共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas aeruginosa mutants defective in heptane oxidation 总被引:1,自引:0,他引:1
2.
Several mutants Aspergillus nidulans defective in carbohydrate metabolism were tested for growth on different carbon sources. d-Galacturonate was found to be a substrate, useful to discriminate between mutants in pyruvate kinase, pyruvate dehydrogenase complex or pyruvate carboxylase. The results of these tests indicate how particular classes of mutants can be obtained and which substrates can be used preferentially for a rapid phenotypical screening of unknown mutants. 相似文献
3.
Isolation and characterization of mutants defective in the cyanide-insensitive respiratory pathway of Pseudomonas aeruginosa. 总被引:3,自引:0,他引:3 下载免费PDF全文
The branched respiratory chain of Pseudomonas aeruginosa contains at least two terminal oxidases which are active under normal physiological conditions. One of these, cytochrome co, is a cytochrome c oxidase which is completely inhibited by concentrations of the respiratory inhibitor potassium cyanide as low as 100 microM. The second oxidase, the cyanide-insensitive oxidase, is resistant to cyanide concentrations in excess of 1 mM as well as to sodium azide. In this work, we describe the isolation and characterization of a mutant of P. aeruginosa defective in cyanide-insensitive respiration. This insertion mutant was isolated with mini-D171 (a replication-defective derivative of the P. aeruginosa phage D3112) as a mutagen and by screening the resulting tetracycline-resistant transductants for the loss of ability to grow in the presence of 1 mM sodium azide. Polarographic studies on the NADH-mediated respiration rate of the mutant indicated an approximate 50% loss of activity, and titration of this activity against increasing cyanide concentrations gave a monophasic curve clearly showing the complete loss of cyanide-insensitive respiration. The mutated gene for a mutant affected in the cyanide-insensitive, oxidase-terminated respiratory pathway has been designated cio. We have complemented the azide-sensitive phenotype of this mutant with a wild-type copy of the gene by in vivo cloning with another mini-D element, mini-D386, carried on plasmid pADD386. The complemented cio mutant regained the ability to grow on medium containing 1 mM azide, titration of its NADH oxidase activity with cyanide gave a biphasic curve similar to that of the wild-type organism, and the respiration rate returned to normal levels. Spectral analysis of the cytochrome contents of the membranes of the wild type, the cio mutant, and the complemented mutant suggests that the cio mutant is not defective in any membrane-bound cytochromes and that the complementing gene does not encode a heme protein. 相似文献
4.
Genetic mapping and characterization of Pseudomonas aeruginosa mutants defective in the formation of extracellular proteins. 总被引:30,自引:17,他引:13 下载免费PDF全文
We isolated 15 mutants of Pseudomonas aeruginosa PAO which were defective in the formation of certain extracellular proteins, such as elastase, staphylolytic enzyme, and lipase ( Xcp mutants). The mutations were mapped on the chromosome by conjugation and transduction. The locations were xcp -1 near 0', with the gene order cys-59- xcp -1- proB , and loci xcp -2, xcp -3, and xcp -31 at 35', with the gene order trpC , D- xcp -3/ xcp -31- xcp -2- argC . Loci xcp -4 and xcp -41 through xcp -44 were cotransducible with proA at 40'; loci xcp -5, xcp -51, xcp -52, and xcp53 were located at 55', with the gene order leu-10- trpF -met-9010- xcp -53- xcp -5/ xcp -51/ xcp+ ++-52, and xcp -6 was located at 65' to 70', between catA and mtu-9002. Nine mutations ( xcp -2, xcp -3, xcp -31, xcp -4, and xcp -41 through xcp -45) caused decreased production of extracellular enzymes. Six strains with mutations xcp -1, xcp -5, xcp -51, xcp -52, xcp -53, and xcp -6 produced cell-bound exoproteins and had defective release mechanisms. The regulation of production of alkaline phosphatase and phospholipase C is different from other exoproteins , such as elastase, but they all seem to share a common release mechanism. Alkaline protease had separate mechanisms for regulation and release, since this protease was found in culture supernatants of all but one of the mutants, and none of the strains had cell-bound enzyme. 相似文献
5.
Isolation and characterization of Pseudomonas aeruginosa mutants blocked in the synthesis of pyoverdin. 下载免费PDF全文
We have isolated and characterized by chemical and enzymatic analyses three distinct types of pyoverdin-defective (pvd) mutants of Pseudomonas aeruginosa PAO1. The pvd-1 mutant is an L-N5-hydroxyornithine (L-N5-OH-Orn) auxotroph unable to hydroxylate L-ornithine (L-Orn) in a cell-free system and requiring L-N5-OH-Orn for pyoverdin production. The other two types of mutants appear to be blocked in further steps of the biosynthetic pathway leading to pyoverdin, namely, the acylation of L-N5-OH-Orn (pvd-2) and chromophore synthesis (pvd-3). The different pvd mutations were all found to be located in the catA1 region at 47 min of the genetic map of P. aeruginosa PAO1. 相似文献
6.
Characterization of two Pseudomonas aeruginosa mutants with defective secretion of extracellular proteins and comparison with other mutants 总被引:4,自引:0,他引:4
Alain Filloux Maryse Murgier Bengt Wretlind rée Lazdunski 《FEMS microbiology letters》1987,40(2-3):159-163
We have isolated 2 new pleiotropic mutants of Pseudomonas aeruginosa strain PAO with defective secretion of extracellular proteins (Xcp mutants). One of these mutants was compared to 2 different, previously isolated secretion mutants. All had similar phenotypes and were unable to release at least 4 exoproteins (lipase, elastase, alkaline phosphatase, and phospholipase C), whilst alkaline protease was still secreted. The exoproteins appeared to be blocked in the periplasmic space. No difference in molecular weight was detected between cell-bound forms of elastase and alkaline phosphatase in the different mutants and the corresponding extracellular forms from the wild-type strain. Genetic mapping showed that the mutations were located in the 55′ region of the chromosome. 相似文献
7.
Toshio Omori Kazuhisa Hatakeyama Tohru Kodama 《Applied microbiology and biotechnology》1988,29(5):497-500
Summary A trans-ferulic acid-utilizing Pseudomonas sp. HF-1 was isolated from soil samples. Mutant HF-1124, capable of growing on trans-ferulic acid but not on protocatechuic acid, was isolated from HF-1 after mutagenesis with nitrosoguanidine. The optimum temperature was 30°C and the optimum pH was 7.0–8.0 for protocatechuic acid production from trans-ferulic acid by mutant HF-1124. Protocatechuic acid production reached 4 g/l from a concentration of 8 g/l trans-ferulic acid. As a result of co-oxidation of methoxy aromatic compounds by strain HF-1124 grown on acetic acid, protocatechuic acid was formed from vanillin and vanillic acid, and vanillic acid and isovanillic acid were formed from veratric acid. By the co-oxidative demethylation of substituted monomethoxybenzene, m- and p-hydroxybenzoic acids were accumulated from m-and p-anisic acid, respectively, while no products were detected from anisole, o-anisic acid, nitroanisole, methylanisole, methoxyphenol and dimethoxybenzene. 相似文献
8.
Characterization of glutamine-requiring mutants of Pseudomonas aeruginosa. 总被引:1,自引:0,他引:1 下载免费PDF全文
Revertants were isolated from a glutamine-requiring mutant of Pseudomonas aeruginosa PAO. One strain showed thermosensitive glutamine requirement and formed thermolabile glutamine synthase, suggesting the presence of a mutation in the structural gene for glutamine synthetase. The mutation conferring glutamine auxotrophy was subsequently mapped and found to be located at about 15 min on the chromosomal map, close to and before hisII4. Furthermore, in transduction experiments, it appeared to be very closely linked to gln-2022, a suppressor mutation affecting nitrogen control. With immunological techniques, it could be demonstrated that the glutamine auxotrophs form an inactive glutamine synthetase protein which is regulated by glutamine or a product derived from it in a way similar to other nitrogen-controlled proteins. 相似文献
9.
Pseudomonas aeruginosa sodA and sodB mutants defective in manganese- and iron-cofactored superoxide dismutase activity demonstrate the importance of the iron-cofactored form in aerobic metabolism. 总被引:3,自引:2,他引:3 下载免费PDF全文
The consumption of molecular oxygen by Pseudomonas aeruginosa can lead to the production of reduced oxygen species, including superoxide, hydrogen peroxide, and the hydroxyl radical. As a first line of defense against potentially toxic levels of endogenous superoxide, P. aeruginosa possesses an iron- and manganese-cofactored superoxide dismutase (SOD) to limit the damage evoked by this radical. In this study, we have generated mutants which possess an interrupted sodA (encoding manganese SOD) or sodB (encoding iron SOD) gene and a sodA sodB double mutant. Mutagenesis of sodA did not significantly alter the aerobic growth rate in rich medium (Luria broth) or in glucose minimal medium in comparison with that of wild-type bacteria. In addition, total SOD activity in the sodA mutant was decreased only 15% relative to that of wild-type bacteria. In contrast, sodB mutants grew much more slowly than the sodA mutant or wild-type bacteria in both media, and sodB mutants possessed only 13% of the SOD activity of wild-type bacteria. There was also a progressive decrease in catalase activity in each of the mutants, with the sodA sodB double mutant possessing only 40% of the activity of wild-type bacteria. The sodA sodB double mutant grew very slowly in rich medium and required approximately 48 h to attain saturated growth in minimal medium. There was no difference in growth of either strain under anaerobic conditions. Accordingly, the sodB but not the sodA mutant demonstrated marked sensitivity to paraquat, a superoxide-generating agent. P. aeuroginosa synthesizes a blue, superoxide-generating antibiotic similar to paraquat in redox properties which is called pyocyanin, the synthesis of which is accompanied by increased iron SOD and catalase activities (D.J. Hassett, L. Charniga, K. A. Bean, D. E. Ohman, and M. S. Cohen, Infect. Immun. 60:328-336, 1992). Pyocyanin production was completely abolished in the sodB and sodA sodB mutants and was decreased approximately 57% in sodA mutants relative to that of the wild-type organism. Furthermore, the addition of sublethal concentrations of paraquat to wild-type bacteria caused a concentration-dependent decrease in pyocyanin production, suggesting that part of the pyocyanin biosynthetic cascade is inhibited by superoxide. These results suggest that iron SOD is more important than manganese SOD for aerobic growth, resistance to paraquat, and optimal pyocyanin biosynthesis in P. aeruginosa. 相似文献
10.
Mapping of mutations in Pseudomonas aeruginosa defective in pyoverdin production. 总被引:2,自引:9,他引:2 下载免费PDF全文
Twelve mutants of Pseudomonas aeruginosa PAO defective in pyoverdin production were isolated (after chemical and transposon mutagenesis) that were nonfluorescent and unable to grow on medium containing 400 microM ethylenediaminedi(o-hydroxyphenylacetic acid). Four mutants were unable to produce hydroxamate, six were hydroxamate positive, one was temperature sensitive for pyoverdin production, and another was unable to synthesize pyoverdin on succinate minimal medium but was capable of synthesizing pyoverdin when grown on Casamino Acids medium (Difco Laboratories, Detroit, Mich.). The mutations were mapped on the PAO chromosome. All the mutations affecting pyoverdin production were located at 65 to 70 min, between catA1 and mtu-9002. 相似文献
11.
Cloning of genes specifying carbohydrate catabolism in Pseudomonas aeruginosa and Pseudomonas putida. 总被引:1,自引:15,他引:1 下载免费PDF全文
A 6.0-kilobase EcoRI fragment of the Pseudomonas aeruginosa PAO chromosome containing a cluster of genes specifying carbohydrate catabolism was cloned into the multicopy plasmid pRO1769. The vector contains a unique EcoRI site for cloning within a streptomycin resistance determinant and a selectable gene encoding gentamicin resistance. Mutants of P. aeruginosa PAO transformed with the chimeric plasmid pRO1816 regained the ability to grow on glucose, and the following deficiencies in enzyme or transport activities corresponding to the specific mutations were complemented: glcT1, glucose transport and periplasmic glucose-binding protein; glcK1, glucokinase; and edd-1, 6-phosphogluconate dehydratase. Two other carbohydrate catabolic markers that are cotransducible with glcT1 and edd-1 were not complemented by plasmid pRO1816: zwf-1, glucose-6-phosphate dehydrogenase; and eda-9001, 2-keto-3-deoxy-6-phosphogluconate aldolase. However, all five of these normally inducible activities were expressed at markedly elevated basal levels when transformed cells of prototrophic strain PAO1 were grown without carbohydrate inducer. Vector plasmid pRO1769 had no effect on the expression of these activities in transformed mutant or wild-type cells. Thus, the chromosomal insert in pRO1816 contains the edd and glcK structural genes, at least one gene (glcT) that is essential for expression of the glucose active transport system, and other loci that regulate the expression of the five clustered carbohydrate catabolic genes. The insert in pRO1816 also complemented the edd-1 mutation in a glucose-negative Pseudomonas putida mutant but not the eda-1 defect in another mutant. Moreover, pRO1816 caused the expression of high specific activities of glucokinase, an enzyme that is naturally lacking in these strains of Pseudomonas putida. 相似文献
12.
Quinate metabolism in Pseudomonas aeruginosa 总被引:2,自引:0,他引:2
13.
Isolation and characterization of Pseudomonas aeruginosa mutants requiring salicylic acid for pyochelin biosynthesis. 总被引:2,自引:4,他引:2 下载免费PDF全文
Pseudomonas aeruginosa mutants requiring salicylic acid for pyochelin biosynthesis were isolated after chemical mutagenesis by plating on a siderophore detection medium. Like the wild type, these mutants incorporated 7-[14C]salicylic acid into pyochelin, demonstrating that salicylic acid is an intermediate in the biosynthesis pathway of pyochelin. 相似文献
14.
Aeruginocin tolerant mutants of Pseudomonas aeruginosa 总被引:13,自引:0,他引:13
15.
DNA synthesis in Pseudomonas acidovorans infected with mutants of bacteriophage phi W-14 defective in the synthesis of alpha-putrescinylthymine. 下载免费PDF全文
Normal levels of the hypermodified pyrimidine, alpha-putrescinylthymine, which is formed from hydhydroxymethyluracil at the polynucleotide level (Maltman et al., J. Virol. 34:354-359, 1984), are not required in bacteriophage luminal diameterW-14 DNA for the DNA to serve as a replicative template in luminal diameterW-14-infected cells. 相似文献
16.
Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. 总被引:8,自引:0,他引:8 下载免费PDF全文
We isolated transposon Tn5-GM-induced mutants of Pseudomonas aeruginosa PG201 that were unable to grow in minimal media containing hexadecane as a carbon source. Some of these mutants lacked extracellular rhamnolipids, as shown by measuring the surface and interfacial tensions of the cell culture supernatants. Furthermore, the concentrated culture media of the mutant strains were tested for the presence of rhamnolipids by thin-layer chromatography and for rhamnolipid activities, including hemolysis and growth inhibition of Bacillus subtilis. Mutant 65E12 was unable to produce extracellular rhamnolipids under any of the conditions tested, lacked the capacity to take up 14C-labeled hexadecane, and did not grow in media containing individual alkanes with chain lengths ranging from C12 to C19. However, growth on these alkanes and uptake of [14C]hexadecane were restored when small amounts of purified rhamnolipids were added to the cultures. Mutant 59C7 was unable to grow in media containing hexadecane, nor was it able to take up [14C]hexadecane. The addition of small amounts of rhamnolipids restored growth on alkanes and [14C]hexadecane uptake. In glucose-containing media, however, mutant 59C7 produced rhamnolipids at levels about twice as high as those of the wild-type strain. These results show that rhamnolipids play a major role in hexadecane uptake and utilization by P. aeruginosa. 相似文献
17.
18.
Temperature-sensitive mutants of B. subtilis defective in deoxyribonucleotide synthesis 总被引:7,自引:0,他引:7
Summary Cessation of DNA synthesis in the temperature sensitive mutant 167 tsA 13 of Bacillus subtilis is correlated with the disappearance of dCTP and dATP pools at the nonpermissive temperature; dGTP and dTTP residual pools are stable. In the presence of AdR and CdR at 45°C, the dCTP and dATP pools remain normal and the cells continue to synthesise DNA and grow. It is inferred that in 167 tsA 13 AdR and CdR kinases exist, that the deoxynucleotide kinases function normally and the ribonucleotide reduction is deficient. B. subtilis strains have a hydroxyurea sensitive reductase and the drug inhibition can be reversed by exogenous deoxynucleosides. Evidence that the tsA 13 mutation is in the structural gene of the ribonucleotide reductase is discussed. 相似文献
19.
R and S dissociants of the hydrocarbon-oxidizing strain Pseudomonas aeruginosa K-2 differed but little in their growth in a minimal defined medium with glucose as the source of carbon and energy. At the same time, the number of cells of M dissociant in the late exponential phase was five orders of magnitude less than that of R and S dissociants. The growth of M dissociant was accompanied by the accumulation of formate in the culture liquid and a concurrent decrease in pH. All three dissociants contained the key enzymes of the Entner-Doudoroff pathway of glucose oxidation; however, the activities of these enzymes, especially 6-phosphogluconate dehydrogenase, were low in M dissociant. Conversely, the activity of formate dehydrogenase in cells of M dissociant was higher than in other dissociants. The activity of 6-phosphogluconate dehydrogenase, a key enzyme of the pentosephosphate pathway of glucose oxidation, was detected only in S dissociant. The peculiarities of the carbohydrate metabolism of M dissociant are probably responsible for its poor growth on glucose and determine the more pronounced anaerobic type of its metabolism. 相似文献
20.
Bradyrhizobium japonicum mutants defective in nitrogen fixation and molybdenum metabolism. 总被引:3,自引:3,他引:3 下载免费PDF全文
Bradyrhizobium japonicum JH mutants deficient in molybdenum metabolism into the enzymes nitrogenase and nitrate reductase were isolated by using the vector pSUP1011, which carries transposon Tn5 (streptomycin and kanamycin resistance). Mutants in Mo metabolism were obtained at a frequency of 3.6 X 10(-3) (per Kan Strr colony). The mutants were detected by their poor ability to grow in nitrate-containing medium without added Mo. One of the mutant types required 10(5) times more molybdate than the wild type to obtain maximal nitrogen fixation activity. Double-reciprocal plots of Mo uptake versus concentration indicated that the wild-type strain had a high- and a lower-affinity component for Mo binding. Mutant strains JH-90 and JH-119 lacked the high-affinity Mo uptake component and were also clearly deficient in Mo accumulation into a nonexchangeable form. Nitrogenase activity as well as Mo uptake ability could be restored in strains JH-90 and JH-119 by the addition of the sterile supernatant fraction of the wild type. Therefore, mutant strains JH-90 and JH-119 appeared to be deficient in an extracellular Mo-binding factor produced by the wild type. Mutant strains JH-14 and JH-143 had Mo uptake kinetics like those of the wild type (both high- and low-affinity binding for Mo) and appeared to be deficient in intracellular Mo metabolism processes. The addition of the wild-type supernatant did not restore Mo uptake or nitrogenase activity in these strains. 相似文献