首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been shown that the key homologous recombination protein Rad51accumulates in DNA damage‐induced nuclear foci that are attached to the nuclear matrix. In the present communication we attempted to find whether Rad51 contains a functional domain responsible for nuclear matrix binding. By alignments of the sequences encoding nuclear matrix targeting signals of human nuclear matrix binding proteins with the whole length human Rad51sequence a putative nuclear matrix targeting signal was identified. To prove that it is responsible for the nuclear matrix association of Rad51 18 base pairs encoding a cluster of hydrophobic amino acids in the human Rad51 Flag‐tagged gene were deleted. The formation of damage‐induced Rad51 foci and their association with the nuclear matrix were monitored in HeLa cells transfected with the wild‐type and the mutated Rad51gene after treatment with mitomycin C. The results showed that while the wild‐type protein formed Rad51 foci attached to the nuclear matrix, the mutated Rad51 failed to form DNA damage‐induced nuclear foci. The loss of foci formation activity of the mutated protein was not due to impaired ability to bind double‐stranded DNA in an ATP‐dependant way in vitro and to bind chromatin in vivo. These data suggest that the assembly of Rad51 into nuclear foci is assisted by association with the nuclear matrix, which may support the spatial organization of the process of repair by homologous recombination. J. Cell. Physiol. 219: 202–208, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
Exposure of cells to DNA-damaging agents results in a rapid increase in the formation of subnuclear complexes containing Rad51. To date, it has not been determined to what extent DNA damage-induced cytoplasmic to nuclear transport of Rad51 may contribute to this process. We have analyzed subcellular fractions of HeLa and HCT116 cells and found a significant increase in nuclear Rad51 levels following exposure to a modest dose of ionizing radiation (2 grays). We also observed a DNA damage-induced increase in nuclear Rad51 in the Brca2-defective cell line Capan-1. To address a possible Brca2-independent mechanism for Rad51 nuclear transport, we analyzed subcellular fractions for two other Rad51-interacting proteins, Rad51C and Xrcc3. Rad51C has a functional nuclear localization signal, and although we found that the subcellular distribution of Xrcc3 was not significantly affected by DNA damage, there was a damage-induced increase in nuclear Rad51C. Furthermore, RNA interference-mediated depletion of Rad51C in HeLa and Capan-1 cells resulted in lower steady-state levels of nuclear Rad51 as well as a diminished DNA damage-induced increase. Our results provide important insight into the cellular regulation of Rad51 nuclear entry and a role for Rad51C in this process.  相似文献   

3.
Luo K  Zhang H  Wang L  Yuan J  Lou Z 《The EMBO journal》2012,31(13):3008-3019
In response to DNA damage, many DNA damage factors, such as MDC1 and 53BP1, redistribute to sites of DNA damage. The mechanism governing the turnover of these factors at DNA damage sites, however, remains enigmatic. Here, we show that MDC1 is sumoylated following DNA damage, and the sumoylation of MDC1 at Lys1840 is required for MDC1 degradation and removal of MDC1 and 53BP1 from sites of DNA damage. Sumoylated MDC1 is recognized and ubiquitinated by the SUMO-targeted E3 ubiquitin ligase RNF4. Mutation of the MDC1 Lys 1840 (K1840R) results in impaired CtIP, replication protein A, and Rad51 accumulation at sites of DNA damage and defective homologous recombination (HR). The HR defect caused by MDC1K1840R mutation could be rescued by 53BP1 downregulation. These results reveal the intricate dynamics governing the assembly and disassembly of DNA damage factors at sites of DNA damage for prompt response to DNA damage.  相似文献   

4.
The mammalian Rad51 protein is involved in homologous recombination and in DNA damage repair. Its nuclear distribution after DNA damage is highly dynamic, and distinct foci of Rad51 protein, distributed throughout the nuclear volume, are induced within a few hours after γ irradiation; these foci then coalesce into larger clusters. Rad51-positive cells do not undergo DNA replication. Rad51 foci colocalize with both replication protein A and sites of unscheduled DNA repair synthesis and may represent a nuclear domain for recombinational DNA repair. By 24 h postirradiation, most foci are sequestered into micronuclei or assembled into Rad51-coated DNA fibers. These micronuclei and DNA fibers display genome fragmentation typical of apoptotic cell death. Other repair proteins, such as Rad52 and Gadd45, are not eliminated from the nucleus. DNA double strand breaks in repair-deficient cells or induced by the clastogen etoposide are also accompanied by the sequestering of Rad51 protein before cell death. The spindle poison colcemid causes cell cycle arrest and Rad51-foci formation without directly damaging DNA. Collectively, these observations suggest that mammalian Rad51 protein associates with damaged DNA and/or with DNA that is temporarily or irreversibly unable to replicate and these foci may subsequently be eliminated from the nucleus.  相似文献   

5.
Nuclear Rad51 focus formation is required for homology-directed repair of DNA double-strand breaks (DSBs), but its regulation in response to non-DSB lesions is poorly understood. Here we report a novel human SQ/TQ cluster domain-containing protein termed ASCIZ that forms Rad51-containing foci in response to base-modifying DNA methylating agents but not in response to DSB-inducing agents. ASCIZ foci seem to form prior to Rad51 recruitment, and an ASCIZ core domain can concentrate Rad51 in focus-like structures independently of DNA damage. ASCIZ depletion dramatically increases apoptosis after methylating DNA damage and impairs Rad51 focus formation in response to methylating agents but not after ionizing radiation. ASCIZ focus formation and increased apoptosis in ASCIZ-depleted cells depend on the mismatch repair protein MLH1. Interestingly, ASCIZ foci form efficiently during G1 phase, when sister chromatids are unavailable as recombination templates. We propose that ASCIZ acts as a lesion-specific focus scaffold in a Rad51-dependent pathway that resolves cytotoxic repair intermediates, most likely single-stranded DNA gaps, resulting from MLH1-dependent processing of base lesions.  相似文献   

6.
Error-free repair by homologous recombination of DNA double-strand breaks induced by ionizing radiation (IR) requires the Rad52 group proteins, including Rad51 and Rad54, in the yeast Saccharomyces cerevisiae [1]. The formation of a 'joint' molecule between the damaged DNA and the homologous repair template is a key step in recombination mediated by Rad51 and stimulated by Rad54 [2] [3] [4] [5]. Mammalian homologs of Rad51 and Rad54 have been identified [2] [3] [6]. Here, we demonstrate that mouse Rad54 (mRad54) formed IR-induced nuclear foci that colocalized with mRad51. Interaction between mRad51 and mRad54 was induced by genotoxic stress, but only when lesions that required mRad54 for their repair were formed. Interestingly, mRad54 was essential for the formation of IR-induced mRad51 foci. Rad54 belongs to the SWI2/SNF2 protein family, members of which modulate protein-DNA interactions in an ATP-driven manner [7]. Results of a topological assay suggested that purified human Rad54 (hRad54) protein can unwind double-stranded (ds) DNA at the expense of ATP hydrolysis. Unwinding of the homologous repair template could promote the formation or stabilization of hRad51-mediated joint molecules. Rad54 appears to be required downstream of other Rad52 group proteins, such as Rad52 and the Rad55-Rad57 heterodimer, that assist Rad51 in interacting with the broken DNA [2] [3] [4].  相似文献   

7.
Saccharomyces cells with a single unrepaired double-strand break adapt after checkpoint-mediated G(2)/M arrest. We have found that both Rad51 and Rad52 recombination proteins play key roles in adaptation. Cells lacking Rad51p fail to adapt, but deleting RAD52 suppresses rad51Delta. rad52Delta also suppresses adaptation defects of srs2Delta mutants but not those of yku70Delta or tid1Delta mutants. Neither rad54Delta nor rad55Delta affects adaptation. A Rad51 mutant that fails to interact with Rad52p is adaptation defective; conversely, a C-terminal truncation mutant of Rad52p, impaired in interaction with Rad51p, is also adaptation defective. In contrast, rad51-K191A, a mutation that abolishes recombination and results in a protein that does not bind to single-stranded DNA (ssDNA), supports adaptation, as do Rad51 mutants impaired in interaction with Rad54p or Rad55p. An rfa1-t11 mutation in the ssDNA binding complex RPA partially restores adaptation in rad51Delta mutants and fully restores adaptation in yku70Delta and tid1Delta mutants. Surprisingly, although neither rfa1-t11 nor rad52Delta mutants are adaptation defective, the rad52Delta rfa1-t11 double mutant fails to adapt and exhibits the persistent hyperphosphorylation of the DNA damage checkpoint protein Rad53 after HO induction. We suggest that monitoring of the extent of DNA damage depends on independent binding of RPA and Rad52p to ssDNA, with Rad52p's activity modulated by Rad51p whereas RPA's action depends on Tid1p.  相似文献   

8.
The highly conserved Rad51 protein plays an essential role in repairing DNA damage through homologous recombination. In vertebrates, five Rad51 paralogs (Rad51B, Rad51C, Rad51D, XRCC2, and XRCC3) are expressed in mitotically growing cells and are thought to play mediating roles in homologous recombination, although their precise functions remain unclear. Among the five paralogs, Rad51C was found to be a central component present in two complexes, Rad51C-XRCC3 and Rad51B-Rad51C-Rad51D-XRCC2. We have shown previously that the human Rad51C protein exhibits three biochemical activities, including DNA binding, ATPase, and DNA duplex separation. Here we report the use of RNA interference to deplete expression of Rad51C protein in human HT1080 and HeLa cells. In HT1080 cells, depletion of Rad51C by small interfering RNA caused a significant reduction of frequency in homologous recombination. The level of XRCC3 protein was also sharply reduced in Rad51C-depleted HeLa cells, suggesting that XRCC3 is dependent for its stability upon heterodimerization with Rad51C. In addition, Rad51C-depleted HeLa cells showed hypersensitivity to the DNA-cross-linking agent mitomycin C and moderately increased sensitivity to ionizing radiation. Importantly, the radiosensitivity of Rad51C-deficient HeLa cells was evident in S and G(2)/M phases of the cell cycle but not in G(1) phase. Together, these results provide direct cellular evidence for the function of human Rad51C in homologous recombinational repair.  相似文献   

9.
Rad51 is a homolog of the bacterial RecA protein and is central for recombination in eukaryotes performing homology search and DNA strand exchange. Rad51 and RecA share a core ATPase domain that is structurally similar to the ATPase domains of helicases and the F1 ATPase. Rad51 has an additional N-terminal domain, whereas RecA protein has an additional C-terminal domain. Here we show that glycine 103 in the N-terminal domain of Saccharomyces cerevisiae Rad51 is important for binding to single-stranded and duplex DNA. The Rad51-G103E mutant protein is deficient in DNA strand exchange and ATPase activity due to a primary DNA binding defect. The N-terminal domain of Rad51 is connected to the ATPase core through an extended elbow linker that ensures flexibility of the N-terminal domain. Molecular modeling of the Rad51-G103E mutant protein shows that the negatively charged glutamate residue lies on the surface of the N-terminal domain facing a positively charged patch composed of Arg-260, His-302, and Lys-305 on the ATPase core domain. A possible structural explanation for the DNA binding defect is that a charge interaction between Glu-103 and the positive patch restricts the flexibility of the N-terminal domain. Rad51-G103E was identified in a screen for Rad51 interaction-deficient mutants and was shown to ablate the Rad54 interaction in two-hybrid assays (Krejci, L., Damborsky, J., Thomsen, B., Duno, M., and Bendixen, C. (2001) Mol. Cell. Biol. 21, 966-976). Surprisingly, we found that the physical interaction of Rad51-G103E with Rad54 was not affected. Our data suggest that the two-hybrid interaction defect was an indirect consequence of the DNA binding defect.  相似文献   

10.
Human Rec2/Rad51L1 is a member of the Rad51 family of proteins. Although recombinase activity, typical of this family, could not be established, its overexpression in mammalian cells has been shown to cause a delay in G1. Moreover, since hsRec2/Rad51L1 has been found to be induced by both ionizing and UV irradiation, it is likely that hsRec2/Rad51L1 is elevated following any DNA damage and causes a G1 delay to allow time for DNA repair to occur. Limited homology with catalytic domains X and XI of protein kinase A suggested that kemptide, an artificial substrate containing one phosphorylatable residue, a serine, might serve as a substrate for hsRec2/Rad51L1. Here, we report that hsRec2/Rad51L1 can phosphorylate kemptide, as well as myelin basic protein, p53, cyclin E, and cdk2, but not a peptide substrate containing tyrosine only. The finding that hsRec2/Rad51L1 exhibits protein kinase activity is a first step toward identifying a mechanism whereby this protein affects the cell cycle.  相似文献   

11.
Ubc9, a conjugation enzyme for the ubiquitin-related modifier SUMO, is present predominantly in the nucleus and at the nuclear pore complex. The functional significance of its subcellular compartmentalization, however, remains to be elucidated. Here, we define a Pro-Glu-Asp-Ser-Thr-rich element containing 129 amino acid residues, designated IR1+2, on the human nucleoporin RanBP2/Nup358, which binds directly to Ubc9 with high affinity both in vitro and in vivo. When IR1+2 tagged with green fluorescence protein at its amino terminus (GFP-IR1+2) was transfected into COS-7 cells, we found that approximately 90% of the nuclear Ubc9 was sequestered in the cytoplasm. We also observed that both SUMO-1 and SUMO-2/3 were mislocalized, and promyelocytic leukemia protein PML formed an enlarged aggregate in the nucleus. Moreover, the homologous recombination protein Rad51 mislocalized to the cytoplasm, and Rad51 foci, a hallmark of functional association of Rad51 with damaged DNA, did not form efficiently even in the presence of a DNA strand breaker. These findings emphasize that the IR1+2 domain is a useful tool for manipulating the nuclear localization of Ubc9 and perturbing the subcellular localization of SUMOs and/or SUMOlated proteins, and they emphasize the important role of nuclear Ubc9 in the Rad51-mediated homologous recombination pathway, possibly by modulating intracellular trafficking of Rad51.  相似文献   

12.
Human Rad51 protein (HsRad51) is a homolog of Escherichia coli RecA protein, and functions in DNA repair and recombination. In higher eukaryotes, Rad51 protein is essential for cell viability. The N-terminal region of HsRad51 is highly conserved among eukaryotic Rad51 proteins but is absent from RecA, suggesting a Rad51-specific function for this region. Here, we have determined the structure of the N-terminal part of HsRad51 by NMR spectroscopy. The N-terminal region forms a compact domain consisting of five short helices, which shares structural similarity with a domain of endonuclease III, a DNA repair enzyme of E. coli. NMR experiments did not support the involvement of the N-terminal domain in HsRad51-HsBrca2 interaction or the self-association of HsRad51 as proposed by previous studies. However, NMR tiration experiments demonstrated a physical interaction of the domain with DNA, and allowed mapping of the DNA binding surface. Mutation analysis showed that the DNA binding surface is essential for double-stranded and single-stranded DNA binding of HsRad51. Our results suggest the presence of a DNA binding site on the outside surface of the HsRad51 filament and provide a possible explanation for the regulation of DNA binding by phosphorylation within the N-terminal domain.  相似文献   

13.
Replication protein-A (RPA) is involved in many processes of DNA metabolism, including DNA replication, repair, and recombination. Cells carrying a mutation in the largest subunit of RPA (rfa1-t11: K45E) have defects in meiotic recombination, mating-type switching, and survival after DNA damage caused by UV and methyl methanesulfonate, as well as increased genome instability; however, this mutant has no significant defect in DNA replication. We purified the RPA heterotrimer containing the rfa1-t11 substitution (RPA(rfa1-t11)). This mutant RPA binds single-stranded DNA (ssDNA) with the same site size, and the RPA(rfa1-t11).ssDNA complex shows a similar sensitivity to disruption by salt as the wild-type RPA.ssDNA complex. RPA(rfa1-t11) stimulates DNA strand exchange, provided that the Rad51 protein.ssDNA nucleoprotein complex is assembled prior to introduction of the mutant RPA. However, RPA(rfa1-t11) is displaced from ssDNA by Rad51 protein more slowly than wild-type RPA and, as a consequence, Rad51 protein-mediated DNA strand exchange is inhibited when the ssDNA is in a complex with RPA(rfa1-t11). Rad52 protein can stimulate displacement of RPA(rfa1-t11) from ssDNA by Rad51 protein, but the rate of displacement remains slow compared with wild-type RPA. These in vitro results suggest that, in vivo, RPA is bound to ssDNA prior to Rad51 protein and that RPA displacement by Rad51 protein is a critical step in homologous recombination, which is impaired in the rfa1-t11 mutation.  相似文献   

14.
RecA/Rad51 proteins are essential in homologous DNA recombination and catalyze the ATP-dependent formation of D-loops from a single-stranded DNA and an internal homologous sequence in a double-stranded DNA. RecA and Rad51 require a "recombination mediator" to overcome the interference imposed by the prior binding of single-stranded binding protein/replication protein A to the single-stranded DNA. Rad52 is the prototype of recombination mediators, and the human Rad52 protein has two distinct DNA-binding sites: the first site binds to single-stranded DNA, and the second site binds to either double- or single-stranded DNA. We previously showed that yeast Rad52 extensively stimulates Rad51-catalyzed D-loop formation even in the absence of replication protein A, by forming a 2:1 stoichiometric complex with Rad51. However, the precise roles of Rad52 and Rad51 within the complex are unknown. In the present study, we constructed yeast Rad52 mutants in which the amino acid residues corresponding to the second DNA-binding site of the human Rad52 protein were replaced with either alanine or aspartic acid. We found that the second DNA-binding site is important for the yeast Rad52 function in vivo. Rad51-Rad52 complexes consisting of these Rad52 mutants were defective in promoting the formation of D-loops, and the ability of the complex to associate with double-stranded DNA was specifically impaired. Our studies suggest that Rad52 within the complex associates with double-stranded DNA to assist Rad51-mediated homologous pairing.  相似文献   

15.
A single Rad52-related protein is evident by blast analysis of the Ustilago maydis genome database. Mutants created by disruption of the structural gene exhibited few discernible defects in resistance to UV, ionizing radiation, chemical alkylating or cross-linking agents. No deficiency was noted in spontaneous mutator activity, allelic recombination or meiosis. GFP-Rad51 foci were formed in rad52 cells following DNA damage, but were initially less intense than normal suggesting a possible role for Rad52 in formation of the Rad51 nucleoprotein filament. A search for interacting genes that confer a synthetic fitness phenotype with rad52 after DNA damage by UV irradiation identified the genes for Mph1, Ercc1 and the Rad51 paralogue Rec2. Testing known mutants in recombinational repair revealed an additional interaction with the BRCA2 orthologue Brh2. Suppression of the rec2 mutant's UV sensitivity by overexpressing Brh2 was found to be dependent on Rad52. The results suggest that Rad52 serves in an overlapping, compensatory role with both Rec2 and Brh2 to promote and maintain formation of the Rad51 nucleoprotein filament.  相似文献   

16.
Brh2, the BRCA2 homolog in Ustilago maydis, functions in recombinational repair of DNA damage by regulating Rad51 and is, in turn, regulated by Dss1. Dss1 is not required for Brh2 stability in vivo, nor for Brh2 to associate with Rad51, but is required for formation of green fluorescent protein (GFP)-Rad51 foci following DNA damage by gamma radiation. To understand more about the interplay between Brh2 and Dss1, we isolated mutant variants of Brh2 able to bypass the requirement for Dss1. These variants were found to lack the entire C-terminal DNA-Dss1 binding domain but to maintain the N-terminal region harboring the Rad51-interacting BRC element. GFP-Rad51 focus formation was nearly normal in brh2 mutant cells expressing a representative Brh2 variant with the C-terminal domain deleted. These findings suggest that the N-terminal region of Brh2 has an innate ability to organize Rad51. Survival after DNA damage was almost fully restored by a chimeric form of Brh2 having a DNA-binding domain from RPA70 fused to the Brh2 N-terminal domain, but Rad51 focus formation and mitotic recombination were elevated above wild-type levels. The results provide evidence for a mechanism in which Dss1 activates a Brh2-Rad51 complex and balances a finely regulated recombinational repair system.  相似文献   

17.
Accumulation of repair proteins on damaged chromosomes is required to restore genomic integrity. However, the mechanisms of protein retention at the most destructive chromosomal lesions, the DNA double-strand breaks (DSBs), are poorly understood. We show that RNF8, a RING-finger ubiquitin ligase, rapidly assembles at DSBs via interaction of its FHA domain with the phosphorylated adaptor protein MDC1. This is accompanied by an increase in DSB-associated ubiquitylations and followed by accumulation of 53BP1 and BRCA1 repair proteins. Knockdown of RNF8 or disruption of its FHA or RING domains impaired DSB-associated ubiquitylation and inhibited retention of 53BP1 and BRCA1 at the DSB sites. In addition, we show that RNF8 can ubiquitylate histone H2A and H2AX, and that its depletion sensitizes cells to ionizing radiation. These data suggest that MDC1-mediated and RNF8-executed histone ubiquitylation protects genome integrity by licensing the DSB-flanking chromatin to concentrate repair factors near the DNA lesions.  相似文献   

18.
The nucleoprotein filament formed by Rad51 polymerization on single-stranded DNA is essential for homologous pairing and strand exchange. ATP binding is required for Rad51 nucleoprotein filament formation and strand exchange, but ATP hydrolysis is not required for these functions in vitro. Previous studies have shown that a yeast strain expressing the rad51-K191R allele is sensitive to ionizing radiation, suggesting an important role for ATP hydrolysis in vivo. The recruitment of Rad51-K191R to double-strand breaks is defective in vivo, and this phenotype can be suppressed by elimination of the Srs2 helicase, an antagonist of Rad51 filament formation. The phenotype of the rad51-K191R strain is also suppressed by overexpression of Rad54. In vitro, the Rad51-K191R protein exhibits a slight decrease in binding to DNA, consistent with the defect in presynaptic filament formation. However, the rad51-K191R mutation is dominant in heterozygous diploids, indicating that the defect is not due simply to reduced affinity for DNA. We suggest the Rad51-K191R protein either forms an altered filament or is defective in turnover, resulting in a reduced pool of free protein available for DNA binding.  相似文献   

19.
Genetic recombination and the repair of double-strand DNA breaks in Saccharomyces cerevisiae require Rad51, a homologue of the Escherichia coli RecA protein. In vitro, Rad51 binds DNA to form an extended nucleoprotein filament and catalyzes the ATP-dependent exchange of DNA between molecules with homologous sequences. Vertebrate Rad51 is essential for cell proliferation. Using site-directed mutagenesis of highly conserved residues of human Rad51 (hRad51) and gene targeting of the RAD51 locus in chicken DT40 cells, we examined the importance of Rad51's highly conserved ATP-binding domain. Mutant hRad51 incapable of ATP hydrolysis (hRad51K-133R) binds DNA less efficiently than the wild type but catalyzes strand exchange between homologous DNAs. hRad51 does not need to hydrolyze ATP to allow vertebrate cell proliferation, form nuclear foci, or repair radiation-induced DNA damage. However, cells expressing hRad51K-133R show greatly reduced targeted integration frequencies. These findings show that ATP hydrolysis is involved in DNA binding by hRad51 and suggest that the extent of DNA complexed with hRad51 in nucleoprotein influences the efficiency of recombination.  相似文献   

20.
Homologous recombination is of major importance for the prevention of genomic instability during chromosome duplication and repair of DNA damage, especially double-strand breaks. Biochemical experiments have revealed that during the process of homologous recombination the RAD52 group proteins, including Rad51, Rad52 and Rad54, are involved in an essential step: formation of a joint molecule between the broken DNA and the intact repair template. Accessory proteins for this reaction include the Rad51 paralogs and BRCA2. The significance of homologous recombination for the cell is underscored by the evolutionary conservation of the Rad51, Rad52 and Rad54 proteins from yeast to humans. Upon treatment of cells with ionizing radiation, the RAD52 group proteins accumulate at the sites of DNA damage into so-called foci. For the yeast Saccharomyces cerevisiae, foci formation of Rad51 and Rad54 is abrogated in the absence of Rad52, while Rad51 foci formation does occur in the absence of the Rad51 paralog Rad55. By contrast, we show here that in mammalian cells, Rad52 is not required for foci formation of Rad51 and Rad54. Furthermore, radiation-induced foci formation of Rad51 and Rad54 is impaired in all Rad51 paralog and BRCA2 mutant cell lines tested, while Rad52 foci formation is not influenced by a mutation in any of these recombination proteins. Despite their evolutionary conservation and biochemical similarities, S. cerevisiae and mammalian Rad52 appear to differentially contribute to the DNA-damage response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号