首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relaxase of RP4 nicks the double-stranded plasmid at the oriT site and binds covalently to DNA at the 5′ end of the nick. The 80-kDa relaxase (TraI) is encoded on an operon with several overlapping open reading frames (ORFs). The importance in conjugation of a short ORF (traX) with a start site overlapping the 5′ terminus of traI was investigated, as well as the effects of specific mutations in the relaxase. Elimination of TraX reduced the transfer efficiency by approximately 50% in several intergeneric matings, especially when Escherichia coli was the donor. While TraI was essential for transfer to occur, deletion of the C-terminus of TraI decreased, but did not eliminate plasmid transfer. Mutation of the active site tyrosine resulted in residual transfer associated with amino acid misincorporation.  相似文献   

2.
D Balzer  W Pansegrau    E Lanka 《Journal of bacteriology》1994,176(14):4285-4295
Two essential transfer genes of the conjugative plasmid RP4 were altered by site-directed mutagenesis: traG of the primase operon and traI of the relaxase operon. To evaluate effects on the transfer phenotype of the point mutations, we have reconstituted the RP4 transfer system by fusion of the transfer regions Tra1 and Tra2 to the small multicopy replicon ColD. Deletions in traG or traI served to determine the Tra phenotype of mutant plasmids by trans complementation. Two motifs of TraG which are highly conserved among TraG-like proteins in several other conjugative DNA transfer systems were found to be essential for TraG function. One of the motifs resembles that of a nucleotide binding fold of type B. The relaxase (TraI) catalyzes the specific cleaving-joining reaction at the transfer origin needed to initiate and terminate conjugative DNA transfer (W. Pansegrau, W. Schröder, and E. Lanka, Proc. Natl. Acad. Sci. USA 90:2925-2929, 1993). Phenotypes of mutations in three motifs that belong to the active center of the relaxase confirmed previously obtained biochemical evidence for the contributions of the motifs to the catalytic activity of TraI. Expression of the relaxase operon is greatly increased in the absence of an intact TraI protein. This finding suggests that the relaxosome which assembles only in the presence of the TraI in addition to its enzymatic activity plays a role in gene regulation.  相似文献   

3.
Bacteria commonly exchange genetic information by the horizontal transfer of conjugative plasmids. In gram-negative conjugation, a relaxase enzyme is absolutely required to prepare plasmid DNA for transit into the recipient via a type IV secretion system. Here we report a mutagenesis of the F plasmid relaxase gene traI using in-frame, 31-codon insertions. Phenotypic analysis of our mutant library revealed that several mutant proteins are functional in conjugation, highlighting regions of TraI that can tolerate insertions of a moderate size. We also demonstrate that wild-type TraI, when overexpressed, plays a dominant-negative regulatory role in conjugation, repressing plasmid transfer frequencies approximately 100-fold. Mutant TraI proteins with insertions in a region of approximately 400 residues between the consensus relaxase and helicase sequences did not cause conjugative repression. These unrestrictive TraI variants have normal relaxase activity in vivo, and several have wild-type conjugative functions when expressed at normal levels. We postulate that TraI negatively regulates conjugation by interacting with and sequestering some component of the conjugative apparatus. Our data indicate that the domain responsible for conjugative repression resides in the central region of TraI between the protein's catalytic domains.  相似文献   

4.
The product of the Escherichia coli F plasmid traI gene is required for DNA transfer via bacterial conjugation. This bifunctional protein catalyzes the unwinding of duplex DNA and is a sequence-specific DNA transesterase. The latter activity provides the site- and strand-specific nick required to initiate DNA transfer. To address the role of the TraI helicase activity in conjugative DNA transfer traI mutants were constructed and their function in DNA transfer was evaluated using genetic and biochemical methods. A traI deletion/insertion mutant was transfer-defective as expected. A traI C-terminal deletion that removed the helicase-associated motifs was also transfer-defective despite the fact that the region of traI encoding the transesterase activity was intact. Biochemical studies demonstrated that the N-terminal domain was sufficient to catalyze oriT-dependent transesterase activity. Thus, a functional transesterase was not sufficient to support DNA transfer. Finally, a point mutant, TraI-K998M, that lacked detectable helicase activity was characterized. This protein catalyzed oriT-dependent transesterase activity in vitro and in vivo but failed to complement a traI deletion strain in conjugative DNA transfer assays. Thus, both the transesterase and helicase activities of TraI are essential for DNA strand transfer.  相似文献   

5.
TraI (DNA helicase I) is an Escherichia coli F plasmid-encoded protein required for bacterial conjugative DNA transfer. The protein is a sequence-specific DNA transesterase that provides the site- and strand-specific nick required to initiate DNA strand transfer and a 5' to 3' DNA helicase that unwinds the F plasmid to provide the single-stranded DNA that is transferred from donor to recipient. Sequence comparisons with other transesterases and helicases suggest that these activities reside in the N- and C-terminal regions of TraI, respectively. Computer-assisted secondary structure probability analysis identified a potential interdomain region spanning residues 304-309. Proteins encoded by segments of traI, whose N or C terminus either flanked or coincided with this region, were purified and assessed for catalytic activity. Amino acids 1-306 contain the transesterase activity, whereas amino acids 309-1504 contain the helicase activity. The C-terminal 252 amino acids of the 1756-amino acid TraI protein are not required for either helicase or transesterase activity. Protein and nucleic acid sequence similarity searches indicate that the occurrence of both transesterase- and helicase-associated motifs in a conjugative DNA transfer initiator protein is rare. Only two examples (other than R100 plasmid TraI) were found: R388 plasmid TrwC and R46 plasmid (pKM101) TraH, belonging to the IncW and IncN groups of broad host range conjugative plasmids, respectively. The most significant structural difference between these proteins and TraI is that TraI contains an additional region of approximately 650 residues between the transesterase domain and the helicase-associated motifs. This region is required for helicase activity.  相似文献   

6.
Many Bacteroides transfer factors are mobilizable in Escherichia coli when coresident with the IncP conjugative plasmid RP4, but not F. To begin characterization and potential interaction between Bacteroides mobilizable transfer factors and the RP4 mating channel, both mutants and deletions of the DNA processing (dtr), mating pair formation (mpf) and traG coupling genes of RP4 were tested for mobilization of Bacteroides plasmid pLV22a. All 10 mpf but none of the four dtr genes were required for mobilization of pLV22a. The RP4 TraG coupling protein (CP) was also required for mobilization of pLV22a, but could be substituted by a C-terminal deletion mutant of the F TraD CP. Potential interactions of the TraG CP with relaxase protein(s) and transfer DNA of both RP4 and pLV22a were assessed. Overlay assays identified productive interactions between TraG and the relaxase proteins of both MbpB and TraI from pLV22a and RP4 respectively. The Agrobacterium Transfer-ImmunoPrecipitation (TrIP) assay also identified an interaction between TraG and both RP4 and pLV22a transfer DNA. Thus, mobilization of the Bacteroides pLV22a in E. coli utilizes both RP4 Mpf and CP functions including an interaction between the relaxosome and the RP4 CP similar to that of cognate RP4 plasmid.  相似文献   

7.
The symbiosis island ICE Ml SymR7A of Mesorhizobium loti R7A is an integrative and conjugative element (ICE) that carries genes required for a nitrogen-fixing symbiosis with Lotus species. ICE Ml SymR7A encodes homologues (TraR, TraI1 and TraI2) of proteins that regulate plasmid transfer by quorum sensing in rhizobia and agrobacteria. Introduction of traR cloned on a plasmid induced excision of ICE Ml SymR7A in all cells, a 1000-fold increase in the production of 3-oxo-C6-homoserine lactone (3-oxo-C6-HSL) and a 40-fold increase in conjugative transfer. These effects were dependent on traI1 but not traI2 . Induction of expression from the traI1 and traI2 promoters required the presence of plasmid-borne traR and either traI1 or 100 pM 3-oxo-C6-HSL, suggesting that traR expression or TraR activity is repressed in wild-type cells by a mechanism that can be overcome by additional copies of traR . The traI2 gene formed an operon with hypothetical genes msi172 and msi171 that were essential for ICE Ml SymR7A excision and transfer. Our data suggest that derepressed TraR in conjunction with TraI1-synthesized 3-oxo-C6-HSL regulates excision and transfer of ICE Ml SymR7A through expression of msi172 and msi171 . Homologues of msi172 and msi171 were present on putative ICEs in several α-proteobacteria, indicating a conserved role in ICE excision and transfer.  相似文献   

8.
The trb operon from pTiC58 is one of three loci that are required for conjugal transfer of this Ti plasmid. The operon, which probably codes for the mating bridge responsible for pair formation and DNA transfer, contains 12 genes, 11 of which are related to genes from other members of the type IV secretion system family. The 12th gene, traI, codes for production of Agrobacterium autoinducer (AAI). Insertion mutations were constructed in each of the 12 genes, contained on a full-length clone of the trb region, using antibiotic resistance cassettes or a newly constructed transposon. This transposon, called mini-Tn5Ptrb, was designed to express genes downstream of the insertion site from a promoter regulated by TraR and AAI. Each mutation could trans complement downstream Tn3HoHo1 insertions in the trb operon of full-sized Ti plasmids. When marker-exchanged into the transfer-constitutive Ti plasmid pTiC58DeltaaccR mutations in trbB, -C, -D, -E, -L, -F, -G, and -H abolished conjugal transfer from strain UIA5, which lacks the 450-kb catabolic plasmid pAtC58. However, these mutants retained residual conjugal transfer activity when tested in strain NT1, which contains this large plasmid. The trbJ mutant failed to transfer at a detectable frequency from either strain, while the trbI mutant transferred at very low but detectable levels from both donors. Only the trbK mutant was unaffected in conjugal transfer from either donor. Transfer of each of the marker-exchange mutants was restored by a clone expressing only the wild-type allele of the corresponding mutant trb gene. An insertion mutation in traI abolished the production of AAI and also conjugal transfer. This defect was restored by culturing the mutant donor in the presence of AAI. We conclude that all of the trb genes except trbI and trbK are essential for conjugal transfer of pTiC58. We also conclude that mutations in any one of the trb genes except traI and trbJ can be complemented by functions coded for by pAtC58.  相似文献   

9.
In preparation for transfer conjugative type IV secretion systems (T4SS) produce a nucleoprotein adduct containing a relaxase enzyme covalently linked to the 5' end of single-stranded plasmid DNA. The bound relaxase is expected to present features necessary for selective recognition by the type IV coupling protein (T4CP), which controls substrate entry to the envelope spanning secretion machinery. We prove that the IncF plasmid R1 relaxase TraI is translocated to the recipient cells. Using a Cre recombinase assay (CRAfT) we mapped two internally positioned translocation signals (TS) on F-like TraI proteins that independently mediate efficient recognition and secretion. Tertiary structure predictions for the TS matched best helicase RecD2 from Deinococcus radiodurans. The TS is widely conserved in MOB(F) and MOB(Q) families of relaxases. Structure/function relationships within the TS were identified by mutation. A key residue in specific recognition by T4CP TraD was revealed by a fidelity switch phenotype for an F to plasmid R1 exchange L626H mutation. Finally, we show that physical linkage of the relaxase catalytic domain to a TraI TS is necessary for efficient conjugative transfer.  相似文献   

10.
The conjugative transfer region 1 (Tra1) of the IncHI1 plasmid R27 was subjected to DNA sequence analysis, mutagenesis, genetic complementation, and an H-pilus-specific phage assay. Analysis of the nucleotide sequence indicated that the Tra1 region contains genes coding for mating pair formation (Mpf) and DNA transfer replication (Dtr) and a coupling protein. Insertional disruptions of 9 of the 14 open reading frames (ORFs) in the Tra1 region resulted in a transfer-deficient phenotype. Conjugative transfer was restored for each transfer mutant by genetic complementation. An intergenic region between traH and trhR was cloned and mobilized by R27, indicating the presence of an origin of transfer (oriT). The five ORFs immediately downstream of the oriT region are involved in H-pilus production, as determined by an H-pilus-specific phage assay. Three of these ORFs encode proteins homologous to Mpf proteins from IncF plasmids. Upstream of the oriT region are four ORFs required for plasmid transfer but not H-pilus production. TraI contains sequence motifs that are characteristic of relaxases from the IncP lineage but share no overall homology to known relaxases. TraJ contains both an Arc repressor motif and a leucine zipper motif. A putative coupling protein, TraG, shares a low level of homology to the TraG family of coupling proteins and contains motifs that are important for DNA transfer. This analysis indicates that the Mpf components of R27 share a common lineage with those of the IncF transfer system, whereas the relaxase of R27 is ancestrally related to that of the IncP transfer system.  相似文献   

11.
A 6.9-kilobase region of the Escherichia coli F plasmid containing the 3' half of the traD gene and the entire traI gene (encodes the TraI protein, DNA helicase I and TraI, a polypeptide arising from an internal in-frame translational start in traI) has been sequenced. A previously unidentified open reading frame (tentatively trbH) lies between traD and traI.  相似文献   

12.
TraI from conjugative plasmid F factor is both a "relaxase" that sequence-specifically binds and cleaves single-stranded DNA (ssDNA) and a helicase that unwinds the plasmid during transfer. Using limited proteolysis of a TraI fragment, we generated a 36-kDa fragment (TraI36) retaining TraI ssDNA binding specificity and relaxase activity but lacking the ssDNA-dependent ATPase activity of the helicase. Further proteolytic digestion of TraI36 generates stable N-terminal 26-kDa (TraI26) and C-terminal 7-kDa fragments. Both TraI36 and TraI26 are stably folded and unfold in a highly cooperative manner, but TraI26 lacks affinity for ssDNA. Mutational analysis of TraI36 indicates that N-terminal residues Tyr(16) and Tyr(17) are required for efficient ssDNA cleavage but not for high-affinity ssDNA binding. Although the TraI36 N-terminus provides the relaxase catalytic residues, both N- and C-terminal structural domains participate in binding, suggesting that both domains combine to form the TraI relaxase active site.  相似文献   

13.
The DNA transfer stage of conjugation requires the products of the F sex factor genes traMYDIZ and the cis-acting site oriT. Previous interpretation of genetic and protein analyses suggested that traD, traI, and traZ mapped as contiguous genes at the distal end of the transfer operon and saturated this portion of the F transfer region (which ends with an IS3 element). Using antibodies prepared against the purified TraD and TraI proteins, we analyzed the products encoded by a collection of chimeric plasmids constructed with various segments of traDIZ DNA. We found the traI gene to be located 1 kilobase to the right of the position suggested on previous maps. This creates an unsaturated space between traD and traI where unidentified tra genes may be located and leaves insufficient space between traI and IS3 for coding the 94-kilodalton protein previously thought to be the product of traZ. We found that the 94-kilodalton protein arose from a translational restart and corresponds to the carboxy terminus of traI; we named it TraI*. The precise physical location of the traZ gene and the identity of its product are unknown. The oriT nicking activity known as TraZ may stem from unassigned regions between traD and traI and between traI and IS3, but a more interesting possibility is that it is actually a function of traI. On our revised map, the position of a previously detected RNA polymerase-binding site corresponds to a site at the amino terminus of traI rather than a location 1 kilobase into the coding region of the gene. Furthermore, the physical and genetic comparison of the F traD and traI genes with those of the closely related F-like conjugative plasmids R1 and R100 is greatly simplified. The translational organization we found for traI, together with its identity as the structural gene for DNA helicase I, suggests a possible functional link to several other genes from which translational restart polypeptides are expressed. These include the primases of the conjugative plasmids ColI and R16, the primase-helicase of bacteriophage T7, and the cisA product (nickase) of phage phi X174.  相似文献   

14.
P Ratet  J Schell  F J de Bruijn 《Gene》1988,63(1):41-52
Novel mini-Mu derivatives were constructed, carrying a truncated lacZYA operon fused to the terminal 117 bp of the Mu S-end, for the isolation of translational lac fusions by mini-Mu-mediated insertion mutagenesis. Different selectable markers (chloramphenicol resistance; gentamycin resistance) were introduced to allow selection for mini-Mu insertions in different replicons and bacterial strains. A mini-Mulac derivative carrying the site for conjugal transfer of plasmid RP4 (oriT) and the origin of replication of the Agrobacterium rhizogenes Ri plasmid (oriRiHRI) was constructed to enable one-step lac-fusion mutagenesis of cloned (plasmid-borne) regions in Escherichia coli and efficient conjugal transfer of gene fusions to to a variety of Gram-negative bacteria. The conjugation frequency, stability and copy number of replicons carrying mini-Mulac derivatives with oriT and oriRiHRI in members of the Rhizobiaceae such as Rhizobium meliloti, Azorhizobium caulinodans ORS571 and Agrobacterium tumefaciens C58 was examined.  相似文献   

15.
The widespread development of multidrug-resistant bacteria is a major health emergency. Conjugative DNA plasmids, which harbor a wide range of antibiotic resistance genes, also encode the protein factors necessary to orchestrate the propagation of plasmid DNA between bacterial cells through conjugative transfer. Successful conjugative DNA transfer depends on key catalytic components to nick one strand of the duplex DNA plasmid and separate the DNA strands while cell-to-cell transfer occurs. The TraI protein from the conjugative Salmonella plasmid pCU1 fulfills these key catalytic roles, as it contains both single-stranded DNA-nicking relaxase and ATP-dependent helicase domains within a single, 1,078-residue polypeptide. In this work, we unraveled the helicase determinants of Salmonella pCU1 TraI through DNA binding, ATPase, and DNA strand separation assays. TraI binds DNA substrates with high affinity in a manner influenced by nucleic acid length and the presence of a DNA hairpin structure adjacent to the nick site. TraI selectively hydrolyzes ATP, and mutations in conserved helicase motifs eliminate ATPase activity. Surprisingly, the absence of a relatively short (144-residue) domain at the extreme C terminus of the protein severely diminishes ATP-dependent strand separation. Collectively, these data define the helicase motifs of the conjugative factor TraI from Salmonella pCU1 and reveal a previously uncharacterized C-terminal functional domain that uncouples ATP hydrolysis from strand separation activity.  相似文献   

16.
Transfer of conjugative plasmids requires relaxases, proteins that cleave one plasmid strand sequence specifically. The F plasmid relaxase TraI (1,756 amino acids) is also a highly processive DNA helicase. The TraI relaxase activity is located within the N-terminal ∼300 amino acids, while helicase motifs are located in the region comprising positions 990 to 1450. For efficient F transfer, the two activities must be physically linked. The two TraI activities are likely used in different stages of transfer; how the protein regulates the transition between activities is unknown. We examined TraI helicase single-stranded DNA (ssDNA) recognition to complement previous explorations of relaxase ssDNA binding. Here, we show that TraI helicase-associated ssDNA binding is independent of and located N-terminal to all helicase motifs. The helicase-associated site binds ssDNA oligonucleotides with nM-range equilibrium dissociation constants and some sequence specificity. Significantly, we observe an apparent strong negative cooperativity in ssDNA binding between relaxase and helicase-associated sites. We examined three TraI variants having 31-amino-acid insertions in or near the helicase-associated ssDNA binding site. B. A. Traxler and colleagues (J. Bacteriol. 188:6346-6353) showed that under certain conditions, these variants are released from a form of negative regulation, allowing them to facilitate transfer more efficiently than wild-type TraI. We find that these variants display both moderately reduced affinity for ssDNA by their helicase-associated binding sites and a significant reduction in the apparent negative cooperativity of binding, relative to wild-type TraI. These results suggest that the apparent negative cooperativity of binding to the two ssDNA binding sites of TraI serves a major regulatory function in F transfer.Transfer of conjugative plasmids between bacteria contributes to genome diversification and acquisition of new traits. Conjugative plasmids encode most proteins required for transfer of one plasmid strand from the donor to the recipient cell (reviewed in references 11, 24, and 43). In preparation for transfer, a complex of proteins assembles at the plasmid origin of transfer (oriT). Within this complex, called the relaxosome, a plasmid-encoded relaxase or nickase binds and cleaves one plasmid strand at a specific oriT site (nic). As part of the cleavage reaction, the relaxase forms a covalent linkage between an active-site tyrosyl hydroxyl oxygen and a single-stranded DNA (ssDNA) phosphate, yielding a 3′ ssDNA hydroxyl (19, 30). Upon initiation of transfer, the plasmid strands are separated, and the cut strand is transported into the recipient. The relaxase is likely transferred into the recipient (12, 31) while still physically attached to plasmid DNA. The transferred relaxase may then join the ends of the ssDNA plasmid copy in the final step of plasmid transfer. Complementary strand synthesis in the donor and the recipient generates a double-stranded plasmid that is competent for further transfer. Successful conjugation requires effective temporal regulation, yet the mechanisms governing this regulation are poorly understood.The F plasmid oriT is ∼500 bp long and includes multiple binding sites for integration host factor (IHF), TraY, and TraM and a single site for TraI, the F relaxase (11). IHF, TraY, and TraM, participants in the relaxosome, bind double-stranded DNA to facilitate the action of TraI, perhaps by creating or stabilizing the ssDNA conformation around nic required for TraI recognition. The F TraI minimal high-affinity binding site includes ∼15 nucleotides around nic (39), and throughout the text, we refer to oligonucleotides that contain the TraI wild-type (wt) or variant binding site as oriT oligonucleotides. F TraI is 192 kDa (42), and in addition to its relaxase activity, TraI has a 5′-to-3′ helicase activity (4). These activities must be physically joined to allow efficient plasmid transfer (29), yet how the two activities are coordinated is a mystery. The relaxase region of F TraI has been defined as the N-terminal ∼300 amino acids (aa) (6, 40). Conserved helicase motifs, including those associated with an ATPase, lie between amino acids 990 and 1450. The C-terminal region (positions 1450 to 1756) plays an important role in bacterial conjugation, possibly involving protein-protein interactions with TraM (32) and/or inner membrane protein TraD (28).The 70-kDa central region of TraI that lies between the relaxase and helicase domains has been implicated in two functions. Haft and colleagues described TraI variants with 31-amino-acid insertions in this TraI region that facilitated plasmid transfer with greater efficiency than that afforded by the wild-type protein when these proteins are expressed at high levels (16). On the basis of this observation, the authors proposed that the region participated in a negative regulation of transfer. Matson and Ragonese demonstrated that this central region is required for TraI helicase function, likely due to participation in ssDNA recognition essential for the helicase activity (28). We wondered whether the proposed regulatory and ssDNA binding roles of the central region are linked and whether this region might help modulate TraI helicase and relaxase activities. Our objectives in this study were to confirm the role of the central region in ssDNA recognition, to assess the affinity and specificity of the ssDNA recognition by the central region, and to determine whether the relaxase and central domain ssDNA binding sites demonstrate cooperativity in binding. Our work yielded two significant and surprising results. First, the binding site within the TraI central region binds ssDNA with high affinity and significant sequence specificity, both unusual characteristics for a helicase. Second, the central region and relaxase ssDNA binding sites show an apparent strong negative cooperativity of binding, possibly explaining the role of the central region as a negative regulator and providing clues about how the timing of conjugative transfer might be regulated.  相似文献   

17.
The nucleotide sequence of the relaxase operon and the leader operon which are part of the Tra1 region of the promiscuous plasmid RP4 was determined. These two polycistronic operons are transcribed divergently from an intergenic region of about 360 bp containing the transfer origin and six close-packed genes. A seventh gene completely overlaps another one in a different reading frame. Conjugative DNA transfer proceeds unidirectionally from oriT with the leader operon heading the DNA to be transferred. The traI gene of the relaxase operon includes within its 3' terminal region a promoter controlling the 7.2-kb polycistronic primase operon. Comparative sequence analysis of the closely related IncP plasmid R751 revealed a similarity of 74% at the nucleotide sequence level, indicating that RP4 and R751 have evolved from a common ancestor. The gene organization of relaxase- and leader operons is conserved among the two IncP plasmids. The transfer origins and the genes traJ and traK exhibit greater sequence divergence than the other genes of the corresponding operons. This is conceivable, because traJ and traK are specificity determinants, the products of which can only recognize homologous oriT sequences. Surprisingly, the organization of the IncP relaxase operons resembles that of the virD operon of Agrobacterium tumefaciens plasmid pTiA6 that mediates DNA transfer to plant cells by a process analogous to bacterial conjugation. Furthermore, the IncP TraG proteins and the product of the virD4 gene share extended amino acid sequence similarity, suggesting a functional relationship.  相似文献   

18.
19.
Early in F plasmid conjugative transfer, the F relaxase, TraI, cleaves one plasmid strand at a site within the origin of transfer called nic. The reaction covalently links TraI Tyr16 to the 5'-ssDNA phosphate. Ultimately, TraI reverses the cleavage reaction to circularize the plasmid strand. The joining reaction requires a ssDNA 3'-hydroxyl; a second cleavage reaction at nic, regenerated by extension from the plasmid cleavage site, may generate this hydroxyl. Here we confirm that TraI is transported to the recipient during transfer. We track the secondary cleavage reaction and provide evidence it occurs in the donor and F ssDNA is transferred to the recipient with a free 3'-hydroxyl. Phe substitutions for four Tyr within the TraI active site implicate only Tyr16 in the two cleavage reactions required for transfer. Therefore, two TraI molecules are required for F plasmid transfer. Analysis of TraI translocation on various linear and circular ssDNA substrates supports the assertion that TraI slowly dissociates from the 3'-end of cleaved F plasmid, likely a characteristic essential for plasmid re-circularization.  相似文献   

20.
During bacterial conjugation, the single-stranded DNA molecule is transferred through the cell envelopes of the donor and the recipient cell. A membrane-spanning transfer apparatus encoded by conjugative plasmids has been proposed to facilitate protein and DNA transport. For the IncPalpha plasmid RP4, a thorough sequence analysis of the gene products of the transfer regions Tra1 and Tra2 revealed typical features of mainly inner membrane proteins. We localized essential RP4 transfer functions to Escherichia coli cell fractions by immunological detection with specific polyclonal antisera. Each of the gene products of the RP4 mating pair formation (Mpf) system, specified by the Tra2 core region and by traF of the Tra1 region, was found in the outer membrane fraction with one exception, the TrbB protein, which behaved like a soluble protein. The membrane preparation from Mpf-containing cells had an additional membrane fraction whose density was intermediate between those of the cytoplasmic and outer membranes, suggesting the presence of attachment zones between the two E. coli membranes. The Tra1 region is known to encode the components of the RP4 relaxosome. Several gene products of this transfer region, including the relaxase TraI, were detected in the soluble fraction, but also in the inner membrane fraction. This indicates that the nucleoprotein complex is associated with and/or assembled facing the cytoplasmic site of the E. coli cell envelope. The Tra1 protein TraG was predominantly localized to the cytoplasmic membrane, supporting its potential role as an interface between the RP4 Mpf system and the relaxosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号