首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Production and release of apolipoprotein (apo) E and cholesterol were highly upregulated in the astrocytes prepared by 1-week secondary culture after 1-month primary culture of rat fetal brain cells (M/W cells) in comparison to the cells prepared by a conventional method of 1-week primary and 1-week secondary culture (W/W cells). Both cell preparations were mostly composed of astrocytes with small population of other glial cells, except that type-2 astrocyte-like cells accounted for 5–15% of M/W cells indicating more activated and/or matured status. The conditioned medium of the 1-month primary culture stimulated W/W cells to increase the release of apoE and cholesterol into the medium. The treatment of W/W cells by acidic fibroblast growth factor (aFGF) similarly upregulated biosyntheses and release of apoE and cholesterol. The effect of the conditioned medium was completely inhibited by pretreatment with an anti-aFGF antibody. The increase of the aFGF message was demonstrated in the brain cells after 1-month primary culture. The findings suggested that an aFGF-like trophic factor upregulates biosynthesis and secretion of apoE-high density lipoprotein (HDL) in astrocytes probably by autocrine stimulation in this culture system. Since this cytokine is highly expressed in the development or post-injury period of the brain, it putatively activates intercellular cholesterol transport to support construction or recovery of the brain.  相似文献   

3.
Production and release of apolipoprotein (apo) E and cholesterol were highly upregulated in the astrocytes prepared by 1-week secondary culture after 1-month primary culture of rat fetal brain cells (M/W cells) in comparison to the cells prepared by a conventional method of 1-week primary and 1-week secondary culture (W/W cells). Both cell preparations were mostly composed of astrocytes with small population of other glial cells, except that type-2 astrocyte-like cells accounted for 5-15% of M/W cells indicating more activated and/or matured status. The conditioned medium of the 1-month primary culture stimulated W/W cells to increase the release of apoE and cholesterol into the medium. The treatment of W/W cells by acidic fibroblast growth factor (aFGF) similarly upregulated biosyntheses and release of apoE and cholesterol. The effect of the conditioned medium was completely inhibited by pretreatment with an anti-aFGF antibody. The increase of the aFGF message was demonstrated in the brain cells after 1-month primary culture. The findings suggested that an aFGF-like trophic factor upregulates biosynthesis and secretion of apoE-high density lipoprotein (HDL) in astrocytes probably by autocrine stimulation in this culture system. Since this cytokine is highly expressed in the development or post-injury period of the brain, it putatively activates intercellular cholesterol transport to support construction or recovery of the brain.  相似文献   

4.
We previously showed that astrocytes produce and release fibroblast growth factor-1 (FGF-1) upon 1-month primary and 1-week secondary culture (M/W cells) and stimulate themselves by an autocrine manner to produce apoE-high-density lipoproteins (HDL), closely associated with their generation of apoE-HDL in brain injury. Astrocytes prepared by 1-week primary and 1-month secondary culture (W/M cells), however, expressed FGF-1 as much as M/W cells but produce apoE-HDL much less. The W/M cells conditioned medium in fact contained FGF-1 activity to stimulate astrocytes prepared by 1-week primary and 1-week-secondary culture (W/W cells). FGF-1 did not stimulate W/M cells for apoE-HDL biogenesis while it stimulated W/W cells. Phosphorylation of Akt, ERK and MEK were induced by FGF-1 in W/W cells but not in W/M cells. Finally, fibroblast growth factor receptor-1 in the membrane decreased in W/M cells in comparison to W/W cells. Interestingly, the reactivity of astrocytes to FGF-1 was recovered when W/M cells were transferred to the tertiary culture of 1 week. We concluded that astrocytes decrease their reactivity to FGF-1 for apoE-HDL biogenesis in certain conditions. The findings indicate astrocyte FGF-1 enhances biogenesis of apoE-HDL also by a paracrine mechanism.  相似文献   

5.
Astrocytes play a key role in cholesterol metabolism in central nervous system. We have shown that fetal rat astrocytes in primary culture secrete cholesterol-rich HDL with the endogenous apolipoprotein (apo) E and generate cholesterol-poor HDL with exogenous apoE and apoA-I [Ito et al. (1999) J. Neurochem. 72, 2362]. In order to study these reactions in relation to the stage of cell differentiation, we examined generation of HDL by rat astrocytoma cells. Lack of apoE secretion was found in three astrocytoma cell lines, human T98G, rat C6, and GA-1 [Kano-Tanaka et al. (1986) Proc. Jpn. Acad. Ser. B 62, 109]. GA-1 produced apoE at very low level and therefore generated much less HDL by itself than the astrocytes in primary culture. In contrast, GA-1 interacted with exogenous apoE and apoA-I to produce cholesterol-rich HDL while the astrocytes produced cholesterol-poor HDL with these apolipoproteins. Cholesterol biosynthesis rate measured from mevalonate was higher and down-regulated more by LDL in the astrocytes than GA-1. On the other hand, the cellular cholesterol level, uptake of LDL, and cyclodextrin-mediated non-specific diffusion of cholesterol from cell surface were same between these two cells. Treatment of GA-1 with acidic fibroblast growth factor influenced neither the production of apoE nor the baseline lipid secretion, but increased the cholesterol synthesis from mevalonate and the magnitude of its down-regulation by LDL, and decreased cholesterol content in the HDL produced by exogenous apoA-I. In conclusion, suppression of apoE biosynthesis in the undifferentiated astrocytes GA-1 resulted in poor secretion of cholesterol-rich HDL and in turn more production of HDL with exogenous apolipoprotein. Cellular cholesterol homeostasis was altered accordingly.  相似文献   

6.
We recently reported that fibroblast growth factor 1 (FGF-1) upregulates apolipoprotein E (apoE) synthesis and its secretion as high density lipoprotein (HDL) in cultured astrocytes potentially by an autocrine or paracrine mechanism [Biochim. Biopys. Acta 1589 (2002) 261]. In order to examine pathophysiological relevance of this reaction, we studied association of the production of FGF-1 and apoE in the post-injury mouse brain. After the spot-injury of the brain by liquid nitrogen, the surface size of the wound shrunk more rapidly in the C57BL/6 wild-type mice than the apoE-knock out C57BL/6 mice. Immunohistochemical analysis of the lesions revealed that production of FGF-1 was identified in the reactive astrocytes by the day 2 after the injury in both types of mouse, prior to the production of apoE confirmed by the day 4 in the wild-type. These findings were consistent with our in-vitro observations and hypothesis that FGF-1 upregulates apoE synthesis and subsequently HDL production in the reactive astrocytes by an autocrine or paracrine manner. FGF-1 thus would exert its effect after the CNS damage through apoE secretion.  相似文献   

7.
8.
Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain   总被引:1,自引:0,他引:1  
ABCA1 is a cholesterol transporter that is widely expressed throughout the body. Outside the central nervous system (CNS), ABCA1 functions in the biogenesis of high-density lipoprotein (HDL), where it mediates the efflux of cholesterol and phospholipids to apolipoprotein (apo) A-I. Deficiency of ABCA1 results in lack of circulating HDL and greatly reduced levels of apoA-I. ABCA1 is also expressed in cells within the CNS, but its roles in brain lipid metabolism are not yet fully understood. In the brain, glia synthesize the apolipoproteins involved in CNS lipid metabolism. Here we demonstrate that glial ABCA1 is required for cholesterol efflux to apoA-I and plays a key role in facilitating cholesterol efflux to apoE, which is the major apolipoprotein in the brain. In both astrocytes and microglia, ABCA1 deficiency reduces lipid efflux to exogenous apoE. The impaired ability to efflux lipids in ABCA1-/- glia results in lipid accumulation in both astrocytes and microglia under normal culture conditions. Additionally, apoE secretion is compromised in ABCA1-/- astrocytes and microglia. In vivo, deficiency of ABCA1 results in a 65% decrease in apoE levels in whole brain, and a 75-80% decrease in apoE levels in hippocampus and striatum. Additionally, the effect of ABCA1 on apoE is selective, as apoJ levels are unchanged in brains of ABCA1-/- mice. Taken together, these results show that glial ABCA1 is a key influence on apoE metabolism in the CNS.  相似文献   

9.
Most peripheral cells generate cholesterol-rich high-density lipoprotein (HDL) with exogenous apolipoprotein as one of the mechanisms for the maintenance of cellular cholesterol homeostasis. Astrocytes isolated from fetal rat brain showed a unique behavior in this reaction. Consistent with previous findings, the astrocytes synthesized apolipoprotein (apo) E and generated cholesterol-rich pre-beta-HDL-like lipoprotein with this apoE, and cellular cholesterol and phospholipids. When exogenous apoA-I and E were added to the medium, they caused generation of additional HDL with cellular phospholipid. It is interesting that this additional part was very poor in cholesterol except for the generation of relatively cholesterol-rich HDL only in the initial few hours of the incubation. The mobilization of intracellular cholesterol for this reaction was also very limited, reflecting the poor cholesterol incorporation into the HDL. Thus, the results demonstrated a unique profile of HDL generation and cholesterol efflux by apolipoproteins in rat astrocytes, with endogenous apoE producing cholesterol-rich HDL and exogenous apolipoproteins producing cholesterol-poor HDL. These lipoproteins may play differential roles in cholesterol transport in the CNS.  相似文献   

10.
ABCA1 is an ATP-binding cassette protein that transports cellular cholesterol and phospholipids onto high density lipoproteins (HDL) in plasma. Lack of ABCA1 in humans and mice causes abnormal lipidation and increased catabolism of HDL, resulting in very low plasma apoA-I, apoA-II, and HDL. Herein, we have used Abca1-/- mice to ask whether ABCA1 is involved in lipidation of HDL in the central nervous system (CNS). ApoE is the most abundant CNS apolipoprotein and is present in HDL-like lipoproteins in CSF. We found that Abca1-/- mice have greatly decreased apoE levels in both the cortex (80% reduction) and the CSF (98% reduction). CSF from Abca1-/- mice had significantly reduced cholesterol as well as small apoE-containing lipoproteins, suggesting abnormal lipidation of apoE. Astrocytes, the primary producer of CNS apoE, were cultured from Abca1+/+, +/-, and -/- mice, and nascent lipoprotein particles were collected. Abca1-/- astrocytes secreted lipoprotein particles that had markedly decreased cholesterol and apoE and had smaller apoE-containing particles than particles from Abca1+/+ astrocytes. These findings demonstrate that ABCA1 plays a critical role in CNS apoE metabolism. Since apoE isoforms and levels strongly influence Alzheimer's disease pathology and risk, these data suggest that ABCA1 may be a novel therapeutic target.  相似文献   

11.
Intercellular cholesterol transport in the brain is carried by high density lipoprotein (HDL) generated in situ by cellular interaction with the apolipoprotein apoE, which is mainly synthesized by astrocytes, and with apoA-I secreted by cells such as endothelial cells. Rat astrocytes in fact generate HDL with extracellular apoA-I in addition to releasing HDL with endogenously synthesized apoE, seemingly by the same mechanism as the HDL assembly for systemic circulation. Relating to this reaction, apoA-I induced translocation of newly synthesized cholesterol and phospholipid to the cytosol prior to extracellular assembly of HDL, accompanied by an increase of caveolin-1 in the cytosol, activation of sterol regulatory element-binding protein, and enhancement of cholesterol synthesis. The lipid translocated into the cytosol was recovered in the fraction with a density of 1.09-1.16 g/ml as well as caveolin-1 and cyclophilin A. Cyclosporin A inhibited these apoA-I-mediated reactions and suppressed apoA-I-mediated cholesterol release. The findings suggest that such translocation of cholesterol and phospholipid into the cytosol is related to the apo A-I-mediated HDL assembly in astrocytes through functional association with caveolin-1 and a cyclosporin A-sensitive cyclophilin protein(s).  相似文献   

12.
We have reported previously (Michikawa, M., Fan, Q.-W., Isobe, I., and Yanagisawa, K. (2000) J. Neurochem. 74, 1008-1016) that exogenously added recombinant human apolipoprotein E (apoE) promotes cholesterol release in an isoform-dependent manner. However, the molecular mechanism underlying this isoform-dependent promotion of cholesterol release remains undetermined. In this study, we demonstrate that the cholesterol release is mediated by endogenously synthesized and secreted apoE isoforms and clarify the mechanism underlying this apoE isoform-dependent cholesterol release using cultured astrocytes prepared from human apoE3 and apoE4 knock-in mice. Cholesterol and phospholipids were released into the culture media, resulting in the generation of two types of high density lipoprotein (HDL)-like particles; one was associated with apoE and the other with apoJ. The amount of cholesterol released into the culture media from the apoE3-expressing astrocytes was approximately 2.5-fold greater than that from apoE4-expressing astrocytes. In contrast, the amount of apoE3 released in association with the HDL-like particles was similar to that of apoE4, and the sizes of the HDL-like particles released from apoE3- and apoE4-expressing astrocytes were similar. The molar ratios of cholesterol to apoE in the HDL fraction of the culture media of apoE3- and apoE4-expressing astrocytes were 250 +/- 6.0 and 119 +/- 5.1, respectively. These data indicate that apoE3 has an ability to generate similarly sized lipid particles with less number of apoE molecules than apoE4, suggesting that apoE3-expressing astrocytes can supply more cholesterol to neurons than apoE4-expressing astrocytes. These findings provide a new insight into the issue concerning the putative alteration of apoE-related cholesterol metabolism in Alzheimer's disease.  相似文献   

13.
Helical apolipoproteins interact with cellular surface and generate high density lipoprotein (HDL) by removing phospholipid and cholesterol from cells. We have reported that the HDL is generated by this reaction with the fetal rat astrocytes and meningeal fibroblasts but cholesterol is poorly available to this reaction with the astrocytes (Ito et al. 1999. J. Neurochem. 72: 2362;-2369). Partial digestion of the membrane by extracellular sphingomyelinase increased the incorporation of cholesterol into thus-generated HDL from both types of cell. This increase was diminished by supplement of endogenous or exogenous sphingomyelin to the cells. The sphingomyelinase treatment decreased cholesterol in the membrane mainly in the detergent-resisting domain. The intracellular cholesterol used by acylCoA:cholesterol acyltransferase increased by the sphingomyelinase treatment in the absence of apoA-I, more remarkably in the fibroblast than in the astrocytes. ApoA-I suppressed this increase completely in the astrocytes, but only partially in the fibroblast. The effect of the sphingomyelin digestion was more prominent for the apolipoprotein-mediated reaction than the diffusion-mediated cellular cholesterol efflux. Thus, cholesterol molecules restricted by sphingomyelin in the domain of the plasma membrane appear to be primarily used for the HDL assembly upon the apolipoprotein;-cell interaction.  相似文献   

14.
Apolipoprotein E (apoE) is an important protein involved in lipoprotein clearance and cholesterol redistribution. ApoE is abundantly expressed in astrocytes in the brain and is closely linked to the pathogenesis of Alzheimer's disease (AD). We report here that small molecule ligands that activate either liver X receptors (LXR) or retinoid X receptor (RXR) lead to a dramatic increase in apoE mRNA and protein expression as well as secretion of apoE in a human astrocytoma cell line (CCF-STTG1 cells). Examination of primary mouse astrocytes also revealed significant induction of apoE mRNA, and protein expression and secretion following incubation with LXR/RXR agonists. Moreover, treatment of mice with a specific synthetic LXR agonist T0901317 resulted in up-regulation of apoE mRNA and protein in both hippocampus and cerebral cortex, indicating that apoE expression in brain can be up-regulated by LXR agonists in vivo. Along with a dramatic induction of ABCA1 cholesterol transporter expression, these ligands effectively mediate cholesterol efflux in both CCF-STTG1 cells and mouse astrocytes in the presence or absence of apolipoprotein AI (apoAI). Our studies provide strong evidence that small molecule LXR/RXR agonists can effectively mediate apoE synthesis and secretion as well as cholesterol homeostasis in astrocytes. LXR/RXR agonists may have significant impact on the pathogenesis of multiple neurological diseases, including AD.  相似文献   

15.
Sphingosine 1-phosphate (S1P) is accumulated in lipoproteins, especially high-density lipoprotein (HDL), in plasma. However, it remains uncharacterized how extracellular S1P is produced in the CNS. The treatment of rat astrocytes with retinoic acid and dibutyryl cAMP, which induce apolipoprotein E (apoE) synthesis and HDL-like lipoprotein formation, stimulated extracellular S1P accumulation in the presence of its precursor sphingosine. The released S1P was present together with apoE particles in the HDL fraction. S1P release from astrocytes was inhibited by the treatment of the cells with glybenclamide or small interfering RNAs specific to ATP-binding cassette transporter A1 (ABCA1). Astrocytes from Abca1−/− mice also showed impairment of retinoic acid/dibutyryl cAMP-induced S1P release in association with the blockage of HDL-like lipoprotein formation. However, the formation of either apoE or lipoprotein itself was not sufficient, and additional up-regulation of ABCA1 was requisite to stimulate S1P release. We conclude that the S1P release from astrocytes is coupled with lipoprotein formation through ABCA1.  相似文献   

16.
Apolipoprotein A-I (apoA-I) induces the translocation of newly synthesized cholesterol as well as caveolin-1 to the cytosolic lipid-protein particle (CLPP) fraction in astrocytes before its appearance in high density lipoprotein generated in the medium (Ito, J., Y. Nagayasu, K. Kato, R. Sato, and S. Yokoyama. 2002. Apolipoprotein A-I induces translocation of cholesterol, phospholipid, and caveolin-1 to cytosol in rat astrocytes. J. Biol. Chem. 277: 7929-7935). We here report the association of signal-related molecules with CLPP. ApoA-I induces rapid translocation of protein kinase Calpha to the CLPP fraction and its phosphorylation in astrocytes. ApoA-I also induces the translocation of phospholipase Cgamma to CLPP. Diacylglyceride (DG) production is increased by apoA-I in the cells, with a maximum at 5 min after the stimulation, and the increase takes place also in the CLPP fraction. An inhibitor of receptor-coupled phospholipase C, U73122, inhibited all the apoA-I-induced events, such as DG production, cholesterol translocation to the cytosol, release of cholesterol, and translocation of protein kinase Calpha into the CLPP fraction. CLPP may thus be involved in the apoA-I-initiated signal transduction in astrocytes that is related to intracellular cholesterol trafficking for the generation of high density lipoprotein in the brain.  相似文献   

17.
Cholesterol plays an important role during brain development, since it is involved in glial cell proliferation, neuronal survival and differentiation, and synaptogenesis. Astrocytes produce large amounts of brain cholesterol and produce and release lipoproteins containing apoE that can extract cholesterol from CNS cells for elimination. We hypothesized that some of the deleterious effects of ethanol in the developing brain may be due to the disruption of cholesterol homeostasis in astrocytes. This study investigates the effect of ethanol on cholesterol efflux mediated by ATP-binding cassette (ABC) cholesterol transporters. In fetal rat astrocytes in culture, ethanol caused a concentration-dependent increase in cholesterol efflux and increased the levels of ABCA1 starting at 25 mm. Similar effects of ethanol on cholesterol efflux and ABCA1 were also observed in fetal human astrocytes. In addition, ABCA1 levels were increased in the brains of 7-day-old pups treated for 3 days with 2, 4, or 6 g/kg ethanol. Ethanol also increased apoE release from fetal rat astrocytes, and conditioned medium prepared from ethanol-treated astrocytes extracted more cholesterol than conditioned medium from untreated cells. In addition, ethanol increased the levels of another cholesterol transporter, ABCG1. Ethanol did not affect cholesterol synthesis and reduced the levels of intracellular cholesterol in rat astrocytes. Retinoic acid, which induces teratogenic effects similarly to ethanol, also caused up-regulation of ABCA1 and ABCG1.  相似文献   

18.
Composition of central nervous system lipoproteins affects the metabolism of lipoprotein constituents within the brain. The epsilon4 allele of apolipoprotein E (apoE) is a risk factor for Alzheimer's disease via an unknown mechanism(s). As glia are the primary central nervous system cell type that synthesize apoE, we characterized lipoproteins secreted by astrocytes from wild type (WT), apoE (-/-), and apoE transgenic mice expressing human apoE3 or apoE4 in a mouse apoE (-/-) background. Nondenaturing size exclusion chromatography demonstrates that WT, apoE3, and apoE4 astrocytes secrete particles the size of plasma high density lipoprotein (HDL) composed of phospholipid, free cholesterol, and protein, primarily apoE and apoJ. However, the lipid:apoE ratio of particles containing human apoE is significantly lower than WT. ApoE localizes across HDL-like particle sizes. ApoJ localizes to the smallest HDL-like particles. ApoE (-/-) astrocytes secrete little phospholipid or free cholesterol despite comparable apoJ expression, suggesting that apoE is required for normal secretion of astrocyte lipoproteins. Further, particles were not detected in apoE (-/-) samples by electron microscopy. Nondenaturing immunoprecipitation experiments indicate that apoE and apoJ reside predominantly on distinct particles. These studies suggest that apoE expression influences the unique structure of astrocyte lipoproteins, a process further modified by apoE species.  相似文献   

19.
Plasma apolipoprotein E (apoE) is a 34-kDa polymorphic protein which has atheroprotective actions by clearing remnant lipoproteins and sequestering excess cellular cholesterol. Low or dysfunctional apoE is a risk factor for hyperlipidaemia and atherosclerosis, and for restenosis after angioplasty. Here, in short-term studies designed to establish proof-of-principle, we investigate whether encapsulated recombinant Chinese hamster ovary (CHO) cells can secrete wild-type apoE3 protein in vitro and then determine whether peritoneal implantation of the microcapsules into apoE-deficient (apoE(-/-)) mice reduces their hypercholesterolaemia. Recombinant CHO-E3 cells were encapsulated into either alginate poly-l-lysine or alginate polyethyleneimine/polybrene microspheres. After verifying stability and apoE3 secretion, the beads were then implanted into the peritoneal cavity of apoE(-/-) mice; levels of plasma apoE3, cholesterol and lipoproteins were monitored for up to 14 days post-implantation. Encapsulated CHO-E3 cells continued to secrete apoE3 protein throughout a 60-day study period in vitro, though levels declined after 14 days. This cell-derived apoE3 was biologically active. When conditioned medium from encapsulated CHO-E3 cells was incubated with cultured cells pre-labelled with [(3)H]-cholesterol, efflux of cholesterol was two to four times greater than with normal medium (at 8 h, for example, 7.4+/-0.3% vs. 2.4+/-0.2% of cellular cholesterol; P<0.001). Moreover, when secreted apoE3 was injected intraperitoneally into apoE(-/-) mice, apoE3 was detected in plasma and the hyperlipidaemia improved. Similarly, when alginate polyethyleneimine/polybrene capsules were implanted into the peritoneum of apoE(-/-) mice, apoE3 was secreted into plasma and at 7 days total cholesterol was reduced, while atheroprotective high-density lipoprotein (HDL) increased. In a second study, apoE was detectable in plasma of five mice treated with alginate poly-l-lysine beads, 4 and 7 days post-implantation, though not at day 14. Furthermore, their hypercholesterolaemia was reduced, while HDL was clearly elevated in all mice at days 4 and 7 (from 18.4+/-6.2% of total lipoproteins to 31.1+/-6.8% at 7 days; P<0.001); however, these had rebounded by day 14, possibly due to the emergence of anti-apoE antibodies. We conclude that microencapsulated apoE-secreting cells have the potential to ameliorate the hyperlipidaemia of apoE deficiency, but that the technology must be improved to become a feasible therapeutic to treat atherosclerosis.  相似文献   

20.
Many studies have shown that apolipoprotein E (apoE) plays important roles in maintaining intracellular lipid homeostasis in nonneuronal cells. However, little is known about the extracellular transport of lipids in the CNS. In this study, we determined whether and to what degree lipid efflux from astrocytes and neurons depended on apoE. Our results showed that exogenously added apoE promoted the efflux of cholesterol and phosphatidylcholine from both astrocytes and neurons in culture, resulting in the generation of high-density lipoprotein-like particles. The order of potency of the apoE isoforms as lipid acceptors was apoE2 > apoE3 = apoE4 in astrocytes and apoE2 > apoE3 > apoE4 in neurons. Treatment with brefeldin A, monensin, and a protein kinase C inhibitor, H7, abolished the ability of apoE to promote cholesterol efflux from cultured astrocytes, without altering apoE-mediated phosphatidylcholine efflux. In contrast, the efflux of both cholesterol and phosphatidylcholine promoted by apoE was abolished following treatment with heparinase or lactoferrin, which block the interaction of apoE with heparan sulfate proteoglycans (HSPGs) or low-density lipoprotein receptor-related protein (LRP), respectively. This study suggests that apoE promotes lipid efflux from astrocytes and neurons in an isoform-specific manner and that cell surface HSPGs and/or HSPG-LRP pathway may mediate this apoE-promoted lipid efflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号