首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
比较了四种固定菌体的方法。结果以聚乙烯醇—海藻酸钠包埋地衣芽孢杆菌(Bacillus licheniformis)R08菌体,制成直径约2mm的颗粒,然后用磷酸缓冲液处理,5%戊二醛溶液交联,制得的固定化R08菌体(PIRB)对Pd2+的吸附率最高。PIRB吸附Pd2+的最适pH值为35。吸附作用是一种迅速的过程。在5℃~60℃范围内,吸附作用不受温度的影响。溶液中的PIRB含量和Pd2+起始浓度影响吸附作用,在05gPIRB/L、200mg Pd2+/L、pH35和30℃条件下,吸附60min,吸附量达94.7mg/g干重。吸附过程符合Freundlich和Langmuir吸附等温式。Au3+等离子抑制PIRB对Pd2+的吸附。用lmol/L HCl洗脱PIRB所吸附的Pd2+,解吸率为83.6%。在填充床反应器中,在流速2mL/min、100mgPd2+/L、2.5g PIRB(干重)、pH3.5和30℃条件下,反复吸附-解吸附,最初5批的饱和吸附量、吸附率和解吸率分别平均为44.3mgPd2+/g干重、89.4%和82.5%。在与上述相同的条件下,PIRB对废钯催化剂处理液中的Pd2+的吸附量为41.3mg/g,吸附率为88.6%。  相似文献   

2.
固定化地衣芽孢杆菌R08吸附Pd^2+的研究   总被引:9,自引:0,他引:9  
比较了四种固定菌体的方法。结果以聚乙烯醇一海藻酸钠包埋地衣芽孢杆菌(Bacillus licheniformis)R08菌体,制成直径约2mm的颗粒,然后用磷酸缓冲液处理,5%戊二醛溶液交联,制得的固定化R08菌体(PIRB)对Pd^2 的吸附率最高。PIRB吸附Pd^2 的最适pH值为3.5。吸附作用是一种迅速的过程。在5℃—60℃范围内,吸附作用不受温度的影响。溶液中的PIRB含量和Pd^2 起始浓度影响吸附作用,在0.5gPIRB/L、200mg Pd^2 /L、pH3.5和30℃条件下,吸附60min,吸附量达94.7mg/g干重。吸附过程符合Freundlich和Langmuir吸附等温式。Au^3 等离子抑制PIRB对Pd^2 的吸附。用1mol/L HCl洗脱PIRB所吸附的Pd^2 ,解吸率为83.6%。在填充床反应器中,在流速2mL/min、100mgPd^2 /L、2.5g PIRB(干重)、pH3.5和30℃条件下,反复吸附—解吸附,最初5批的饱和吸附量、吸附率和解吸率分别平均为44.3mgPd^2 /g干重、89.4%和82.5%。在与上述相同的条件下,PIRB对废钯催化剂处理液中的Pd^2 的吸附量为41.3mg/g,吸附率为88.6%。  相似文献   

3.
巨大芽孢杆菌D01吸附金(Au3+)的研究   总被引:17,自引:0,他引:17  
巨大芽孢杆菌(Bacillus megaterium)D01菌体吸附AU^3+的最适pH值为3.0,其生物吸附作用是一种快速的过程,最初5min 的吸附量可达到最大吸附量的95%,温度不影响该吸附作用。在pH3.0和30℃、起始金离子浓度与菌体浓度之比为305mg/g的条件下,吸附30min,吸附率达99.1%,吸附量为302.0mg/g干菌体。D01菌体能将浓度中的Au^3+还原成Au^0,在细  相似文献   

4.
目的:探讨不同碳氮源对胶质芽孢杆菌GSY -1的生物脱硅效果的影响.方法:采用单因素试验并结合方差分析确定影响GSY -1生物脱硅的碳氮源种类及浓度,通过回归实验及响应面分析进一步优化培养条件,然后利用10L发酵罐进行放大实验验证.结果:研究发现,乳糖和尿素对GSY -1生物脱硅的影响均显著,其中尿素10g/L及乳糖13g/L时,培养液中铝硅比(A/S)分别可由2.84提高到5.45和5.42,通过响应面优化实验,确定尿素10.35g/L、乳糖12.60g/L时,菌株GSY -1的脱硅效果最佳,铝硅比由2.84提高到5.67,增幅达99.65%.经10 L发酵罐放大实验,测得浸矿后的铝硅比为5.07,较浸矿前提高78.52%.结论:乳糖和尿素对胶质芽孢杆菌GSY -1脱硅效果影响显著,响应面法可有效用于GSY -1菌株脱硅条件的优化.  相似文献   

5.
巨大芽孢杆菌(Bacillus megaterium)D01菌体吸附Au3+的最适pH值为30,其生物吸附作用是一种快速的过程,最初5min的吸附量可达到最大吸附量的95%,温度不影响该吸附作用。在pH3.0和30℃、起始金离子浓度与菌体浓度之比为305mg/g的条件下,吸附30min,吸附率达99.1%,吸附量为302.0mg/g干菌体。D01菌体能将溶液中的Au3+还原成Au0,在细胞表面和溶液中的Au0能形成不同形状的金晶体。浸渍在SiO2和αFe2O.3的Au3+能被D01菌体还原成Au0。从电化学反应表明,D01菌体对Au3+的还原具有较好的选择性。  相似文献   

6.
胶质类芽孢杆菌功能及基因组学研究进展   总被引:2,自引:0,他引:2  
马鸣超  姜昕  李力  李俊 《生命科学》2014,(10):1038-1045
胶质类芽孢杆菌(Paenibacillus mucilaginosus)因其具有多功能、强抗逆等特点而成为微生物肥料的首选菌种,它在农业生产中表现出提高土壤速效钾与速效磷含量、促进作物生长、提高作物产量和品质等多方面的效应,一直是研究的重点和热点。首次从P.mucilaginosus的系统发育地位及快速检测技术、生物学功能、基因组学研究进展等方面进行综述,以期进一步拓宽对该细菌生物学特征及其功能的认识,推动其在生态农业中的应用。  相似文献   

7.
胶质芽孢杆菌HM8841紫外线诱变育种研究   总被引:2,自引:0,他引:2  
以胶质芽孢杆菌HM8841作为出发菌株,通过紫外线诱变和突变菌株性能测定,选育出3株适合生产发酵的优良菌种。与出发菌株相比,突变株具有缩短发酵周期,提高发酵水平,增强芽孢抗逆性能等特点。  相似文献   

8.
不同培养条件对胶质芽孢杆菌诱导碳酸钙晶体形成的影响   总被引:4,自引:0,他引:4  
周雪莹  杜叶  连宾 《微生物学报》2010,50(7):956-962
【目的】研究不同培养条件对胶质芽孢杆菌(Bacillus mucilaginosus)菌体形态、数量和分泌的碳酸酐酶(CA酶)活性的影响,以及不同方式培养的菌体与碳酸钙晶体的生长及其形貌、数量之间的联系。【方法】分别采用无氮和有氮培养基培养胶质芽孢杆菌,进行菌体形态、数量及CA酶活性的比较,收集不同培养方式的菌体加入碳酸钙结晶体系中以研究细菌与碳酸钙晶体形成的联系。【结果】在无氮培养条件下,胶质芽孢杆菌数量少、荚膜肥厚,细菌培养液CA酶活力较低;有氮培养条件下,菌体数量多、荚膜单薄,细菌培养液CA酶活力较高。在碳酸钙结晶体系中加入无氮培养的菌体,生成的碳酸钙晶体表面光滑,体积较大但数量较小,加入有氮条件下培养的菌体形成的碳酸钙晶体表面粗糙,数量大但体积较小。【结论】不同培养条件能够引起胶质芽孢杆菌菌体数量、荚膜多糖及CA酶活的明显差异,进而对碳酸钙晶体的生成和形貌产生影响。  相似文献   

9.
细菌吸附Pd2+的研究   总被引:13,自引:0,他引:13  
从不同来源的细菌菌株中筛选获得一株吸附Pd2+能力较强的菌株R08,经鉴定为地衣芽孢杆菌(\%Bacillus licheniformis)\%R08。R08死菌体吸附Pd2+的最适pH值为3.5,其吸附作用是一种快速而非依赖温度的过程。吸附作用受菌体浓度和Pd2+浓度影响。在起始Pd2+浓度200mg/L\,菌浓度0.4g/L\,pH35和30℃条件下,吸附45min,吸附量为2248mg/g。透射电镜观察显示,R08死菌体能够还原Pd2+成Pd0颗粒。红外光谱分析表明,细胞壁上的COO-和HPO42-基团可能与Pd2+的生物吸附有关。  相似文献   

10.
小球藻对水溶液中Zn2+、Cd2+的吸附   总被引:2,自引:0,他引:2  
对小球藻生物吸附Zn^2 ,Cd^2 的影响因素进行了研究,发现小球藻对Zn^2 ,Cd^2 的生物吸附主要经历了快速的物理吸附和缓慢的化学吸附两个步骤;pH值是影响Zn^2 ,Cd^2 生物吸附的一个重要因素,pH值为6-7时,小球藻对Zn^2 ,Cd^2 的去除率较高,在实验条件下去除率可达87%以上;研究还表明,小球藻干粉比新鲜藻能富集更多的Zn^2 ,Cd^2 。用Freundlich方程模拟吸附等温线,拟合良好。  相似文献   

11.
The sorption of Cu2+, Cd2+, Pb2+, and Zn2+ by a dried green macroalga Caulerpa lentillifera was investigated. The removal efficiency increased with pH. The analysis with FT-IR indicated that possible functional groups involved in metal sorption by this alga were O-H bending, N-H bending, N-H stretching, C-N stretching, C-O, SO stretching, and S-O stretching. The sorption of all metal ions rapidly reached equilibrium within 20min. The sorption kinetics of these metals were governed by external mass transfer and intraparticle diffusion processes. The sorption isotherm followed the Langmuir isotherm where the maximum sorption capacities was Pb2+>Cu2+>Cd2+>Zn2+.  相似文献   

12.
Bacillus mucilaginosus has already been proved to be capable of degrading silicate minerals, but it is not very clear about the molecular mechanisms of bacterial mineral weathering. To understand the relationship between bacterial weathering of minerals and bacterial secreted proteins, B. mucilaginosus was chosen to study the expression of its extracellular proteins in the process of weathering potassium minerals. This article reveals that certain secreted proteins, related to weathering of potassium minerals, can be induced under conditions such as bacterial nutritional deficiency and the existence of K-bearing rock powders. This suggests direct evidence of the metabolic changes of extracellular enzymes in bacteria during the process of weathering of potassium minerals. It was speculated that these secreted proteins, together with extracellular polymers like polysaccharides, may accelerate the weathering of potassium minerals, resulting in the release of K+ needed for the bacterial growth.  相似文献   

13.
Metal ion binding to the sulfhydryl groups of apometallothionein (apo-MT) causes both the formation of native metal-thiolate clusters and the folding of the polypeptide chain of each domain. Cd2+ and Zn2+ react with apo-MT to form metal-thiolate bonds in reactions that are complete within milliseconds and which are pH-dependent. Dual mixing experiments were conducted that involve the initial reaction of metal ion and apo-MT followed by mixing with 5,5'-N-dithio-bis(2-nitrobenzoate) or EDTA after 26 ms. They showed that structures had formed within the brief reaction period which were resistant to rapid reaction with reagents that interact with sulfhydryl groups or metal ions, respectively. It was concluded that native metallothionein domains had been constituted within this brief period. Apo-MT was also titrated with Co2+ to yield Co(n)-MT (n=1-7). Initially, Co2+ bound to independent, tetrahedral thiolate sites. Spectrophotometric analysis of the titration suggested that the independent Co(II) sites began to coalesce into clusters at n=4 (pH 7.2) or n=5 (pH 8.4). Back titration of free sulfhydryl groups (S) in Co(n)-MT (n=1-7) with iodoacetamide at pH 7.2 confirmed that clustering began at n=4. Upon conversion of these alkylated structures to the corresponding 113Cd2+ species 113Cd NMR spectroscopy established that the location of Co(II) in Co(n)-MT (n=1-3) was non-specific and that at n=4, the only observable structure was Co(II)4S11. The results suggest possible kinetic pathways of folding that are conceptually similar to those hypothesized for other small proteins.  相似文献   

14.
A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules   总被引:12,自引:0,他引:12  
Aerobic granules are microbial aggregates with a strong and compact structure. This study looked into the feasibility of aerobic granules as a novel type of biosorbent for the removal of individual Cd(2+), Cu(2+) and Zn(2+) from aqueous solution. Based on the thermodynamics of biosorption reaction, a general model was developed to describe the equilibrium biosorption of individual Cd(2+), Cu(2+) and Zn(2+) by aerobic granules. This model provides good insights into the thermodynamic mechanisms of biosorption of heavy metals. The model prediction was in good agreement with the experimental data obtained. It was further demonstrated that the Langmuir, Freundlich and Sips or Hill equations were particular cases of the proposed model. The biosorption capacity of individual Cd(2+), Cu(2+) and Zn(2+) on aerobic granules was 172.7, 59.6 and 164.5 mgg(-1), respectively. These values may imply that aerobic granules are effective biosorbent for the removal of Cd(2+), Cu(2+) and Zn(2+) from industrial wastewater.  相似文献   

15.
Dolomite collected from Surat Thani Province in Thailand was investigated for use as a sorbent for the removal of divalent heavy metal cations from an aqueous solution. The sorbent had a surface area of 2.46 m2/g and a pH of zero point charge (pHzpc) of 9.2. Batch sorption was used to examine the effect of the pH (pH 3–7) on the sorption capacity of Cd2+, Pb2+ and Zn2+, alone or together as an equimolar mixture at various concentrations. Alone, each heavy metal cation was adsorbed faster at a higher pH, where the sorption of Cd2+ and Pb2+ fitted a Langmuir isotherm, but Zn2+ sorption best fitted a Freundlich isotherm. Under equimolar competitive sorption, the sorption capacity of each cation was decreased by 75.8% (0.29–0.07 mM/g), 82.8% (0.53–0.09 mM/g), and 95.7% (0.84–0.04 mM/g) for Cd2+, Pb2+ and Zn2+, respectively, compared to that with the respective single cation. Desorption of these heavy metal cations from dolomite was low, with an average desorption level of 0.06–17.4%. Furthermore, since dolomite is readily available and rather cheap, it is potentially suitable for use as an efficient sorbent to sorb Cd2+ and Pb2+, and perhaps Zn2+, from contaminated water.  相似文献   

16.
Na Feng  Jiuru Lu  Yunhua He  Jianxiu Du 《Luminescence》2005,20(4-5):266-270
A new chemiluminescence (CL) reaction was observed when Ni2+, Mg2+, Cd2+ or Zn2+ was injected into the reaction mixture after the finish of the CL reaction of alkaline luminol and potassium ferricyanide. This reaction is described as a post-chemiluminescence (PCL) reaction. The possible mechanism for the PCL was proposed based on studies of the CL kinetic characteristic and the CL spectra. The experimental conditions of the CL reactions were optimized and the feasibility of using the reaction to analyse these metal ions was evaluated. The PCL reaction method operates in the ranges: 1 x 10(-7)-8 x 10(-6) g/L Ni2+; 3 x 10(-6)-2 x 10(-4) g/L Mg2+; 8 x 10(-7)-1 x 10(-4) g/L Cd2+; and 2 x 10(-4)-2 x 10(-3) g/L Zn2+, with detection limits of 4 x 10(-8) g/mL, 1 x 10(-6) g/mL, 3 x 10(-7) g/mL, 8 x 10(-5) g/mL, respectively.  相似文献   

17.
  • 1.1. The inhibition kinetics of sheep brain butyrylcholinesterase (BChE) (acylcholine acylhydrolase, EC 3.1.1.8) by Cd2+ and Zn2+ has been studied.
  • 2.2. Ks has been determined as 0.14mM. Cd2+ and Zn2+ were the hyperbolic mixed-type inhibitors of BChE. Ca2+ and Mg2+ had no effect on the enzyme activity in the experimental conditions.
  • 3.3. But when the enzyme was inhibited by 0.1 mM Cd2+ or Zn2+, Ca2+ and Mg2+ reactivated the inhibited form of BChE.
  相似文献   

18.
Catalase (CAT, EC 1.11.1.6) is an important enzyme in antioxidant defense system protecting animals from oxidative stress. Freshwater fish Oreochromis niloticus were exposed for 96 h to different concentrations of Ag(+), Cd(2+), Cr(6+), Cu(2+) and Zn(2+), known to cause oxidative stress, and subsequently CAT activities in liver, kidney, gill, intestine and brain were measured. In vivo, CAT was stimulated by all metals except Ag(+) in the liver and the highest increase in CAT activity (183%) resulted from 1.0 mg Cd(2+)/L exposure, whereas 0.5 mg Ag(+)/L exposure resulted in a sharp decrease (44%). In tilapia kidney, cadmium and zinc had no significant effects on CAT activity, whereas 0.1 mg Cr(6+)/L exposure caused a decrease (44%). Cadmium and zinc did not significantly affect the CAT activity in gill; however, 0.5 mg Ag(+)/L exposure caused an increase (66%) and 1.5 mg Cr(6+)/L exposure caused a decrease (97%) in CAT activity. All metals, except Cu(2+)(41% increase), caused significant decreases in CAT activity in the intestine. In brain, 1.0 mg Zn(2+)/L resulted in an increase in CAT activity (126%), while 1.5 mg Ag(+)/L exposure caused a 54% decrease. In vitro, all metals -- except Ag(+) and Cu(2+) in kidney -- significantly inhibited the CAT activity in all tissues. Results emphasized that CAT may be considered as a sensitive bioindicator of the antioxidant defense system.  相似文献   

19.
The Spirulina platensis biomass was characterized for its metal accumulation as a function of pH, external metal concentration, equilibrium isotherms, kinetics, effect of co-ions under free (living cells, lyophilized, and oven-dried) and immobilized (Ca-alginate and polyacrylamide gel) conditions. The maximum metal biosorption by S. platensis biomass was observed at pH 6.0 with free and immobilized biomass. The studies on equilibrium isotherm experiments showed highest maximum metal loading by living cells (181.0 +/- 13.1 mg Co(2+)/g, 272.1 +/- 29.4 mg Cu(2+)/g and 250.3 +/- 26.4 mg Zn(2+)/g) followed by lyophilized (79.7 +/- 9.6 mg Co(2+)/g, 250.0 +/- 22.4 mg Cu(2+)/g and 111.2 +/- 9.8 mg Zn(2+)/g) and oven-dried (25.9 +/- 1.9 mg Co(2+)/g, 160.0 +/- 14.2 mg Cu(2+)/g and 35.1 +/- 2.7 mg Zn(2+)/g) biomass of S. platensis on a dry weight basis. The polyacrylamide gel (PAG) immobilization of lyophilized biomass found to be superior over Ca-alginate (Ca-Alg) and did not interfere with the S. platensis biomass biosorption capacity, yielding 25% of metal loading after PAG entrapment. The time-dependent metal biosorption in both the free and immobilized form revealed existence of two phases involving an initial rapid phase (which lasted for 1-2 min) contributing 63-77% of total biosorption, followed by a slower phase that continued for 2 h. The metal elution studies conducted using various reagents showed more than 90% elution with mineral acids, calcium salts, and Na(2)EDTA with free (lyophilized or oven-dried) as well as immobilized biomass. The experiments conducted to examine the suitability of PAG-immobilized S. platensis biomass over multiple cycles of Co(2+), Cu(2+), and Zn(2+) sorption and elution showed that the same PAG cubes can be reused for at least seven cycles with high efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号