首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aerobic granular sludge sequencing batch reactors (SBR) are a promising technology for treating wastewater. Increasing evidence suggests that aerobic granulation in SBRs is driven by selection pressures exerted on microorganisms. Three major selection pressures have been identified as follows: settling time, volume exchange ratio and discharge time. This review demonstrates that these three major selection pressures can all be unified to one, the minimal settling velocity of bio-particles, that determines aerobic granulation in SBRs. The unified selection pressure theory is a useful guide for manipulating and optimizing the formation and characteristics of aerobic granules in SBRs. Furthermore, the unified theory provides a single engineering basis for scale up of aerobic granular sludge SBRs.  相似文献   

2.
A generalized model for settling velocity of aerobic granular sludge   总被引:5,自引:0,他引:5  
Aerobic granulation is a novel biotechnology recently receiving intensive research attention. Aerobic granules developed in SBR can be as big as several millimeters, thus the traditional models describing the settling velocity of activated sludge are no long valid in aerobic granules culture. In this study, a new type of model was developed for the settling velocity of aerobic granules. This model shows that the settling velocity of aerobic granules is the function of SVI, mean size of granules and biomass concentration of granules. When the size of bioparticle is small enough, the proposed model reduces to the well-known Vesilind equation. Results indicated that the proposed model could satisfactorily fit experimental results obtained in the course of aerobic granulation under different conditions, while the Vesilind equation failed to or very poorly fit the experimental data. In addition, the proposed model can also be extended to anaerobic granules. The settling velocity is one of the most important parameters in both aerobic and anaerobic granulation, and successful biogranulation is highly related to the manipulation of settling velocity. It was demonstrated that the proposed model can sever as a useful tool for design and operation engineers to properly select the settling velocity for enhanced aerobic and anaerobic granulation.  相似文献   

3.
Settling time has been considered as one of the most effective selection pressures for aerobic granulation in sequencing batch reactors (SBRs), i.e., poorly settleable bioparticles would be washed out from SBRs, and the heavy and good settling ones would be retained at a shorter setting time. However, its biological implication remains unclear. This study investigated the microbiological mechanisms of aerobic granulation at different settling times. It provided experimental evidence for the first time showing that a shorter settling time could enhance release of extracellular DNA through cell lysis, which in turn initiated microbial aggregation leading to increased biomass size and density, while AI-2-mediated quorum sensing was found not to be involved in initial aggregation. It was further shown that the AI-2-mediated quorum sensing system was activated to regulate the growth and maturation of aerobic granules when the biomass density reached a threshold of 1.025 g ml−1. It appears from this study that a short settling time of SBR would induce microbiological and physiological responses of bacteria which are required at different stages of aerobic granulation and provide new insights into biological mechanisms of settling time-triggered aerobic granulation.  相似文献   

4.
Is sludge retention time a decisive factor for aerobic granulation in SBR?   总被引:2,自引:0,他引:2  
Li Y  Liu Y  Xu H 《Bioresource technology》2008,99(16):7672-7677
This study investigated the role of sludge retention time (SRT) in aerobic granulation under negligible hydraulic selection pressure. Results showed that no successful aerobic granulation was observed at the studied SRTs in the range of 3-40 days. A comparison analysis revealed that hydraulic selection pressure in terms of the minimum settling velocity would be much more effective than SRT for enhancing heterotrophic aerobic granulation in sequencing batch reactor (SBR). It was shown that SRT would not be a decisive factor for aerobic granulation in SBR.  相似文献   

5.
Aerobic granulation is a promising process for wastewater treatment, but this granulation process is very complicated and is affected by many factors. Thus, a mathematical model to quantitatively describe such a granulation process is highly desired. In this work, by taking into account all of key steps including biomass growth, increase in particle size and density, detachment, breakage and sedimentation, an one‐dimensional mathematic model was developed to simulate the granulation process of activated sludge in a sequencing batch reactor (SBR). Discretization methodology was applied by dividing operational time, sedimentation process, size fractions and slices into discretized calculation elements. Model verification and prediction for aerobic granulation process were conducted under four different conditions. Four parameters indicative of granulation progression, including mean radius, biomass discharge ratio, total number, and bioparticle size distribution, were predicted well with the model. An optimum controlling strategy, automatically adjusted of settling time, was also proposed based on this model. Moreover, aerobic granules with a density higher than 120 g VSS/L and radius in a range of 0.4–1.0 mm were predicted to have both high settling velocity and substrate utilization rate, and the corresponding optimum operating conditions were be determined. Experimental results demonstrate that the developed model is appropriate for simulating the formation of aerobic granules in SBRs. These results are useful for designing and optimizing the cultivation and operation of aerobic granule process. Biotechnol. Bioeng. 2013; 110: 1312–1322. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The effect of hydraulic selection pressure on the development of nitrifying granules was investigated in four column-type sequencing batch reactors (SBR). The nature of SBR is cycle operation, thus SBR cycle time can serve as a main hydraulic selection pressure imposed on the microbial community in the system. No nitrifying granulation was observed in the SBR operated at the longest cycle time of 24 h, due to a very weak hydraulic selection pressure, while the washout of nitrifying sludge was found in the SBR run at the shortest cycle time of 3 h, and led to a failure of nitrifying granulation. Excellent nitrifying granules with a mean diameter of 0.25 mm and specific gravity of 1.014 were developed in a SBR operated at cycle times of 6 h and 12 h, respectively. The results further showed that a short cycle time would stimulate microbial activity, production of cell polysaccharides and also improve the cell hydrophobicity. These hydraulic selection pressure-induced microbial changes favour the formation of nitrifying granules. This work, probably for the first time, shows that nitrifying granules can be developed at a proper hydraulic selection pressure in terms of SBR cycle time. Nitrifying granulation is a novel biotechnology which has a great potential for wastewater nitrification.  相似文献   

7.
In the wake of the success of aerobic granulation in sequential batch reactors (SBRs) for treating wastewater, attention is beginning to turn to continuous flow applications. This is a necessary step given the advantages of continuous flow treatment processes and the fact that the majority of full-scale wastewater treatment plants across the world are operated with aeration tanks and clarifiers in a continuous flow mode. As in SBRs, applying a selection pressure, based on differences in either settling velocity or the size of the biomass, is essential for successful granulation in continuous flow reactors (CFRs). CFRs employed for aerobic granulation come in multiple configurations, each with their own means of achieving such a selection pressure. Other factors, such as bioaugmentation and hydraulic shear force, also contribute to aerobic granulation to some extent. Besides the formation of aerobic granules, long-term stability of aerobic granules is also a critical issue to be addressed. Inorganic precipitation, special inocula, and various operational optimization strategies have been used to improve granule long-term structural integrity. Accumulated studies reviewed in this work demonstrate that aerobic granulation in CFRs is capable of removing a wide spectrum of contaminants and achieving properties generally comparable to those in SBRs. Despite the notable research progress made toward successful aerobic granulation in lab-scale CFRs, to the best of our knowledge, there are only three full-scale tests of the technique, two being seeded with anammox-supported aerobic granules and the other with conventional aerobic granules; two other process alternatives are currently in development. Application of settling- or size-based selection pressures and feast/famine conditions are especially difficult to implement to these and similar mainstream systems. Future research efforts needs to be focused on the optimization of the granule-to-floc ratio, enhancement of granule activity, improvement of long-term granule stability, and a better understanding of aerobic granulation mechanisms in CFRs, especially in full-scale applications.  相似文献   

8.
Most aerobic granule cultivation has been based on the sequencing batch reactor (SBR) and then the factors that affect aerobic granulations were developed in the SBR. However, little work has been done to cultivate aerobic granules in a continuous-flow bioreactor with simple structure that is realistic for engineering. This work is the first to cultivate aerobic granules in a continuous flow airlift fluidized bed reactor (CAFB) possesses a very simple structure and without settling time and starvation time controlling. The configuration of CAFB was the simplest continuous-flow aerobic granular bioreactor reported by now. The majority of granules could be formatted in the CAFB after 12 days cultivation. The effluent COD concentration maintained at 50 ± 10 mg/L for the variable COD loading rate of 3.5 g COD/L/d and 4.8 g COD/L/d, which confirmed that the CAFB performed good anti-shock abilities. CAFB performed good nitrification ability, however, little denitrification was found under the operating conditions of this study. The shear stress acting on the solid phase were hundreds of times stronger in the CAFB than in the SBR at the same aeration strength. It seems CAFB is very efficient for granulation due to the strong shear-force exertion, which is promising for continuous-flow aerobic granular bioreactor. Protein, positive to the hydrophobicity, was predominant in extracellular polymeric substances in the granules, and favored the granules formation in the CAFB combined with the polysaccharides. However, filamentous bulking always happened in 35 days operation of the CAFB, thus further study on the stability of this bioreactor is urgently necessary.  相似文献   

9.
The present investigation examines the way to enhance aerobic granulation by controlling the microbial communities via applying different settling times. Early granulation of aerobic granules is noticeable at a settling time of 5 min. The functional strains are enriched in granules without challenge of non-flocculating strains. Short settling times at initial stage principally determine the efficiency of subsequent granulation processes.  相似文献   

10.
Aerobic granular sludge can successfully be cultivated in a sequencing batch reactor (SBR) treating dairy wastewater. Attention has to be paid to the fact that suspended solids are always present in the effluent of aerobic granular sludge reactors, making a post-treatment step necessary. Sufficient post-treatment can be achieved through a sedimentation process with a hydraulic retention time of 15–30 min. After complete granulation and the separation of biomass from the effluent, removal efficiencies of 90% CODtotal, 80% Ntotal and 67% Ptotal can be achieved at a volumetric exchange ratio of 50% and a cycle duration of 8 h. Effluent values stabilize at around 125 mg l–1 CODdissolved. The maximum applicable loading rate is nevertheless limited, as the stability of aerobic granules very much depends on the presence of distinct feast and famine conditions and the degradation of real wastewaters shows slower kinetics compared with synthetic wastewaters. As loading rate and volumetric exchange ratio are coupled in an SBR system, the potential of granular sludge for improving process efficiency is also limited.  相似文献   

11.
Aerobic granules were cultivated under temporal alternating aerobic and anoxic conditions without the presence of a carrier material in a sequencing batch reactor (SBR) with a high column height/column diameter ratio. The reactor was operated for 6h per cycle (aerobic: 4.75 h, anoxic: 1.25 h). To determine a new parameter for the definition of aerobic granules, a protocol of 4,6-diamidino-2-phenylindole hydrochloride staining and fluorescence image processing was developed. The d(tm) analysis showed that the increase in the chemical oxygen demand (COD) loading rate promoted no more growth of the aerobic granules. It was inconsistent with the results of the analysis of the sludge volume index (SVI) value but matched well with the results of the COD and nitrogen removal of the SBR and the particle size distribution by LS-PSA. The optimum COD loading rate for aerobic granulation in the SBR was 2.52 kg/m(3)d. When d(tm) was correlated with the biomass concentration and the SVI value during the period of granule formation, d(tm) could be used as a more sensitive and accurate parameter for classifying aerobic granules and optimizing the operational conditions for aerobic granulation processes.  相似文献   

12.
Evidence shows that almost all aerobic granules can only be cultivated in sequencing batch reactor (SBR). Compared to continuous process, the unique feature of SBR is its cycle operation, which results in a periodical starvation in the reactor. So far, the effect of such a periodical starvation on aerobic granulation process remains unknown. Thus, this study investigated the responses of aerobic granules to the respective carbon-, nitrogen-, phosphorus-, potassium-starvation and also their collective effects in terms of cell surface hydrophobicity, surface zeta potential, extracelluar polysaccharides content, specific oxygen utilization rate and biomass growth. Results showed that short-term C-, N-, P- and K- starvations would pose negative effects on aerobic granules, e.g. reduce EPS content, inhibit microbial activity, weaken structural integrity and worsen settleability of aerobic granules. This study likely provides primary evidence that the substrate and nutrients starvation would not contribute to the stability of aerobic granules in a significant way.  相似文献   

13.
Poor long-term stability of aerobic granules developed in sequencing batch reactors (SBRs) remains a limitation to widespread use of aerobic granulation in treating wastewater. Filamentous growth has been commonly reported in aerobic granular sludge SBR. This review attempts to address the instability problem of aerobic granular sludge SBR from the perspective of filamentous growth in the system. The possible causes of filamentous growth are identified, including long retention times of solids, low substrate concentration in the liquid phase, high substrate gradient within the granule, dissolved oxygen deficiency in the granule, nutrient deficiency inside granule, temperature shift and flow patterns. Because of cyclic operation of aerobic granular sludge SBR and peculiarities of aerobic granules, various stresses can be present simultaneously and can result in progressive development of filamentous growth in aerobic granular sludge SBR. Overgrowth of filamentous bacteria under stress conditions appears to be a major cause of instability of aerobic granular sludge SBR. Specific recommendations are made for controlling filamentous growth.  相似文献   

14.
The formation and characterization of the aerobic 4-chloroaniline-degrading granules in the three column-type sequencing batch reactors were investigated in this paper. The granular sludge was observed since 15 days after start-up in R2 and R3 which had the high ratio of height to diameter (H/D). Since then and within the subsequent 75 days, the granulation of aerobic sludge was apparently developed by the decreased settling time and gradually increased 4-chloroaniline (4-ClA) concentration to above 400 mg.L(-1) in R1 to R3. The aerobic granules tended to be mature in all reactors continuously operated with 4-ClA loading rates of around 800 g.m(-3).d(-1), and the removal efficiencies of chemical oxygen demand, total nitrogen, and 4-ClA were maintained above 93%, 70%, and 99.9%, respectively. Mature aerobic granules in R1 to R3 featured with the average diameter of 0.78, 1.68, and 1.25 mm, minimal settling velocity of 20.5, 70.1 and 66.6 m.h(-1), specific 4-ClA degradation rates of 0.14, 0.21, and 0.27 g.gVSS(-1).d(-1), and the ratio of proteins to polysaccharides of 8.2, 10.8, and 13.7 mg.mg(-1), respectively. This study demonstrates that the reactor with a high H/D ratio and internal circulation favors the granulation and stabilization of aerobic sludge.  相似文献   

15.
This study investigated the feasibility of improving the stability of aerobic granules through selecting slow-growing nitrifying bacteria. For this purpose, four sequencing batch reactors were operated at different substrate N/COD ratios ranging from 5/100 to 30/100. Results showed that aerobic granules formed in all four reactors, and aerobic granulation was a gradual process evolving from the dispersed seed sludge to mature and stable granules, and the whole granulation process could be divided into three phases, i.e. acclimation phase, granulation followed by granule maturation. The observed growth rate and mean size of mature aerobic granules were found to decrease as the substrate N/COD ratio was increased, while nitrifying population was enriched markedly in aerobic granules developed at high substrate N/COD ratios. The enriched nitrifying population in aerobic granules was responsible for the observed low growth rate of aerobic granules. It seems certain that the substrate N/COD ratio is an important factor in selecting nitrifying bacteria in aerobic granules. Aerobic granules with low growth rates showed strong structure and good settleability in terms of specific gravity, SVI and cell hydrophobicity that further lead to high stability as compared to those having high growth rates. This study demonstrated that the selection of slow-growing nitrifying bacteria through controlling substrate N/COD ratio would be a useful strategy for improving the stability of aerobic granules.  相似文献   

16.
Extracellular polymeric substances (EPSs) were secreted by cells after they agglomerated into a compact aggregate. This study shows that the EPS initially embedded in seed sludge before granulation may sterically slow subsequent microbe–microbe contact, thereby delaying aerobic granulation. Three identical bioreactors were used in this study using glucose as the sole carbon and energy source. Reactor 1 (R1) was seeded with EPS-free pellets and operated in sequencing batch reactor (SBR) mode. Reactor 2 (R2) was seeded with the original sludge flocs and operated in SBR mode. Reactor 3 (R3) was seeded with EPS-free pellets and operated in continuously stirred tank reactor (CSTR) mode. Granulation occurred in R1 earlier than in R2; the granules that formed in R1 were larger and more compact than those in R2 at the same cultivation time. The few mature granules in R3 suggest that aerobic granulation can occur in a CSTR when a reactor is seeded with EPS-free pellets.  相似文献   

17.
Aims:  This paper investigates a selection-based acclimation strategy for improving the performance and stability of aerobic granules at a high chloroanilines loading.
Methods and Results:  The experiments were conducted in a sequencing airlift bioreactor (SABR) to develop aerobic granules fed with chloroanilines (ClA). The evolution of aerobic granulation was monitored using image analysis and scanning electron microscopy, and PCR–DGGE analysis of microbial community was performed. The sludge granulation was apparently developed by decreased settling time and gradual increased ClA loading to 0·8 kg m−3 day−1. A steady-state performance of the granular SABR was reached at last, as evidenced by biomass concentration of 6·3 g l−1 and constant ClA removal efficiency of 99·9%. The mature granules had a mean size of 1·55 mm, minimal settling velocity of 68·4 m h−1, specific ClA degradation rate of 0·181 g gVSS−1 day−1. Phylogenetic analysis of aerobic ClA-degrading granules confirmed the dominance of β - , γ -Proteobacteria and Flavobacteria.
Conclusions:  The chosen operating strategy involving step increase in ClA loading and enhancement of major selection pressures was successful in cultivating the aerobic ClA-degrading granules.
Significance and Impact of the Study:  This research could be helpful for improving the stability of aerobic granules via optimizing operating conditions and developing economic feasible full-scale granular bioreactor.  相似文献   

18.
AIMS: This paper attempts to provide visual evidence of how aerobic granulation evolves in sequential aerobic sludge blanket reactors. METHODS AND RESULTS: A series of experiments were conducted in two column-type sequential aerobic sludge reactors fed with glucose and acetate as sole carbon source, respectively. The evolution of aerobic granulation was monitored using image analysis and optical and scanning electron microscopy. The results indicated that the formation of aerobic granules was a gradual process from seed sludge to compact aggregates, further to granular sludge and finally to mature granules with the sequential operation proceeding. Glucose- and acetate-fed granules have comparable characteristics in terms of settling velocity, size, shape, biomass density and microbial activity. However, the microbial diversity of the granules was associated with the carbon source supplied. In this work, an important aerobic starvation phase was identified during sequential operation cycles. It was found that periodical aerobic starvation was an effective trigger for microbial aggregation in the reactor and further strengthened cell-cell interaction to form dense aggregates, which was an essential step of granulation. The periodical starvation-induced aggregates would finally be shaped to granules by hydrodynamic shear and flow. CONCLUSION: Aerobic granules can be formed within 3 weeks in the systems. The periodical starvation and hydrodynamic conditions would play a crucial role in the granulation process. SIGNIFICANCE AND IMPACT OF THE STUDY: Aerobic granules have excellent physical characteristics as compared with conventional activated sludge flocs. This research could be helpful for the development of an aerobic granule-based novel type of reactor for handling high strength organic wastewater.  相似文献   

19.
Two sequencing batch reactors (SBRs) were concurrently operated to investigate the effect of Mg(2+) augmentation on aerobic granulation. Augmentation with 10mg/l Mg(2+) in R2 significantly decreased the sludge granulation (defined as that over 15% of granules were larger than 0.6mm) time from 32 days to 18 days, at the same time, the mean diameter of the granules in R2 was 2.9 mm after the granulation, which was consistently larger than that (1.8mm) in R1. Mg(2+)-fed granules were denser and more compact, showed better settling and had higher polysaccharide contents, but it did not result in a difference in microbial morphology. The results demonstrated that Mg(2+) enhanced the sludge granulation process in the sequencing batch reactor.  相似文献   

20.
Aerobic granular sludge can be classified as a type of self-immobilized microbial consortium, consisting mainly of aerobic and facultative bacteria and is distinct from anaerobic granular methanogenic sludge. Aerobic granular technology has been proposed as a promising technology for wastewater treatment, but is not yet established as a large-scale application. Aerobic granules have been cultured mainly in sequenced batch reactors (SBR) under hydraulic selection pressure. The factors influencing aerobic granulation, granulation mechanisms, microbial communities and the potential applications for the treatment of various wastewaters have been studied comprehensively on the laboratory-scale. Aerobic granular sludge has shown a potential for nitrogen removal, but is less competitive for the high strength organic wastewater treatments. This technology has been developed from the laboratory-scale to pilot scale applications, but with limited and unpublished full-scale applications for municipal wastewater treatment. The future needs and limitations for aerobic granular technology are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号