首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biotyping of 284 C. albicans strains has been carried out in accordance with the system of three tests, proposed by F.C. Odds and A. B. Abbott. The reliability of the epidemiological conclusions made as the result of this work has been analyzed. The independence of the signs of C. albicans used in biotyping and the asymmetrical character of the test for its sensitivity to 5-fluorocytosine have been shown. The change of this test for a more symmetrical one is proposed. The study has shown that in the process of prolonged storage with periodic subculturing the proportion of C. albicans strains resistant to pH 1.40 and possessing proteolytic activity is decreased. The distribution of different biotypes among C. albicans strains isolated from candidiasis patients and from carriers has proved to be the same.  相似文献   

2.
Morphogenesis and adhesion to host tissues and medical devices contribute to the virulence of Candida albicans, the most common fungal pathogen isolated from humans. However, identification of molecular mechanisms of C. albicans adhesion and morphogenesis has been impaired by the lack of effective molecular and genetic tools available for this organism. Saccharomyces cerevisiae provides an attractive model system for studying C. albicans adhesion and morphogenesis because of its well-characterized genetics and gene expression systems. To gain insight into the genetic mechanisms of C. albicans adhesion and morphogenesis, we used a parallel plate flow chamber to screen and quantitatively characterize attachment to polystyrene of an adhesion-deficient nonfilamentous flo8Delta S. cerevisiae strain expressing a C. albicans genomic library. We identified six C. albicans genes that are capable of promoting cell adhesion and pseudohyphal development in S. cerevisiae. We also analyzed the ability of these adhesion-promoting genes to regulate the expression of FLO11, which encodes an endogenous S. cerevisiae adhesin. One C. albicans gene, EAP1, appears to directly mediate adhesion and morphogenesis while the remaining five (EAP2, SWI1, MSB1, AAF1, and TEC1) upregulate expression of endogenous S. cerevisiae adhesins. These results suggest that S. cerevisiae is a useful system for molecular characterization of factors that regulate C. albicans adhesion and morphogenesis and that parallel plate flow chamber-based adhesion assays can be used in conjunction with genetic screens to identify molecular mechanisms regulating fungal cell adhesion.  相似文献   

3.
Candida albicans is a common fungal pathogen of humans, but also exists as a commensal in the population. Proteomics of C. albicans has been used since the early 1980s, however, only the recent publication of the genome sequence of C. albicans and improvements in mass spectrometry technologies have made it possible to apply proteomics to C. albicans on a larger scale. This includes analysing the cell wall, investigating drug response or changes in mutants with defects in virulence. In addition, serological responses to systemic candidiasis have been monitored and screens for virulence factors using patient sera, have been described. These promising approaches are just emerging, anticipating further contributions in C. albicans proteomics that will advance our understanding of host-pathogen interaction in the near future.  相似文献   

4.
Candida dubliniensis is a pathogenic yeast species that was first identified as a distinct taxon in 1995. Epidemiological studies have shown that C. dubliniensis is prevalent throughout the world and that it is primarily associated with oral carriage and oropharyngeal infections in human immunodeficiency virus (HIV)-infected and acquired immune deficiency syndrome (AIDS) patients. However, unlike Candida albicans, C. dubliniensis is rarely found in the oral microflora of normal healthy individuals and is responsible for as few as 2% of cases of candidemia (compared to approximately 65% for C. albicans). The vast majority of C. dubliniensis isolates identified to date are susceptible to all of the commonly used antifungal agents, however, reduced susceptibility to azole drugs has been observed in clinical isolates and can be readily induced in vitro. The primary mechanism of fluconazole resistance in C. dubliniensis has been shown to be overexpression of the major facilitator efflux pump Mdr1p. It has also been observed that a large number of C. dubliniensis strains express a non-functional truncated form of Cdr1p, and it has been demonstrated that this protein does not play a significant role in fluconazole resistance in the majority of strains examined to date. Data from a limited number of infection models reflect findings from epidemiological studies and suggest that C. dubliniensis is less pathogenic than C. albicans. The reasons for the reduced virulence of C. dubliniensis are not clear as it has been shown that the two species express a similar range of virulence factors. However, although C. dubliniensis produces hyphae, it appears that the conditions and dynamics of induction may differ from those in C. albicans. In addition, C. dubliniensis is less tolerant of environmental stresses such as elevated temperature and NaCl and H(2)O(2) concentration, suggesting that C. albicans may have a competitive advantage when colonising and causing infection in the human body. It is our hypothesis that a genomic comparison between these two closely-related species will help to identify virulence factors responsible for the far greater virulence of C. albicans and possibly identify factors that are specifically implicated in either superficial or systemic candidal infections.  相似文献   

5.
6.
Cutler JE  Corti M  Lambert P  Ferris M  Xin H 《PloS one》2011,6(7):e22030
Disseminated candidiasis is the third leading nosocomial blood stream infection in the United States and is often fatal. We previously showed that disseminated candidiasis was preventable in normal mice by immunization with either a glycopeptide or a peptide synthetic vaccine, both of which were Candida albicans cell wall derived. A weakness of these studies is that, unlike humans, mice do not have a C. albicans GI flora and they lack Candida serum antibodies. We examined the influence of C. albicans GI tract colonization and serum antibodies on mouse vaccination responses to the peptide, Fba, derived from fructose bisphosphate aldolase which has cytosolic and cell wall distributions in the fungus. We evaluated the effect of live C. albicans in drinking water and antimicrobial agents on establishment of Candida colonization of the mouse GI tract. Body mass, C. albicans in feces, and fungal-specific serum antibodies were monitored longitudinally. Unexpectedly, C. albicans colonization occurred in mice that received only antibiotics in their drinking water, provided that the mice were housed in the same room as intentionally colonized mice. The fungal strain in unintentionally colonized mice appeared identical to the strain used for intentional GI-tract colonization. This is the first report of horizontal transmission and spontaneous C. albicans colonization in mice. Importantly, many Candida-colonized mice developed serum fungal-specific antibodies. Despite the GI-tract colonization and presence of serum antibodies, the animals made antibodies in response to the Fba immunogen. This mouse model has potential for elucidating C. albicans horizontal transmission and for exploring factors that induce host defense against disseminated candidiasis. Furthermore, a combined protracted GI-tract colonization with Candida and the possibility of serum antibody responses to the presence of the fungus makes this an attractive mouse model for testing the efficacy of vaccines designed to prevent human disseminated candidiasis.  相似文献   

7.
The dimorphic fungus Candida albicans is a member of the normal flora residing in the intestinal tract of humans. In spite of this, under certain conditions it can induce both superficial and serious systemic diseases, as well as be the cause of gastrointestinal infections. Saccharomyces boulardii is a yeast strain that has been shown to have applications in the prevention and treatment of intestinal infections caused by bacterial pathogens. The purpose of this study was to determine whether S. boulardii affects the virulence factors of C. albicans . We demonstrate the inhibitory effect of live S. boulardii cells on the filamentation (hyphae and pseudohyphae formation) of C. albicans SC5314 strain proportional to the amount of S. boulardii added. An extract from S. boulardii culture has a similar effect. Live S. boulardii and the extract from S. boulardii culture filtrate diminish C. albicans adhesion to and subsequent biofilm formation on polystyrene surfaces under both aerobic and microaerophilic conditions. This effect is very strong and requires lower doses of S. boulardii cells or concentrations of the extract than serum-induced filamentation tests. Saccharomyces boulardii has a strong negative effect on very important virulence factors of C. albicans , i.e. the ability to form filaments and to adhere and form biofilms on plastic surfaces.  相似文献   

8.
Recurrence of vaginal candidosis in women of childbearing age has been attributed to several predisposing factors including the presence of significant amounts of estrogen in the reproductive tract. In this study, the effect of estrogen on the level of C. albicans colonization, persistence of infection and suppression of DTH responses was investigated in an estrogen-dependent vaginal candidosis murine model. Mice were first injected subcutaneously with 0.5 mg of estradiol valerate 72 hours prior to C. albicans intravaginal inoculation and at weekly intervals thereafter for a period of up to 4 weeks; the inoculum consisted of 2 x 10(7) stationary-phase C. albicans blastoconidia in a volume of 20 microl. C. albicans colonization was evaluated in the spleen, liver, kidney, small intestine and reproductive tract of estrogen-treated and control mice 72 hours following inoculation, DTH responses were evaluated 2 and 5 weeks following primary inoculation and persistence of infection was evaluated at days 2, 3, 4, 8, 12, 19 and 26 post inoculation. Estrogen-treated mice exhibited higher levels of C. albicans colonization compared with control mice; this was most evident in the small intestine and reproductive tract. Estrogen treatment resulted in pronounced suppression of C. albicans-specific DTH responses; in that average footpad swelling was 4.7 mm in untreated mice compared with 2.3 mm in estrogen-treated mice. Long-term estrogen treatment resulted in the persistence of infection; in contrast, C. albicans infection resolved by day 8 post inoculation in untreated mice. DTH responses assayed 5 weeks post primary inoculation in treated mice were on average 4.1 mm, this was similar to that observed in untreated mice tested for DTH response 2 and 5 weeks post primary inoculation. These results suggest that, on the one hand, estrogen has an enhancing effect on C. albicans colonization and persistence of infection. On the other, estrogen seems to suppress DTH responses within the first 2 weeks post infection; persistence of infection under the influence of estrogen, however, seems to coexist with detectable systemic cell-mediated immunity.  相似文献   

9.
Regulation of gene expression has been studied extensively in Saccharomyces cerevisiae and Schizosaccharomyces pombe . Some, but by far not all, of the findings are also applicable to Candida albicans , an important ascomycete fungal pathogen of humans. Areas of research in C. albicans include the influence of key signal transduction cascades on morphology, and the response to host-generated influences, such as host immune effector cells, blood, pH or elevated carbon dioxide. The resistance to antifungal agents and response to stress are also well researched. Conditional gene expression and reporter genes adapted to the codon usage of C. albicans are now widely used in C. albicans . Here we present a comprehensive overview of the current techniques used to investigate regulation mechanisms for promoters in C. albicans and other Candida species. In addition, we discuss reporter genes used for the study of gene expression.  相似文献   

10.
11.
Candida albicans is the most common human fungal pathogen, causing infections that can be lethal in immunocompromised patients. Although Saccharomyces cerevisiae has been used as a model for C. albicans, it lacks C. albicans' diverse morphogenic forms and is primarily non-pathogenic. Comprehensive genetic analyses that have been instrumental for determining gene function in S. cerevisiae are hampered in C. albicans, due in part to limited resources to systematically assay phenotypes of loss-of-function alleles. Here, we constructed and screened a library of 3633 tagged heterozygous transposon disruption mutants, using them in a competitive growth assay to examine nutrient- and drug-dependent haploinsufficiency. We identified 269 genes that were haploinsufficient in four growth conditions, the majority of which were condition-specific. These screens identified two new genes necessary for filamentous growth as well as ten genes that function in essential processes. We also screened 57 chemically diverse compounds that more potently inhibited growth of C. albicans versus S. cerevisiae. For four of these compounds, we examined the genetic basis of this differential inhibition. Notably, Sec7p was identified as the target of brefeldin A in C. albicans screens, while S. cerevisiae screens with this compound failed to identify this target. We also uncovered a new C. albicans-specific target, Tfp1p, for the synthetic compound 0136-0228. These results highlight the value of haploinsufficiency screens directly in this pathogen for gene annotation and drug target identification.  相似文献   

12.
13.
14.
15.
The morphogenetic program in the pathogenic fungus Candida albicans, including the dimorphic transition, is an interesting field of study, not only because it is absent in the commonly used model yeast Saccharomyces cerevisiae, but because of the close relationship between hyphal development and virulence of C. albicans. We studied one of the most important aspects of fungal morphogenesis--the septin ring--in C. albicans. By using a fusion construct to green fluorescent protein (GFP), the subcellular localization and dynamics of C. albicans Cdc10 in the different morphologies that this fungus is able to adopt was identified. The localization features reached were contrasted and compared with the results obtained from Candida cells directly extracted from an animal infection model under environmental conditions as similar as possible to the physiological conditions encountered by C. albicans during host infection.  相似文献   

16.
Genetics of Candida albicans.   总被引:34,自引:1,他引:34       下载免费PDF全文
Candida albicans is among the most common fungal pathogens. Infections caused by C. albicans and other Candida species can be life threatening in individuals with impaired immune function. Genetic analysis of C. albicans pathogenesis is complicated by the diploid nature of the species and the absence of a known sexual cycle. Through a combination of parasexual techniques and molecular approaches, an effective genetic system has been developed. The close relationship of C. albicans to the more extensively studied Saccharomyces cerevisiae has been of great utility in the isolation of Candida genes and development of the C. albicans DNA transformation system. Molecular methods have been used for clarification of taxonomic relationships and more precise epidemiologic investigations. Analysis of the physical and genetic maps of C. albicans and the closely related Candida stellatoidea has provided much information on the highly fluid nature of the Candida genome. The genetic system is seeing increased application to biological questions such as drug resistance, virulence determinants, and the phenomenon of phenotypic variation. Although most molecular analysis to data has been with C. albicans, the same methodologies are proving highly effective with other Candida species.  相似文献   

17.
Candida albicans is among the most common fungal pathogens. Infections caused by C. albicans and other Candida species can be life threatening in individuals with impaired immune function. Genetic analysis of C. albicans pathogenesis is complicated by the diploid nature of the species and the absence of a known sexual cycle. Through a combination of parasexual techniques and molecular approaches, an effective genetic system has been developed. The close relationship of C. albicans to the more extensively studied Saccharomyces cerevisiae has been of great utility in the isolation of Candida genes and development of the C. albicans DNA transformation system. Molecular methods have been used for clarification of taxonomic relationships and more precise epidemiologic investigations. Analysis of the physical and genetic maps of C. albicans and the closely related Candida stellatoidea has provided much information on the highly fluid nature of the Candida genome. The genetic system is seeing increased application to biological questions such as drug resistance, virulence determinants, and the phenomenon of phenotypic variation. Although most molecular analysis to data has been with C. albicans, the same methodologies are proving highly effective with other Candida species.  相似文献   

18.
Pulsed-field gel electrophoresis techniques were used to study chromosome-sized DNA molecules of C. albicans. Chromosome-sized DNA of two strains of Candida albicans has been resolved into 8 bands by orthogonal-field-alternation gel electrophoresis (OFAGE). Six bands were observed in chromosomal preparations of C. albicans using field-inversion gel electrophoresis (FIGE). Differences in the electrophoretic mobilities of bands of the strains of C. albicans examined suggests that chromosome-length polymorphisms exist and make it difficult to correlate the banding patterns among strains. These correlations were facilitated, however, by assignment of C. albicans chromosomes by hybridization using a collection of cloned DNA probes specific for each of the 8 observed bands. Southern blotting showed that the 6 FIGE bands consisted of 4 singlets and 2 comigrating doublets, accounting for the 8 bands observed by OFAGE analysis. The agreement between OFAGE and FIGE analysis suggests that the C. albicans haploid genome contains a minimum of 8 chromosomes.  相似文献   

19.
Candida albicans fungemia in cancer patients is thought to develop from initial gastrointestinal (GI) colonization with subsequent translocation into the bloodstream after administration of chemotherapy. It is unclear what components of the innate immune system are necessary for preventing C. albicans dissemination from the GI tract, but we have hypothesized that both neutropenia and GI mucosal damage are critical for allowing widespread invasive C. albicans disease. We investigated these parameters in a mouse model of C. albicans GI colonization that led to systemic spread after administration of immunosuppression and mucosal damage. After depleting resident GI intestinal flora with antibiotic treatment and achieving stable GI colonization levels of C. albicans, it was determined that systemic chemotherapy with cyclophosphamide led to 100% mortality, whereas selective neutrophil depletion, macrophage depletion, lymphopenia or GI mucosal disruption alone resulted in no mortality. Selective neutrophil depletion combined with GI mucosal disruption led to disseminated fungal infection and 100% mortality ensued. GI translocation and dissemination by C. albicans was also dependent on the organism's ability to transform from the yeast to the hyphal form. This mouse model of GI colonization and fungemia is useful for studying factors of innate host immunity needed to prevent invasive C. albicans disease as well as identifying virulence factors that are necessary for fungal GI colonization and dissemination. The model may also prove valuable for evaluating therapies to control C. albicans infections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号