首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Golgi apparatus breaks down at mitosis, resulting in the dispersal of Golgi-resident proteins. In NRK cells, however, subsets of both TGN38 and golgin-97, but not ManII and GM130, remained associated with the centrosome throughout the cell cycle. This centrosome association of TGN38 and golgin-97 was not disrupted by treatment with brefeldin A, additional inducers of retrograde trafficking and inhibitors of either kinases or protein phosphatases. Anchoring of the Golgi apparatus within the juxtanuclear region depends on microtubules; the association of TGN38 and golgin-97 subsets with the centrosome, however, was insensitive to nocodazole treatment. Drugs such as PDMP, which block Golgi dispersal both by nocodazole, despite microtubule depolymerization, and by inducers of retrograde trafficking, strengthened the microtubule-nucleating activity of the centrosome. These observations cumulatively suggest the centrosome is implicated in nucleation of the Golgi apparatus through interactions with Golgi-resident proteins, such as TGN38 and golgin-97.  相似文献   

2.
3.
Microtubules, actin filaments, and Golgi apparatus are connected both directly and indirectly, but it is manifested differently depending on the cell organization and specialization, and these connections are considered in many original studies and reviews. In this review we would like to discuss what underlies differences in the structural organization of the Golgi apparatus in animal and plant cells: specific features of the microtubule cytoskeleton organization, the use of different cytoskeleton components for Golgi apparatus movement and maintenance of its integrity, or specific features of synthetic and secretory processes. We suppose that a dispersed state of the Golgi apparatus in higher plant cells cannot be explained only by specific features of the microtubule system organization and by the absence of centrosome as an active center of their organization because the Golgi apparatus is organized similarly in the cells of other organisms that possess the centrosome and centrosomal microtubules. One of the key factors determining the Golgi apparatus state in plant cells is the functional uniformity or functional specialization of stacks. The functional specialization does not suggest the joining of the stacks to form a ribbon; therefore, the disperse state of the Golgi apparatus needs to be supported, but it also can exist “by default”. We believe that the dispersed state of the Golgi apparatus in plants is supported, on one hand, by dynamic connections of the Golgi apparatus stacks with the actin filament system and, on the other hand, with the endoplasmic reticulum exit sites distributed throughout the endoplasmic reticulum.  相似文献   

4.
The Golgi assembly pattern varies among cell types. In fibroblast cells, the Golgi apparatus concentrates around the centrosome that radiates microtubules; whereas in epithelial cells, whose microtubules are mainly noncentrosomal, the Golgi apparatus accumulates around the nucleus independently of centrosome. Little is known about the mechanisms behind such cell type-specific Golgi and microtubule organization. Here, we show that the microtubule minus-end binding protein Nezha/CAMSAP3 (calmodulin-regulated spectrin-associated protein 3) plays a role in translocation of Golgi vesicles in epithelial cells. This function of CAMSAP3 is supported by CG-NAP (centrosome and Golgi localized PKN-associated protein) through their binding. Depletion of either one of these proteins similarly induces fragmentation of Golgi membranes. Furthermore, we find that stathmin-dependent microtubule dynamics is graded along the radial axis of cells with highest activity at the perinuclear region, and inhibition of this gradient disrupts perinuclear distribution of the Golgi apparatus. We propose that the assembly of the Golgi apparatus in epithelial cells is induced by a multi-step process, which includes CAMSAP3-dependent Golgi vesicle clustering and graded microtubule dynamics.  相似文献   

5.
We report that microtubule (MT) nucleation at the Golgi apparatus requires AKAP450, a centrosomal γ‐TuRC‐interacting protein that also forms a distinct network associated with the Golgi. Depletion of AKAP450 abolished MT nucleation at the Golgi, whereas depletion of the cis‐Golgi protein GM130 led to the disorganisation of AKAP450 network and impairment of MT nucleation. Brefeldin‐A treatment induced relocalisation of AKAP450 to ER exit sites and concomitant redistribution of MT nucleation capacity to the ER. AKAP450 specifically binds the cis‐side of the Golgi in an MT‐independent, GM130‐dependent manner. Short AKAP450‐dependent growing MTs are covered by CLASP2. Like for centrosome, dynein/dynactin complexes are necessary to anchor MTs growing from the Golgi. We further show that Golgi‐associated AKAP450 has a role in cell migration rather than in cell polarisation of the centrosome–Golgi apparatus. We propose that the recruitment of AKAP450 on the Golgi membranes through GM130 allows centrosome‐associated nucleating activity to extend to the Golgi, to control the assembly of subsets of MTs ensuring specific functions within the Golgi or for transporting specific cargos to the cell periphery.  相似文献   

6.
One current theory of the Golgi apparatus views its organization as containing both a matrix fraction of structural proteins and a reservoir of cycling enzymes. During mitosis, the putative matrix protein GM130 is phosphorylated and relocalized to spindle poles. When the secretory pathway is inhibited during interphase, GM130 redistributes to regions adjacent to vesicle export sites on the endoplasmic reticulum (ER). Strikingly, meiotic maturation and fertilization in nonrodent mammalian eggs presents a unique experimental environment for the Golgi apparatus, because secretion is inhibited until after fertilization, and because the centrosome is absent until introduced by the sperm. Here, we test the hypothesis that phosphorylated GM130 associates not with meiotic spindle poles, but with ER clusters in the mature bovine oocyte. At the germinal vesicle stage, phosphorylated GM130 is observed as fragments dispersed throughout the cytoplasm. During meiotic maturation, GM130 reorganizes into punctate foci that associate near the ER-resident protein calreticulin and is notably absent from the meiotic spindle. GM130 colocalizes with Sec23, a marker for ER vesicle export sites, but not with Lens culinaris agglutinin, a marker for cortical granules. Because disruption of vesicle transport has been shown to block meiotic maturation and embryonic cleavage in some species, we also test the hypothesis that fertilization and cytokinesis are inhibited with membrane trafficking disruptor brefeldin A (BFA). Despite Golgi fragmentation after BFA treatment, pronuclei form and unite, and embryos cleave and develop through the eight-cell stage. We conclude that, while the meiotic phosphorylation cycle of GM130 mirrors that of mitosis, absence of a maternal centrosome precludes Golgi association with the meiotic spindle. Fertilization introduces the sperm centrosome that can reorganize Golgi proteins, but neither fertilization nor cytokinesis prior to compaction requires a functional Golgi apparatus.  相似文献   

7.
Faithful mitotic partitioning of the Golgi apparatus and the centrosome is critical for proper cell division. Although these two cytoplasmic organelles are probably coordinated during cell division, supporting evidence of this coordination is still largely lacking. Here, we show that the RAD50-interacting protein, RINT-1, is localized at the Golgi apparatus and the centrosome in addition to the endoplasmic reticulum. To examine the biological roles of RINT-1, we found that the homozygous deletion of Rint-1 caused early embryonic lethality at embryonic day 5 (E5) to E6 and the failure of blastocyst outgrowth ex vivo. About 81% of the Rint-1 heterozygotes succumbed to multiple tumor formation with haploinsufficiency during their average life span of 24 months. To pinpoint the cellular function of RINT-1, we found that RINT-1 depletion by RNA interference led to the loss of the pericentriolar positioning and dispersal of the Golgi apparatus and concurrent centrosome amplification during the interphase. Upon mitotic entry, RINT-1-deficient cells exhibited multiple abnormalities, including aberrant Golgi dynamics during early mitosis and defective reassembly at telophase, increased formation of multiple spindle poles, and frequent chromosome missegregation. Mitotic cells often underwent cell death in part due to the overwhelming cellular defects. Taken together, these findings suggest that RINT-1 serves as a novel tumor suppressor essential for maintaining the dynamic integrity of the Golgi apparatus and the centrosome, a prerequisite to their proper coordination during cell division.  相似文献   

8.
In vertebrate cells, the centrosome consists of a pair of centrioles and surrounding pericentriolar material. Using anti-Golgi 58K protein antibodies that recognize formiminotransferase cyclodeaminase (FTCD), we investigated its localization to the centrosome in various cultured cells and human oviductal secretory cells by immunohistochemistry. In addition to the Golgi apparatus, FTCD was localized to the centrosome, more abundantly around the mother centriole. The centrosome localization of FTCD continued throughout the cell cycle and was not disrupted after Golgi fragmentation, which was induced by colcemid and brefeldin A. Centriole microtubules are polyglutamylated and stable against tubulin depolymerizing drugs. FTCD in the centrosome may be associated with polyglutamylated residues of centriole microtubules and may play a role in providing centrioles with glutamate produced by cyclodeaminase domains of FTCD.  相似文献   

9.
The protein kinase A-anchoring proteins (AKAPs) are defined by their ability to scaffold protein kinase A to specific subcellular compartments. Each of the AKAP family members utilizes unique targeting domains specific for a particular subcellular compartment. AKAP350 is a multiply spliced AKAP family member localized to the centrosome and the Golgi apparatus. Three splicing events in the carboxyl terminus of AKAP350 generate the AKAP350A, AKAP350B, and AKAP350C proteins. A monoclonal antibody recognizing all three splice variants as well as a polyclonal antibody specific for AKAP350A demonstrated both centrosomal and Golgi apparatus staining in paraformaldehyde-fixed HCA-7 cells. Golgi apparatus-associated AKAP350A staining was dispersed following brefeldin A treatment. Using GFP chimeric constructs of the carboxyl-terminal regions of AKAP350A, a Golgi apparatus targeting domain was identified between amino acids 3259 and 3307 of AKAP350A. This domain was functionally distinguishable from the recently described centrosomal targeting domain (PACT domain, amino acids 3308-3324) located adjacent to the Golgi targeting domain. These data definitively establish the specific association of AKAP350A with the Golgi apparatus in HCA-7 cells.  相似文献   

10.
AKAP350 is a multiply spliced family of 350-450-kDa protein kinase A-anchoring proteins localized to the centrosomes and the Golgi apparatus. Using AKAP350A as bait in a yeast two-hybrid screen of a rabbit parietal cell library, we have identified a novel AKAP350-interacting protein, transforming acidic coiled-coil-containing protein 4 (TACC4). Two-hybrid binary assays demonstrate interaction of both TACC3 and TACC4 with AKAP350A and AKAP350B. Antibodies raised to a TACC4-specific peptide sequence colocalize TACC4 with AKAP350 at the centrosome in interphase Jurkat cells. Mitotic cell staining reveals translocation of TACC4 from the centrosome to the spindle apparatus with the majority of TACC4 at the spindle poles. Truncated TACC4 proteins lacking the AKAP350 minimal binding domain found in the carboxyl coiled-coil region of TACC4 could no longer target to the centrosome. Amino-truncated TACC4 proteins could no longer target to the spindle apparatus. Further, overexpression of TACC4 fusion proteins that retained spindle localization in mitotic cells resulted in an increased proportion of cells present in prometaphase. We propose that AKAP350 is responsible for sequestration of TACC4 to the centrosome in interphase, whereas a separate TACC4 domain results in functional localization of TACC4 to the spindle apparatus in mitotic cells.  相似文献   

11.
Detyrosinated and acetylated α-tubulins represent a stable pool of tubulin typically associated with microtubules of the centrosome and primary cilium of eukaryotic cells. Although primary cilium—centrosome and centrosome—Golgi relationships have been identified independently, the precise structural relationship between the primary cilium and Golgi has yet to be specifically defined. Confocal immunohistochemistry was used to localize detyrosinated (ID5) and acetylated (6-11B-1) tubulin antibodies in primary cilia of chondrocytes and smooth muscle cells, and to demonstrate their relationship to the Golgi complex identified by complementary lectin staining with wheat germ agglutinin. The results demonstrate the distribution and inherent structural variation of primary cilia tubulins, and the anatomical interrelationship between the primary cilium, the Golgi apparatus and the nucleus. We suggest that these interrelationships may form part of a functional feedback mechanism which could facilitate the directed secretion of newly synthesized connective tissue macromolecules.  相似文献   

12.
The localization of the Golgi complex depends upon the integrity of the microtubule apparatus. At interphase, the Golgi has a restricted pericentriolar localization. During mitosis, it fragments into small vesicles that are dispersed throughout the cytoplasm until telophase, when they again coalesce near the centrosome. These observations have suggested that the Golgi complex utilizes a dynein-like motor to mediate its transport from the cell periphery towards the minus ends of microtubules, located at the centrosome. We utilized semi-intact cells to study the interaction of the Golgi complex with the microtubule apparatus. We show here that Golgi complexes can enter semi-intact cells and associate stably with cytoplasmic constituents. Stable association, termed here "Golgi capture," requires ATP hydrolysis and intact microtubules, and occurs maximally at physiological temperature in the presence of added cytosolic proteins. Once translocated into the semi-intact cell cytoplasm, exogenous Golgi complexes display a distribution similar to endogenous Golgi complexes, near the microtubule-organizing center. The process of Golgi capture requires cytoplasmic tubulin, and is abolished if cytoplasmic dynein is immunodepleted from the cytosol. Cytoplasmic dynein, prepared from CHO cell cytosol, restores Golgi capture activity to reactions carried out with dynein immuno-depleted cytosol. These results indicate that cytoplasmic dynein can interact with isolated Golgi complexes, and participate in their accumulation near the centrosomes of semi-intact, recipient cells. Thus, cytoplasmic dynein appears to play a role in determining the subcellular localization of the Golgi complex.  相似文献   

13.
A novel 450-kDa coiled-coil protein, CG-NAP (centrosome and Golgi localized PKN-associated protein), was identified as a protein that interacted with the regulatory region of the protein kinase PKN, having a catalytic domain homologous to that of protein kinase C. CG-NAP contains two sets of putative RII (regulatory subunit of protein kinase A)-binding motif. Indeed, CG-NAP tightly bound to RIIalpha in HeLa cells. Furthermore, CG-NAP was coimmunoprecipitated with the catalytic subunit of protein phosphatase 2A (PP2A), when one of the B subunit of PP2A (PR130) was exogenously expressed in COS7 cells. CG-NAP also interacted with the catalytic subunit of protein phosphatase 1 in HeLa cells. Immunofluorescence analysis of HeLa cells revealed that CG-NAP was localized to centrosome throughout the cell cycle, the midbody at telophase, and the Golgi apparatus at interphase, where a certain population of PKN and RIIalpha were found to be accumulated. These data indicate that CG-NAP serves as a novel scaffolding protein that assembles several protein kinases and phosphatases on centrosome and the Golgi apparatus, where physiological events, such as cell cycle progression and intracellular membrane traffic, may be regulated by phosphorylation state of specific protein substrates.  相似文献   

14.
In vitro myogenesis involves a dramatic reorganization of the microtubular network, characterized principally by the relocalization of microtubule nucleating sites at the surface of the nuclei in myotubes, in marked contrast with the classical pericentriolar localization observed in myoblasts (Tassin, A. M., B. Maro, and M. Bornens, 1985, J. Cell Biol., 100:35-46). Since a spatial relationship between the Golgi apparatus and the centrosome is observed in most animal cells, we have decided to follow the fate of the Golgi apparatus during myogenesis by an immunocytochemical approach, using wheat germ agglutinin and an affinity-purified anti-galactosyltransferase. We show that Golgi apparatus in myotubes displays a perinuclear distribution which is strikingly different from the polarized juxtanuclear organization observed in myoblasts. As a result, the Golgi apparatus in myotubes is situated close to the microtubule organizing center (MTOC), the cis-side being situated at a fixed distance from the nuclear envelope, a situation which suggests the existence of a structural association between the Golgi apparatus and the nuclear periphery. This is supported by experiments of microtubule depolymerization by nocodazole, in which a minimal effect was observed on Golgi apparatus localization in myotubes in contrast with the dramatic scattering observed in myoblasts. In both cell types, electron microscopy reveals that microtubule disruption generates individual dictyosomes; this suggests that the connecting structures between dictyosomes are principally affected. This structural dependency of the Golgi apparatus upon microtubules is not apparently accompanied by a reverse dependency of MTOC structure or function upon Golgi apparatus activity. Golgi apparatus modification by monensin, as effective in myotubes as in myoblasts, is without apparent effect on MTOC localization or activity and on microtubule stability. The main result of our study is to show that in a cell type where the MTOC is dissociated from centrioles and where antero-posterior polarity has disappeared, the association between the Golgi apparatus and the MTOC is maintained. The significance of such a tight association is discussed.  相似文献   

15.
Mammalian cells exhibit a frequent pericentrosomal Golgi ribbon organization. In this paper, we show that two AKAP450 N-terminal fragments, both containing the Golgi-binding GM130-interacting domain of AKAP450, dissociated endogenous AKAP450 from the Golgi and inhibited microtubule (MT) nucleation at the Golgi without interfering with centrosomal activity. These two fragments had, however, strikingly different effects on both Golgi apparatus (GA) integrity and positioning, whereas the short fragment induced GA circularization and ribbon fragmentation, the large construct that encompasses an additional p150glued/MT-binding domain induced separation of the Golgi ribbon from the centrosome. These distinct phenotypes arose by specific interference of each fragment with either Golgi-dependent or centrosome-dependent stages of Golgi assembly. We could thus demonstrate that breaking the polarity axis by perturbing GA positioning has a more dramatic effect on directional cell migration than disrupting the Golgi ribbon. Both features, however, were required for ciliogenesis. We thus identified AKAP450 as a key determinant of pericentrosomal Golgi ribbon integrity, positioning, and function in mammalian cells.  相似文献   

16.
The eukaryotic Golgi apparatus is characterized by a stack of flattened cisternae that are surrounded by transport vesicles. The organization and function of the Golgi require Golgi matrix proteins, including GRASPs and golgins, which exist primarily as fiber-like bridges between Golgi cisternae or between cisternae and vesicles. In this review, we highlight recent findings on Golgi matrix proteins, including their roles in maintaining the Golgi structure, vesicle tethering, and novel, unexpected functions. These new discoveries further our understanding of the molecular mechanisms that maintain the structure and the function of the Golgi, as well as its relationship with other cellular organelles such as the centrosome.  相似文献   

17.
The widespread LIS1-proteins were originally identified as the target for sporadic mutations causing lissencephaly in humans. Dictyostelium LIS1 (DdLIS1) is a microtubule-associated protein exhibiting 53% identity to human LIS1. It colocalizes with dynein at isolated, microtubule-free centrosomes, suggesting that both are integral centrosomal components. Replacement of the DdLIS1 gene by the hypomorphic D327H allele or overexpression of an MBP-DdLIS1 fusion disrupted various dynein-associated functions. Microtubules lost contact with the cell cortex and were dragged behind an unusually motile centrosome. Previously, this phenotype was observed in cells overexpressing fragments of dynein or the XMAP215-homologue DdCP224. DdLIS1 was coprecipitated with DdCP224, suggesting that both act together in dynein-mediated cortical attachment of microtubules. Furthermore, DdLIS1-D327H mutants showed Golgi dispersal and reduced centrosome/nucleus association. Defects in DdLIS1 function also altered actin dynamics characterized by traveling waves of actin polymerization correlated with a reduced F-actin content. DdLIS1 could be involved in actin dynamics through Rho-GTPases, because DdLIS1 interacted directly with Rac1A in vitro. Our results show that DdLIS1 is required for maintenance of the microtubule cytoskeleton, Golgi apparatus and nucleus/centrosome association, and they suggest that LIS1-dependent alterations of actin dynamics could also contribute to defects in neuronal migration in lissencephaly patients.  相似文献   

18.
In animal cells the centrosome is positioned at the cell centre in close association with the nucleus. The mechanisms responsible for this are not completely understood. Here, we report the first characterization of human TBCC‐domain containing 1 (TBCCD1), a protein related to tubulin cofactor C. TBCCD1 localizes at the centrosome and at the spindle midzone, midbody and basal bodies of primary and motile cilia. Knockdown of TBCCD1 in RPE‐1 cells caused the dissociation of the centrosome from the nucleus and disorganization of the Golgi apparatus. TBCCD1‐depleted cells are larger, less efficient in primary cilia assembly and their migration is slower in wound‐healing assays. However, the major microtubule‐nucleating activity of the centrosome is not affected by TBCCD1 silencing. We propose that TBCCD1 is a key regulator of centrosome positioning and consequently of internal cell organization.  相似文献   

19.
CLIC4 is a member of the chloride intracellular channel (CLIC) protein family whose principal cellular functions are poorly understood. Recently, we demonstrated that several CLIC proteins, including CLIC4, interact with AKAP350. AKAP350 is concentrated at the Golgi apparatus, centrosome, and midbody and acts as a scaffolding protein for several protein kinases and phosphatases. In this report, we show that endogenous CLIC4 and AKAP350 colocalize at the centrosome and midbody of cultured cells by immunofluorescence microscopy. Unlike AKAP350, CLIC4 is not enriched in the Golgi apparatus but is enriched in mitochondria, actin-based structures at the cell cortex, and the nuclear matrix, indicating that CLIC4-AKAP350 interactions are regulated at specific subcellular sites in vivo. In addition to the centrosome and midbody, CLIC4 colocalizes with AKAP350 and the tight junction protein ZO-1 in the apical region of polarized epithelial cells, suggesting that CLIC4 may play a role in maintaining apical-basolateral membrane polarity during mitosis and cytokinesis. Biochemical studies show that CLIC4 behaves mainly as a soluble cytosolic protein and can associate with proteins of the microtubule cytoskeleton. The localization of CLIC4 to the cortical actin cytoskeleton and its association with AKAP350 at the centrosome and midbody suggests that CLIC4 may be important for regulating cytoskeletal organization during the cell cycle. These findings lead to the conclusion that CLIC4 and possibly other CLIC proteins have alternate cellular functions that are distinct from their proposed roles as chloride channels.  相似文献   

20.
The molecular mechanisms underlying cytoskeleton‐dependent Golgi positioning are poorly understood. In mammalian cells, the Golgi apparatus is localized near the juxtanuclear centrosome via dynein‐mediated motility along microtubules. Previous studies implicate Cdc42 in regulating dynein‐dependent motility. Here we show that reduced expression of the Cdc42‐specific GTPase‐activating protein, ARHGAP21, inhibits the ability of dispersed Golgi membranes to reposition at the centrosome following nocodazole treatment and washout. Cdc42 regulation of Golgi positioning appears to involve ARF1 and a binding interaction with the vesicle‐coat protein coatomer. We tested whether Cdc42 directly affects motility, as opposed to the formation of a trafficking intermediate, using a Golgi capture and motility assay in permeabilized cells. Disrupting Cdc42 activation or the coatomer/Cdc42 binding interaction stimulated Golgi motility. The coatomer/Cdc42‐sensitive motility was blocked by the addition of an inhibitory dynein antibody. Together, our results reveal that dynein and microtubule‐dependent Golgi positioning is regulated by ARF1‐, coatomer‐, and ARHGAP21‐dependent Cdc42 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号