首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glutathione (GSH) plays several roles in cell metabolism such as redox state regulation, oxidative stress control, and protection against xenobiotics and heavy metals. GSH is synthesized in two steps catalysed by gamma-glutamylcysteine synthetase (gamma-ECS) and glutathione synthetase. gamma-ECS is feedback inhibited by GSH, which has led to the proposal that this enzyme acts as the rate-limiting step in the pathway. Thus far, the study of GSH metabolism has been confined to GSH synthesis (GSH supply), without considering the GSH-consuming enzymes (GSH demand). Several works have shown that the demand block of enzymes may have a significant control on a pathway; therefore, we hypothesize that GSH-consuming enzymes may exert some control on GSH synthesis. A kinetic model of GSH and phytochelatin synthesis in plants was constructed using the software GEPASI and the kinetic data available in the literature. The main conclusions drawn by the model concerning metabolic control analysis are (1) gamma-ECS is indeed a rate-limiting step in GSH synthesis, but only if GSH-consuming enzymes are not taken into account. (2) At low demand, GSH-consuming enzymes exert significant flux-control on GSH synthesis whereas at high demand, supply and demand blocks share the control of flux. (3) In unstressed conditions, flux to GSH is controlled mainly by demand, so that gamma-ECS determines the degree of homeostasis of the GSH concentration. Under cadmium exposure, the GSH demand increases and flux-control is re-distributed almost equally between the supply and demand blocks. (4) To enhance phytochelatins synthesis without depleting the GSH pool, at least two enzymes (gamma-ECS and PCS) should be increased and/or, alternatively, a branching flux (GSH-S-transferases) could be partially diminished.  相似文献   

2.
Bacteria of the class Dehalococcoidia (DEH), phylum Chloroflexi, are widely distributed in the marine subsurface, yet metabolic properties of the many uncultivated lineages are completely unknown. This study therefore analysed genomic content from a single DEH cell designated ‘DEH-J10'' obtained from the sediments of Aarhus Bay, Denmark. Real-time PCR showed the DEH-J10 phylotype was abundant in upper sediments but was absent below 160 cm below sea floor. A 1.44 Mbp assembly was obtained and was estimated to represent up to 60.8% of the full genome. The predicted genome is much larger than genomes of cultivated DEH and appears to confer metabolic versatility. Numerous genes encoding enzymes of core and auxiliary beta-oxidation pathways were identified, suggesting that this organism is capable of oxidising various fatty acids and/or structurally related substrates. Additional substrate versatility was indicated by genes, which may enable the bacterium to oxidise aromatic compounds. Genes encoding enzymes of the reductive acetyl-CoA pathway were identified, which may also enable the fixation of CO2 or oxidation of organics completely to CO2. Genes encoding a putative dimethylsulphoxide reductase were the only evidence for a respiratory terminal reductase. No evidence for reductive dehalogenase genes was found. Genetic evidence also suggests that the organism could synthesise ATP by converting acetyl-CoA to acetate by substrate-level phosphorylation. Other encoded enzymes putatively conferring marine adaptations such as salt tolerance and organo-sulphate sulfohydrolysis were identified. Together, these analyses provide the first insights into the potential metabolic traits that may enable members of the DEH to occupy an ecological niche in marine sediments.  相似文献   

3.
With the Entamoeba genome essentially complete, the organism can be studied from a whole genome standpoint. The understanding of cellular mechanisms and interactions between cellular components is instrumental to the development of new effective drugs and vaccines. Metabolic pathway analysis is becoming increasingly important for assessing inherent network properties in reconstructed biochemical reaction networks. Metabolic pathways illustrate how proteins work in concert to produce cellular compounds or to transmit information at different levels. Identification of drug targets in E. histolytica through metabolic pathway analysis promises to be a novel approach in this direction. This article focuses on the identification of drug targets by subjecting the Entamoeba genome to BLAST with the e-value inclusion threshold set to 0.005 and choke point analysis. A total of 86.9 percent of proposed drug targets with biological evidence are chokepoint reactions in Entamoeba genome database.  相似文献   

4.
Cellulose is the most abundant biopolymer on Earth. Optimising energy recovery from this renewable but recalcitrant material is a key issue. The metaproteome expressed by thermophilic communities during cellulose anaerobic digestion was investigated in microcosms. By multiplying the analytical replicates (65 protein fractions analysed by MS/MS) and relying solely on public protein databases, more than 500 non-redundant protein functions were identified. The taxonomic community structure as inferred from the metaproteomic data set was in good overall agreement with 16S rRNA gene tag pyrosequencing and fluorescent in situ hybridisation analyses. Numerous functions related to cellulose and hemicellulose hydrolysis and fermentation catalysed by bacteria related to Caldicellulosiruptor spp. and Clostridium thermocellum were retrieved, indicating their key role in the cellulose-degradation process and also suggesting their complementary action. Despite the abundance of acetate as a major fermentation product, key methanogenesis enzymes from the acetoclastic pathway were not detected. In contrast, enzymes from the hydrogenotrophic pathway affiliated to Methanothermobacter were almost exclusively identified for methanogenesis, suggesting a syntrophic acetate oxidation process coupled to hydrogenotrophic methanogenesis. Isotopic analyses confirmed the high dominance of the hydrogenotrophic methanogenesis. Very surprising was the identification of an abundant proteolytic activity from Coprothermobacter proteolyticus strains, probably acting as scavenger and/or predator performing proteolysis and fermentation. Metaproteomics thus appeared as an efficient tool to unravel and characterise metabolic networks as well as ecological interactions during methanisation bioprocesses. More generally, metaproteomics provides direct functional insights at a limited cost, and its attractiveness should increase in the future as sequence databases are growing exponentially.  相似文献   

5.
In the present study we analysed the effects of S-nitrosocysteine (CysNO) on adult human red blood cell metabolism and observed that metabolic response depended on the degree of cell oxygenation. In particular, glucose metabolised through the pentose phosphate pathway (PPP) was higher in treated erythrocytes than in untreated cells only at high O(2) pressure. Since, following the treatment of intact cells with CysNO, glucose-6-phosphate dehydrogenase (G6PD) and phosphofructokinase (PFK) activities did not evidence any significant alteration, the possibility that the stimulation of PPP was triggered by a CysNO mediated modification of these enzymes was excluded. Intracellular S-nitrosoglutathione (GSNO), detected only in treated red blood cells, may be linked solely to the exposition to the NO donor. A possible rationalisation of the different metabolic behaviour shown by erythrocytes as a function of their oxygenation state is proposed. It takes into account the different route of catabolic degradation observed in vitro for GSNO under aerobic and anaerobic condition.  相似文献   

6.
7.
细胞色素P450 (cytochrome P450, CYP450)超基因家族是由一些数量多而功能复杂的血红蛋白酶基因所组成,该代谢酶系作为一种几乎地球上所有需氧生物都存在的重要生存策略,可以调控多种内源物质及外源化合物的代谢,参与了众多重要的生命过程,代谢解毒作用是该酶系重要功能之一。细胞色素P450的代谢解毒作用受药物影响,机体通过改变基因表达量,实现增强代谢解毒,加快机体对于有害物质的代谢,从而使得机体对有害环境产生一定的适应性,进而使得机体产生耐药性或抗药性。本研究说明果蝇细胞色素P450介导的杀虫剂类药物代谢机制及代谢抗性的特点等方面的研究,对明确果蝇的抗药性机制研究具有参考意义。  相似文献   

8.
As a major component of plant specialized metabolism, phenylpropanoid biosynthetic pathways provide anthocyanins for pigmentation, flavonoids such as flavones for protection against UV photodamage, various flavonoid and isoflavonoid inducers of Rhizobium nodulation genes, polymeric lignin for structural support and assorted antimicrobial phytoalexins. As constituents of plant-rich diets and an assortment of herbal medicinal agents, the phenylpropanoids exhibit measurable cancer chemopreventive, antimitotic, estrogenic, antimalarial, antioxidant and antiasthmatic activities. The health benefits of consuming red wine, which contains significant amounts of 3,4',5-trihydroxystilbene (resveratrol) and other phenylpropanoids, highlight the increasing awareness in the medical community and the public at large as to the potential dietary importance of these plant derived compounds. As recently as a decade ago, little was known about the three-dimensional structure of the enzymes involved in these highly branched biosynthetic pathways. Ten years ago, we initiated X-ray crystallographic analyses of key enzymes of this pathway, complemented by biochemical and enzyme engineering studies. We first investigated chalcone synthase (CHS), the entry point of the flavonoid pathway, and its close relative stilbene synthase (STS). Work soon followed on the O-methyl transferases (OMTs) involved in modifications of chalcone, isoflavonoids and metabolic precursors of lignin. More recently, our groups and others have extended the range of phenylpropanoid pathway structural investigations to include the upstream enzymes responsible for the initial recruitment of phenylalanine and tyrosine, as well as a number of reductases, acyltransferases and ancillary tailoring enzymes of phenylpropanoid-derived metabolites. These structure-function studies collectively provide a comprehensive view of an important aspect of phenylpropanoid metabolism. More specifically, these atomic resolution insights into the architecture and mechanistic underpinnings of phenylpropanoid metabolizing enzymes contribute to our understanding of the emergence and on-going evolution of specialized phenylpropanoid products, and underscore the molecular basis of metabolic biodiversity at the chemical level. Finally, the detailed knowledge of the structure, function and evolution of these enzymes of specialized metabolism provide a set of experimental templates for the enzyme and metabolic engineering of production platforms for diverse novel compounds with desirable dietary and medicinal properties.  相似文献   

9.
Dominance is not inevitable   总被引:2,自引:0,他引:2  
In a diploid organism, a mutant gene that results in elimination of an enzyme activity in the homozygote is almost universally found to be recessive, so that the heterozygote phenotype is virtually indistinguishable from the wild type. It has been argued (H. Kacser & J. A. Burns, Genetics 97, 639-666 (1981)) that there is no need to look to evolution for an explanation of this phenomenon, as it is an inevitable consequence of the low control coefficients for metabolic flux possessed by nearly all enzymes. However, it is possible to envisage pathways in which every enzyme is more than half-saturated, so that moderate changes in the concentration of any enzyme result in substantial changes in metabolic flux. Such behaviour can occur, for example, if the limiting rates of the enzymes decrease as one proceeds along the pathway and the precursor concentration is large compared with the Michaelis constants of all the enzymes. Consequently one does require an explanation in terms of natural selection of why such pathways are apparently not observed in nature.  相似文献   

10.
Purine nucleoside phosphorylases (PNPs) and uridine phosphorylases (UPs) are closely related enzymes involved in purine and pyrimidine salvage, respectively, which catalyze the removal of the ribosyl moiety from nucleosides so that the nucleotide base may be recycled. Parasitic protozoa generally are incapable of de novo purine biosynthesis; hence, the purine salvage pathway is of potential therapeutic interest. Information about pyrimidine biosynthesis in these organisms is much more limited. Though all seem to carry at least a subset of enzymes from each pathway, the dependency on de novo pyrimidine synthesis versus salvage varies from organism to organism and even from one growth stage to another. We have structurally and biochemically characterized a putative nucleoside phosphorylase (NP) from the pathogenic protozoan Trypanosoma brucei and find that it is a homodimeric UP. This is the first characterization of a UP from a trypanosomal source despite this activity being observed decades ago. Although this gene was broadly annotated as a putative NP, it was widely inferred to be a purine nucleoside phosphorylase. Our characterization of this trypanosomal enzyme shows that it is possible to distinguish between PNP and UP activity at the sequence level based on the absence or presence of a characteristic UP-specificity insert. We suggest that this recognizable feature may aid in proper annotation of the substrate specificity of enzymes in the NP family.  相似文献   

11.
Leprosy is an infectious disease caused by Mycobacterium leprae. M. leprae has undergone a major reductive evolution leaving a minimal set of functional genes for survival. It remains non-cultivable. As M. leprae develops resistance against most of the drugs, novel drug targets are required in order to design new drugs. As most of the essential genes mediate several biosynthetic and metabolic pathways, the pathway predictions can predict essential genes. We used comparative genome analysis of metabolic enzymes in M. leprae and H. sapiens using KEGG pathway database and identified 179 non-homologues enzymes. On further comparison of these 179 non-homologous enzymes to the list of minimal set of 48 essential genes required for cell-wall biosynthesis of M. leprae reveals eight common enzymes. Interestingly, six of these eight common enzymes map to that of peptidoglycan biosynthesis and they all belong to Mur enzymes. The machinery for peptidoglycan biosynthesis is a rich source of crucial targets for antibacterial chemotherapy and thus targeting these enzymes is a step towards facilitating the search for new antibiotics.  相似文献   

12.
In this study, we report the acquisition of the diaminopimelic acid (DAP) pathway of lysine biosynthesis in choanoflagellate Monosiga brevicollis and investigate how this pathway is incorporated and regulated in the established metabolic network. Our data show that all major genes related to the DAP pathway in Monosiga were acquired from bacteria and algae. Although an endogenous lysC exists in Monosiga, the newly acquired lysC is fused to lysA and used specifically for lysine biosynthesis. In addition, these acquired genes encode two key rate-limiting enzymes, thus conferring Monosiga a self-regulated unit with ability to generate lysine. Our data suggest that a newly acquired metabolic capability can be added to the recipient organism without disturbing the previously established metabolic network. This finding also implies that the biochemical system of the recipient organism may determine the type and function of genes to be acquired.  相似文献   

13.
A pathway-genome database (PGDB) describes the entire genome of an organism, as well as its biochemical pathways, reactions, and enzymes. Our PathoLogic software can generate a PGDB from an annotated genome of an organism, predicting the metabolic reactions and pathways corresponding to the enzymes present in the annotation. We have used PathoLogic to generate a PGDB for PSEUDOMONAS AERUGINOSA, strain PAO1, called 'PseudoCyc', which includes 139 predicted pathways and 800 predicted reactions involving 623 chemical species and 718 enzymes. Analysis of the PathoLogic predictions of arginine metabolism and the beta-ketoadipate pathway, which are landmark pathways in P. AERUGINOSA, showed that they were for the most part correctly predicted. These studies also provided possible locations for two genes involved in the beta-ketoadipate pathway, PCAI and PCAJ, which are missing from the PAO1 annotation. PseudoCyc adds an extended dimension to the genome of P. AERUGINOSA, providing researchers with a helpful tool for the analysis of the genomic, proteomic, and metabolic information of the organism. The finding of the probable location of the PCAI and PCAJ genes is but one example of the discoveries facilitated by such a PGDB. PseudoCyc, along with PGDBs for 12 other organisms, is available at http://BioCyc.org/.  相似文献   

14.
15.
Plants reconfigure their metabolic network under stress conditions. Changes of mitochondrial metabolism such as tricarboxylic acid (TCA) cycle and amino acid metabolism are reported in Arabidopsis roots but the exact molecular basis underlying this remains unknown. We here hypothesise the reassembly of enzyme protein complexes to be a molecular mechanism for metabolic regulation and tried in the present study to find out mitochondrial protein complexes which change their composition under oxidative stress by the combinatorial approach of proteomics and metabolomics. Arabidopsis seedlings were treated with menadione to induce oxidative stress. The inhibition of several TCA cycle enzymes and the oxidised NADPH pool indicated the onset of oxidative stress. In blue native/SDS-PAGE analysis of mitochondrial protein complexes the intensities of 18 spots increased and those of 13 spots decreased in menadione treated samples suggesting these proteins associate with, or dissociate from, protein complexes. Some spots were identified as metabolic enzymes related to central carbon metabolism such as malic enzyme, glyceraldehyde-3-phosphate dehydrogenase, monodehydroascorbate reductase and alanine aminotransferase. The change in spot intensity was not directly correlated to the total enzyme activity and mRNA level of the corresponding enzyme but closely related to the metabolite profile, suggesting the metabolism is regulated under oxidative stress at a higher level than translation. These results are somewhat preliminary but suggest the regulation of the TCA cycle, glycolysis, ascorbate and amino acid metabolism by reassembly of plant enzyme complexes.  相似文献   

16.
The importance of exocrine secretions of testis in the regulation of energy metabolism of the epididymis and vas deferens was examined in rhesus monkeys by performing efferentiectomy. At autopsy the epididymis was divided into initial segment, caput, corpus and cauda portions to make an account of regional differences, if any. Eleven enzymes of glycolysis, two key enzymes of HMP pathway and seven enzymes of TCA cycle were assayed in the epididymal segments and vas deferens of control (intact) and experimental (efferentiectomised for 90 days) monkeys. The results indicate that while anaerobic energy metabolism (glycolysis and HMP pathway) is sensitive to efferentiectomy chiefly in the proximal regions of epididymis, the oxidative pathway (TCA cycle) is dependent on testicular exocrine secretions throughout the length of epididymis, as well as in the vas deferens. Since all androgen-sensitive enzymes do not regress after efferentiectomy, it is suggested that unidentified exocrine factors of testis may have role in regulating energy metabolism in the epididymis and vas deferens.  相似文献   

17.
Chlamydophila pneumoniae, the causative agent of chronic obstructive pulmonary disease (COPD), is presently the fifth mortality causing chronic disease in the world. The understanding of disease and treatment options are limited represents a severe concern and a need for better therapeutics. With the advancements in the field of complete genome sequencing and computational approaches development have lead to metabolic pathway analysis and protein-protein interaction network which provides vital evidence to the protein function and has been appropriate to the fields such as systems biology and drug discovery. Protein interaction network analysis allows us to predict the most potential drug targets among large number of the non-homologous proteins involved in the unique metabolic pathway. A computational comparative metabolic pathway analysis of the host H. sapiens and the pathogen C pneumoniae AR39 has been carried out at three level analyses. Firstly, metabolic pathway analysis was performed to identify unique metabolic pathways and non-homologous proteins were identified. Secondly, essentiality of the proteins was checked, where these proteins contribute to the growth and survival of the organism. Finally these proteins were further subjected to predict protein interaction networks. Among the total 65 pathways in the C pneumoniae AR39 genome 10 were identified as the unique metabolic pathways which were not found in the human host, 32 enzymes were predicted as essential and these proteins were considered for protein interaction analysis, later using various criteria''s we have narrowed down to prioritize ribonucleotide-diphosphate reductase subunit beta as a potential drug target which facilitate for the successful entry into drug designing.  相似文献   

18.
Various metabolic models have been studied by computer simulation in an effort to understand why allowing for the reversibility of the reaction catalysed by pyruvate kinase, normally considered as irreversible for all practical purposes, significantly altered the behaviour of the model of glycolysis in Trypanosoma brucei [Eisenthal, R. & Cornish-Bowden, A. (1998) J. Biol. Chem. 273, 5500-5505]. Studies of several much simpler models indicate that the enzymes catalysing early steps in a pathway must receive information about the concentrations of the metabolites at the end of the pathway if a model is to be able to reach a steady state; treating all internal steps as reversible is just one way of ensuring this. Feedback inhibition provides a much better way, and as long as feedback loops are present in a model it makes almost no difference to the behaviour whether the intermediate steps with large equilibrium constants are treated as irreversible. In the absence of feedback loops, ordinary product inhibition of all the enzymes in the chain can also transfer information; this is efficient for regulating fluxes but very inefficient for regulating intermediate concentrations. More complicated patterns of regulation, such as activation of a competing branch or forcing flux through a parallel route, can also serve to some degree as ways of passing information around an irreversible step. However, they normally do so less efficiently than inhibition, because the extent to which an enzyme or a pathway can be activated always has an upper limit (which may be below what is required), whereas most enzymes are inhibited completely at saturating concentrations of inhibitor.  相似文献   

19.
The folate metabolic pathway has been exploited successfully for the development of antimicrobial and antineoplasic agents. Inhibitors of this pathway, however, are not useful against Leishmania and other trypanosomatids. Work on the mechanism of methotrexate resistance in Leishmania has dramatically increased our understanding of folate and pterin metabolism in this organism. The metabolic and cellular functions of the reduced form of folates and pterins are beginning to be established and this work has led to several unexpected findings. Moreover, the currently ongoing sequencing efforts on trypanosomatid genomes are suggesting the presence of several gene products that are likely to require folates and pterins. A number of the properties of folate and pterin metabolism are unique suggesting that these pathways are valid and worthwhile targets for drug development.  相似文献   

20.
L-Arginine is an essential amino acid for birds and young mammals, and it is a conditionally essential amino acid for adult mammals, as it is important in situations in which requirements exceed production, such as pregnancy. Recent findings indicate that increased metabolism of L-arginine by myeloid cells can result in the impairment of lymphocyte responses to antigen during immune responses and tumour growth. Two enzymes that compete for L-arginine as a substrate - arginase and nitric-oxide synthase - are crucial components of this lymphocyte-suppression pathway, and the metabolic products of these enzymes are important moderators of T-cell function. This Review article focuses on the relevance of L-arginine metabolism by myeloid cells for immunity under physiological and pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号