首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Incubation of isolated hepatocytes from fasted rats with 20 mM LiCl for 1 h decreased glucose production from lactate, pyruvate, and alanine. In addition, phosphoenolpyruvate carboxykinase (PEPCK) gene expression in FTO-2B rat hepatoma cells was inhibited by treatment with LiCl. Lithium was also able to counteract the increased PEPCK mRNA levels caused by both Bt2cAMP and dexamethasone, in a concentration-dependent manner. A chimeric gene containing the PEPCK promoter (-550 to +73) linked to the amino-3-glycosyl phosphotransferase (neo) structural gene was transduced into FTO-2B cells using a Moloney murine leukemia virus-based retrovirus. In these infected cells, 20 mM LiCl decreased both the concentration of neo mRNA transcribed from the PEPCK-neo chimeric gene and mRNA from the endogenous PEPCK gene. Lithium also inhibited the stimulatory effect of Bt2cAMP and dexamethasone on both genes. The stability of neo mRNA was not altered by lithium, since in cells infected with retrovirus containing only the neo gene transcribed via the retroviral 5'-LTR and treated with 20 mM LiCl, no change in neo mRNA levels was observed. The intraperitoneal administration of LiCl to rats caused a decrease in hepatic PEPCK mRNA, indicating that lithium could also modify gene expression in vivo. The effects of lithium were not due to an increase in the concentration of insulin in the blood but were correlated with an increase in hepatic glycogen and fructose 2,6-bisphosphate levels. These results indicate that lithium ions, at concentrations normally used therapeutically for depression in humans, can inhibit glucose synthesis in the liver by a mechanism which can selectively modify the expression of hepatic phosphoenolpyruvate carboxykinase.  相似文献   

5.
6.
7.
8.
9.
10.
Promoter elements important for basal and cyclic AMP (cAMP)-regulated expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene have been identified by analysis of a series of PEPCK promoter mutations in transfection experiments. Fusion genes containing wild-type and mutated PEPCK promoter sequences from -600 to +69 base pairs (bp) fused to the coding sequence for chloramphenicol acetyltransferase were studied. Internal deletion mutations that replaced specific bases with a 10-bp linker within the region from -129 bp to -18 bp of the PEPCK promoter were examined. In addition, wild-type and mutated DNA templates were used as probes in DNase I protection experiments to determine sites of protein-DNA interaction. The PEPCK promoter contains a binding site for nuclear factor 1-CAAT. Deletion of the 5' end of this binding site reduced the size of the DNase I footprint in this region but had no effect on promoter activity. In contrast, deletion or disruption of the 3' end of this binding site completely eliminated protein binding and reduced promoter activity by 50%. Deletion of core sequences of the cAMP regulatory element (CRE) resulted in loss of cAMP responsiveness and an 85% decrease in basal promoter activity, indicating that the CRE also functions as a basal stimulatory element. Mutation of the core sequence of the CRE resulted in loss of the DNase I footprint over the CRE. Internal deletions flanking the CRE showed no loss of induction by cAMP but did have reduced promoter activity. This delimits the CRE to an 18-bp region between nucleotides -100 and -82. Analysis of mutations that disrupted bases between the CRE and the initiation site identified a basal inhibitory element adjacent to a basal stimulatory element, both located just 3' of the CRE, as well as a basal stimulatory element coincident with the TATA consensus sequence centered at -27. These data demonstrate that several cis-acting elements are located within 130 nucleotides of the initiation site of the PEPCK gene and that the CRE is essential for both basal promoter activity and cAMP-regulated expression of this gene.  相似文献   

11.
12.
Glutamine synthetase (GS) is expressed at high levels in subsets of cells in some tissues and at low levels in all cells of other tissues, suggesting that the GS gene is surrounded by multiple regulatory elements. We searched for such elements in the 2.5-kb upstream region and in the 2.6-kb first intron of the GS gene, using FTO-2B hepatoma and C2/7 muscle cells as representatives of both cell types and transient transfection assays as our tools. In addition to the entire upstream region and entire intron, an upstream enhancer module at -2.5 kb, and 5', middle and 3' modules of the first intron were tested. The main effects of the respective modules and their combinatorial interactions were quantified using the analysis of variance (anova) technique. The upstream enhancer was strongly stimulatory, the middle intron module strongly inhibitory, and the 3'-intron module weakly stimulatory in both hepatoma and muscle cells. The 5'-intron module was strongly stimulatory in muscle cells only. The major new finding was that in both cell types, the upstream enhancer and 5'-intron module needed to be present simultaneously to fully realize their transactivational potencies. This interaction was responsible for a pronounced inhibitory effect of the 5'-intron module in the absence of the upstream enhancer in hepatoma cells, and for a strong synergistic effect of these two modules, when present simultaneously in muscle cells. The main difference between hepatoma and muscle cells therefore appeared to reside in tissue-specific differences in activity of the respective regulatory elements due to interactions rather than in the existence of tissue-specific regulatory elements.  相似文献   

13.
14.
The 5' flanking regions of the rat phosphoenolpyruvate carboxykinase gene were used to form chimeric gene constructs with the human growth hormone gene. These constructs were transfected into several renal and one liver cell line and the production of growth hormone (HGH) measured by immunoassay. Cyclic-AMP and glucocorticoid responsiveness of HGH production was observed in all cell lines. In two lines, the rat NRK52E renal epithelial line and the rat H4IIE hepatoma cell line, both capable of expressing PEPCK, lowering extracellular pH increased HGH production several fold. Comparison of hormone and pH effect on cells transfected with a thymidine kinase promoter-HGH chimera indicated that the PEPCK 5' flanking region effects were specific. Thus, part of the pH responsiveness of the PEPCK gene in vivo may be attributed to properties of the 5' flanking regions.  相似文献   

15.
16.
17.
18.
19.
We have identified a positive regulatory cis-acting element of the adhesion molecule on glia (AMOG)/Na,K-ATPase beta 2 subunit gene as GAGGCGGGG at position -87 to -79 by transient transfection assay using B103 cells (rat neuroblastoma cell line). The newly identified AMOG regulatory element (AMRE) enhanced the promoter activity in a mutually compensating manner with the Sp1 element at position -147 to -142. AMRE acts as a positive regulatory element not only in B103 cells but also in 3Y1 (rat embryo cell line) cells to roughly the same extent and in MDCK (canine kidney cell line) cells to a lesser extent. AMRE also enhances other gene promoters, such as myelin basic protein (MBP) and herpes simplex virus (HSV) thymidine kinase (TK) gene promoters. The element is not a typical enhancer element because when it is introduced downstream of the HSV TK promoter, it has no enhancing activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号