The inhibition by taurine in the presence of GABA (1M to 1 mM) was not competitive. At low concentrations (0.04 to 0.2 nM) the binding of [3H]propyl--carboline-3-carboxylate, a ligand exhibiting higher affinity for type I than type II benzodiazepine receptors, was not enhanced by GABA, while the binding of higher concentrations (0.5 nM) was. This GABA enhancement of [3H]propyl--carboline-3-carboxylate binding was also selectively blocked by taurine. Pentobarbital increased the binding of [3H]diazepam in a medium containing chloride and this effect was potentiated by taurine at 1–10 mM. These findings may be relevant to the modulatory role of taurine in the central nervous system.  相似文献   

9.
The recent discovery of pharmacologically relevant, high affinity, stereospecific binding sites for the benzodiazepines in the central nervous system (CNS) has rekindled investigations concerning the mechanism of action of these drugs. It has become increasingly clear that elucidation of benzodiazepine action will provide new and important insights into the neurochemical substances of seizure activity, centrally mediated muscle relaxation and anxiety, three major actions of this class of drugs.The existence of a functional receptor for the benzodiazepines, compounds not present in vivo, suggests that endogenous substances exist that serve as natural substrates for this receptor. Furthermore, the characterization of endogenous benzodiazepine receptor ligands affords an opportunity to determine the neurochemical mechanisms underlying the pharmacologic and behavioral effects manifested by the benzodiazepines.Using receptor binding methodology to assay tissue extracts for [3H] diazepam binding inhibitory activity, putative endogenous ligands for the benzodiazepine receptor have been isolated and identified as the purine nucleosides. Compounds such as inosine and hypoxanthine exhibit competitive inhibition of [3H] diazepam binding. The low affinity purinergic inhibition of diazepam binding is consistent with their in vivo concentrations. Distinct structure-activity relationships exist for the purines with subtle structural alterations having marked effects on diazepam binding inhibitory potency. The methylxanthine stimulants, caffeine, theophylline, and theobromine, also competitively inhibit diazepam binding, suggesting that some of their actions may be mediated by the benzodiazepine receptor.The purines also have “benzodiazepine-like” pharmacologic properties, since they have been shown to antagonize pentylenetetrazol induced seizures in mice in a dose dependent manner. Neurophysiologic studies have also shown that iontophoresis of inosine on cultured mouse primary neurons produce neurotransmitter like effects. Furthermore, these effects are similar to those observed with flurazepam, a finding that provides additional evidence for the “benzodiazepine-like” properties of the purines.The preliminary studies outlined below indicate that the purines are good candidates as putative endogenous ligands for the benzodiazepine receptor and provide a foundation for future studies that concern the homeostatic mediation of seizure activity and anxiety.  相似文献   

10.
In the present paper we describe the presence in avian CNS of an endogenous inhibitor of [3H]flunitrazepam binding. This compound was extracted from a synaptic membrane fraction isolated from chick optic lobe and brain using an exhaustive aqueous washing procedure, then purified by means of solid-phase extraction with C18 cartridges and several HPLC steps until an homogeneous peak was obtained. Its chemical structure was studied by size-exclusion chromatography of the purified material which indicated that it possesses a molecular weight below 1350. Although its inhibitory activity was lost by HCl treatment, its peptidic nature was ruled out by an amino acid and N-terminal sequence analyses. Ultraviolet absorption spectrum showed two main peaks at 230 and 280 nm. The endogenous compound was found to inhibit competitively [3H]flunitrazepam binding to its recognition site without affecting [3H]GABA binding to the same receptor complex. The behavior of the endogenous factor in an in vitro GABA shift test and GABA-dependent chloride flux experiments were similar to that of benzodiazepine receptor agonists. In conclusion, these results demonstrate the existence in avian CNS of a competitive endogenous inhibitor of benzodiazepine binding with agonistic action on benzodiazepine receptors.  相似文献   

11.
The central actions of 1-(2-o-chlorobenzoyl-4-chlorophenyl)-5-glycylaminomethyl-3-dimethylcarbamoyl-1H-1,2,4-triazole hydrochloride dihydrate (450191-S), a potent sleep-inducing and anxiolytic drug, were re-evaluated in terms of the affinity for benzodiazepine (BZP) receptor and the activation of γ-aminobutyric acid (GABA) receptor binding.The 450191-S showed only very low capacity to displace the bindings of [3H]diazepam, [3H]β-carboline-3-carboxylate-ethylester, [3H]Rol5-1788, [3H]Ro5-4864 and [3H]naloxone to cerebral synaptic membranes. Similarly, this drug had a weak and undistinguishable affinity to both BZPtype 1 and 2 receptors determined under the presence of CL 218,872. On the other hand, 450191-S as well as its active metabolites (M-1, M-2, M-A, M-3 and M-4) showed a remarkable activating effect on the GABA receptor binding with low affinity in cerebral synaptic membranes. This enhancement of the low affinity GABA receptor binding was found to be due to the increase of affinity (Kd) but not to the change in Bmax. Furthermore, it has been found that the observed accentuation of low affinity GABA receptor binding is well-correlated with the potency of the central actions of 450191-S such as potentiation of the hypnotic action of barbiturates and muscle relaxation.These results suggest that the central actions of 450191-S may be due to, at least in part, the activation of central GABA receptor binding with low affinity. The present results also suggest that the activation of low affinity GABA receptor binding may be a better criterion than the affinity of BZP receptor for elucidating the central action of a certain type of BZP derivatives.  相似文献   

12.
Abstract: The alcohol-sensitive (ANT) rat line, developed for high behavioral sensitivity to ethanol, also exhibits enhanced sensitivity to benzodiazepines, such as diazepam. The rat line carries a point mutation in the cerebellum-specific γ-aminobutyric acid type A (GABAA) receptor subunit α6, making their diazepam-insensitive (DIS) receptors sensitive to diazepam. We now report that phenotypes of individual ANT and alcohol-insensitive rats, classified on diazepam sensitivity of cerebellar [3H]Ro 15-4513 binding, correlated well with homozygous wild-type, homozygous mutant, and heterozygous genotypes, although some heterozygotes were biased toward the parental phenotypes. GABA down-modulated DIS [3H]Ro 15-4513 binding in mutant homozygotes but tended to up-modulate it in heterozygotes and wild-type homozygotes. Slopes for GABA inhibition of cerebellar t-butylbicyclophosphoro[35S]thionate binding were larger in mutant than in wild-type homozygotes, with heterozygotes being intermediate. Diazepam displacement of [3H]Ro 15-4513 binding in heterozygotes revealed three components, with their affinities indistinguishable from those in combined wild-type and mutant homozygotes. This lack of interaction in DIS binding between wild-type and mutant α6 subunits was substantiated by experiments on recombinant receptors. The data suggest that the α6 subunit-containing GABAA receptors in the heterozygotes are formed from individual mutant and wild-type subunits with their relative expression differing from animal to animal.  相似文献   

13.
Picrotoxin does not by itself affect [3H] diazepam binding to synaptosomal membranes of rat cerebellum; however, picrotoxin stimulated the binding in the presence of Cl? ion or Cl? ion plus low concentrations of GABA. On the other hand, in the presence of GABA at concentrations higher than 1 × 10?6 M, picrotoxin inhibited [3H]diazepam binding. This inhibition seems to be the result of reduced GABA binding, which occurred in the presence of picrotoxin and Cl? ion. These results may indicate that benzodiazepine receptors, GABA receptors, and the Cl? ionophore are closely associated with each other.  相似文献   

14.
GABA receptor binding to mammalian neuronal membranes has been classified into at least 2 subtypes—GABAA and GABAB binding sites. In catfish brain GABAA receptor sites have previously been demonstrated. Evidence is now presented that under appropriate conditions which rule out GABAA receptor binding, [3H]GABA binds to membranes prepared from catfish brain. This binding is bicuculline-insensitive but differs enough from mammalian GABAB binding to cast some doubt on the idea that GABAB receptors exist in catfish brain. Specific binding was detected that was saturable and exhibited a dissociation constant of 4μM. (±)Baclofen, a potent inhibitor in rat brain, was a weak inhibitor, producing a maximum of 43% inhibition. This inhibitory effect could be enhanced, however, in the presence of 320 μM isoguvacine. [3H]GABA binding was unaffected by bicuculline. Thus bicuculline-insensitive GABA binding sites exist in catfish brain but they differ in a number of ways from the GABAB receptor site found in mammals. Furthermore, a third [3H]GABA binding site appears to exist that is both baclofen- and bicuculline-insensitive, yet is inhibited by high concentrations of isoguvacine, a known GABAA agonist.  相似文献   

15.
The peripheral benzodiazepine receptor system triggers intracellular metabolic events and has been associated with cell proliferation. Its endogenous ligand, the diazepam binding inhibitor, contributes to steroidogenesis by promoting cholesterol delivery to the inner mitochondrial membrane. The present study was undertaken to verify whether this system is altered in tumors sited in the liver. Peripheral benzodiazepine receptors and diazepam binding inhibitor were studied using immunocytochemistry and in situ hybridization in 9 human tumors sited in the liver, in liver hyperplasia, cirrhotic nodular regeneration, intestinal adenocarcinoma and in surrounding non-tumoral tissue. Immunocytochemical staining and in situ hybridization demonstrated that peripheral benzodiazepine receptors and diazepam binding inhibitor were more prominently expressed in neoplastic cells than in non-tumoral tissue. They were present in the same cells, suggesting that diazepam binding inhibitor may act in an intracrine manner in these cells. Higher peripheral benzodiazepine receptors and diazepam binding inhibitor expression in tumor cells suggest an implication of this system in the metabolism of neoplastic cells. Furthermore the evaluation of peripheral benzodiazepine receptor and diazepam binding inhibitor expression might be useful in evaluating malignancy and in diagnostic approaches of tumors in liver tissue.  相似文献   

16.
The method used to prepare crude synaptic membranes (CSMs) from rat brain affects the results obtained for the binding characteristics of 3H-diazepam and the GABA-induced stimulation of 3H-diazepam to CSM. In freshly prepared membranes (rich in GABA and other endogenous inhibitory factors), the KD for 3H-diazepam is approximately 10 nM and the threshold dose of GABA needed to stimulate this binding is approximately 10?5M. Removal of GABA resulted in an increase in the KD values for 3H-diazepam binding. In contrast removal of endogenous inhibitory factors (by treatment of the membranes with Triton X-100) resulted in a decrease of the KD values. In the Tritron X-100 treated membranes the threshold dose of GABA (10?8M) required to stimulate 3H-diazepam binding is in the range of the high affinity component of 3H-GABA binding. Addition of crude preparations of endogenous inhibitor to these membranes increased the KD of 3H-diazepam and inhibited the GABA-induced stimulation of 3H-diazepam binding.  相似文献   

17.
Ci S  Ren T  Su Z 《The protein journal》2008,27(2):71-78
The three-dimensional structure of the GABA A receptor that included the ligand/agonist binding site was constructed and validated by using molecular modeling technology. Moreover, the putative binding-mode of GABA and diazepam with GABAA receptor were investigated by means of docking studies. Based on an rmsd-tolerance of 1.0 angstroms, the docking of GABA to alpha1/beta2 interface resulted in three multi-member conformational clusters and model 2 was supported by homologous sequence alignment data and experimental evidence. On the other hand, the docking of diazepam to alpha1/gamma2 interface revealed five multi-member conformational clusters in the binding site and model 1 seemed to represent the correct orientation of diazepam in the binding site.  相似文献   

18.
Identification of [14C]pipecolic acid (PA) receptors was attempted in the solubilized membrane fraction from rat cerebral cortex. Specific binding proteins for both PA and muscimol, a potent -aminobutyric acid (GABA) agonist, were detected in the same preparation. Separation of labeled PA and GABA binding proteins by glycerol gradient centrifugation has shown labeled protein bands of similar sedimentation rates, suggesting that PA and GABA may be binding to identical proteins. It seems likely that the PA binding receptor either may possess the same sedimentation characteristics as that of the GABA receptor, or both GABA and PA which is an endogenous and weak GABA agonist may bind to the same receptor complex, if not to the same binding site.  相似文献   

19.
The CNS of the cockroach Periplaneta americana contains saturable, specific binding sites for [3H]GABA, [3H]flunitrazepam and [35S]TBPS. The [3H]GABA binding site exhibits a pharmacological profile distinct from that reported for mammalian GABAA and GABAB receptors. The most potent inhibitors of [3H]GABA binding were GABA and muscimol, whereas isoguvacine, thiomuscimol and 3-aminopropane sulphonic acid were less effective. Bicuculline methiodide and baclofen were ineffective. Binding of [35S]TBPS was partially inhibited by 1.0 × 10−6 M GABA, whilst binding of [3H]flunitrazepam was enhanced by 1.0 × 10−7 M GABA. The pharmacological profile of the [3H]flunitrazepam binding site showed some similarities with the peripheral benzodiazepine binding sites of vertebrates, with Ro-5-4864 being a far more effective inhibitor of binding than clonazepam. Thus a class of GABA receptors with pharmacological properties distinct from mammalian GABA receptor subtypes is present in insect CNS.  相似文献   

20.
Sodium-independent binding of gamma aminobutyric acid (GABA) to receptor-like sites in mammalian brain homogenates was much greater in membrane fractions which had been thoroughly washed with buffer, or detergent, and frozen and thawed several times, than in fresh unwashed membranes. As previously shown (Greenlee, Van Ness, & Olsen, Life Sciences 22, 1653 (1978), the washing procedure removed endogenous inhibitors of GABA binding which led to an apparent improvement in GABA binding affinity to a low affinity class of sites (KD ? 170 nM), and, additionally, the appearance of a high affinity (KD ? 10 nM) class of sites. This endogenous inhibitory material was found to inhibit both classes of GABA binding sites, but with greater potency towards the high affinity sites for GABA. Biochemical characterization of the inhibitor fraction revealed that the activity was heat-stable, insensitive to trypsin and disulfide reducing compounds, dialyzeable through membrane sieves which would retain molecules with a molecular weight of 5000, and eluted 100% from a molecular sieve column in the position of small molecules (salt volume), clearly separated from a 16,000 molecular weight marker. The inhibitor was over 80% inactivated by the enzyme GABAse, indicating that most, and perhaps all of the endogenous inhibitor of GABA binding was indeed GABA itself. The difficulty in removing endogenous GABA from brain membranes must be considered in studies on benzodiazepine receptors (since they are affected in vitro by GABA) and in any comparison of GABA or benzodiazepine receptors in human neuropsychiatric disorders, drug treatment or lesion studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号