首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Vizcarra JA  Ford JJ 《Theriogenology》2006,66(5):1091-1097
The sperm mobility assay used in the present study measures the rate of sperm penetration in a biologically inert cell-separation solution (Accudenz). When a sample of sperm is overlaid in a cuvette containing Accudenz, sperm penetrate the solution and absorbance of the sample can be measured with a spectrophotometer. This assay has been successfully used to select chicken and turkey semen donors. We validated this assay for semen from boars and stallions. Absorbance was measured after overlaying fresh semen from each species in prefilled cuvettes for 1, 5, 10, 15, 20, and 40 min. There were no significant differences when sperm were incubated in prewarmed cuvettes at 37, 39, or 41 degrees C. However, a minimum concentration of 5x10(7) viable sperm/mL was needed to evaluate the rate of sperm penetration in boars. Absorbance was half-maximal at 5.4 and 14.1 min for boar and stallion sperm, respectively. Frequency analysis suggested a normal distribution of mobility values for boar sperm. There were positive correlations between mobility values and several computer-aided sperm analysis (CASA) parameters. In addition, there was medium repeatability for multiple ejaculates from single males. We concluded that the mobility assay can be used for mammalian sperm and there seemed to be phenotypic variation among boars in mobility estimates.  相似文献   

2.
Five experiments evaluated the effects of processing, freezing and thawing techniques on post-thaw motility of equine sperm. Post-thaw motility was similar for sperm frozen using two cooling rates. Inclusion of 4% glycerol extender was superior to 2 or 6%. Thawing in 75 degrees C water for 7 sec was superior to thawing in 37 degrees C water for 30 sec. The best procedure for concentrating sperm, based on sperm motility, was diluting semen to 50 x 10(6) sperm/ml with a citrate-based centrifugation medium at 20 degrees C and centrifuging at 400 x g for 15 min. There was no difference in sperm motility between semen cooled slowly in extender with or without glycerol to 5 degrees C prior to freezing to -120 degrees C and semen cooled continuously from 20 degrees C to -120 degrees C. From these experiments, a new procedure for processing, freezing and thawing semen evolved. The new procedure involved dilution of semen to 50 x 10(6) sperm/ml in centrifugation medium and centrifugation at 400 x g for 15 min, resuspension of sperm in lactose-EDTA-egg yolk extender containing 4% glycerol, packaging in 0.5-ml polyvinyl chloride straws, freezing at 10 degrees C/min from 20 degrees C to -15 degrees C and 25 degrees C/min from -15 degrees C to -120 degrees C, storage at -196 degrees C, and thawing at 75 degrees C for 7 sec. Post-thaw motility of sperm averaged 34% for the new method as compared to 22% for the old method (P<0.01).  相似文献   

3.
Ejaculates were collected form three mixed-breed male dogs daily for 3 d. The semen was diluted in either a nonfat dried milk solid-glucose (NFDMS-G) or egg yolk citrate (EYC) extender at a concentration of 25 x 10(6) sperm/ml. The diluted samples were exposed to three different storage temperatures (35, 22 and 4 degrees C). Three cooling rates (-1.0, -0.3 and -0.1 degrees C/min) were also investigated at the lowest storage temperature (4 degrees C). The semen was evaluated for total motility, progressive motility and velocity at 0, 6, 12, 24, 48, 72, 96 and 120 h after collection by two independent observers. Interactions between extenders, temperatures and time after collection were found for each of the variables. Nonfat dried milk solid-glucose diluent was superior to EYC (P<0.05) in preservating sperm motility parameters that were evaluated for most of the observations. The evaluated sperm motility parameters were also significantly superior (P<0.05) in semen stored at 4 degrees C than at 35 or 22 degrees C for most of the observations. The progressive motility and velocity of sperm in semen cooled at 4 degrees C in NFDMS-G were higher (P<0.05) at the fast and medium cooling rates (-1.0 and -0.3 degrees C) than at the slow cooling rate (-0.1 degrees C/min) at 24 and 72 h, and at 48 h, respectively. In conclusion, the present study suggests that canine spermatozoal motility is well preserved when a NFDMS-glucose extender is added to the semen and the semen is cooled at a medium or fast rate to a storage temperature of 4 degrees C. Additional studies are needed to evaluate the fertility of semen stored in this manner.  相似文献   

4.
We have previously reported high survival in mouse sperm frozen at 21 degrees C/min to -70 degrees C in a solution containing 18% raffinose in 0.25 x PBS (400 mOsm) and then warmed rapidly at approximately 2000 degrees C/min, especially under lowered oxygen tensions induced by Oxyrase, a bacterial membrane preparation. The best survival rates were obtained in the absence of glycerol. The first concern of the present study was to determine the effects of the cooling rate on the survival of sperm suspended in this medium. The sperm were cooled to -70 degrees C at rates ranging from 0.3 to 530 degrees C/min. The survival curve was an inverted "U" shape, with the highest motility occurring between 27 and 130 degrees C/min. Survival decreased precipitously at higher cooling rates. Decreasing the warming rate, however, decreased survivals at all cooling rates. The motility depression with slow warming was especially evident in sperm cooled at the optimal rates. This fact is consistent with our current view that the frozen medium surrounding sperm cells is in a metastable state, perhaps partly vitrified as a result of the high concentrations of sugar. The decimation of sperm cooled more rapidly than optimum (>130 degrees C/min), even with rapid warming, is consistent with the induction of considerable quantities of intracellular ice at these rates. When glycerol was added to the above medium, motilities were also dependent on the cooling rate, but they tended to be substantially lower than those obtained in the absence of glycerol. The minimum temperature in the above experiments was -70 degrees C. When sperm were frozen to -70 degrees C at optimum rates, lowering the temperature to -196 degrees C had no adverse effect.  相似文献   

5.
Huang C  Dong Q  Tiersch TR 《Theriogenology》2004,62(6):971-989
The objectives of this study were to evaluate the effects of cryoprotectant, osmotic pressure, cooling rate, equilibration time, and sperm-to-extender ratio, as well as somatic relationships of body length, body weight, and testis weight to sperm density in the platyfish Xiphophorus couchianus. Sperm motility and survival duration after thawing were significantly different between cryopreservation with dimethyl sulfoxide (DMSO) and glycerol, with the highest motility at 10 min after thawing obtained with 14% glycerol. With subsequent use of 14% glycerol as cryoprotectant, the highest motility after thawing was observed with Hanks' balanced salt solution (HBSS) across a range of 240-300 mOsm/kg. Samples cooled from 5 to -80 degrees C at 25 degrees C/min yielded the highest post-thaw motility, although no significant difference was found for cooling rates across the range of 20-30 degrees C/min. In addition, the highest motility after thawing was found in samples equilibrated from 10 to 30 min with 14% glycerol and cooled at 25 degrees C/min. The post-thaw motility declined rapidly with use of 10% glycerol and cooling at 5 degrees C/min across the equilibration range of 10 min to 2h. Sperm motility with a dilution ratio of sperm to extender of 1:10 was not different at 10 min after thawing with those samples at greater dilutions, but declined significantly from Day 1 after thawing and showed lower survival duration when stored at 4 degrees C. However, the additional dilution of sperm solutions with HBSS (300 mOsm/kg) immediately after thawing significantly slowed the decline of motility and prolonged the duration of survival. Based on the above findings, the highest average sperm motility (78+/-3 %) at 10 min after thawing was obtained when sperm were suspended in HBSS at 300 mOsm/kg with 14% glycerol as cryoprotectant, diluted at a ratio of sperm to HBSS-glycerol of 1:20, equilibrated for 10 min, cooled at 25 degrees C/min from 5 to -80 degrees C before plunging into liquid nitrogen, and thawed at 40 degrees C in a water bath for 7 s. If diluted within 5 h after thawing, sperm frozen by the above protocol retained continuous motility for 15 days when stored at 4 degrees C.  相似文献   

6.
Different thawing methods are used for stallion semen, however, it is unclear which method is the optimal one. To determine if the thawing temperature has an effect on semen quality, we compared 2 thawing temperatures, 75 degrees C and 37 degrees C. The following parameters were used to measure sperm quality: sperm motility, sperm viability, plasma membrane integrity and sperm morphology. Twenty-three ejaculates from 10 Dutch Warmblood stallions were thawed either at 37 degrees C for 30 sec or at 75 degrees C for 7 sec. Sperm motility was evaluated by a Hamilton Thorn Motility Analyser. Plasma membrane integrity and sperm viability were evaluated by using a live/dead fluorescein stain containing a calcein AM probe and ethidium homodimer-1 probe. The eosinaniline blue staining method was used to evaluate the percentage of live and dead cells, as well as sperm morphology. There was no significant difference (P = 0.84) between sperm motility after thawing at 37 degrees C and 75 degrees C. There was also no significant difference (P = 0.053) between the percentage of live spermatozoa using the calcein AM/ethidium homodimer stain after thawing at 37 degrees C and 75 degrees C. There was, however, a significant difference (P = 0.032) between the percentage of live spermatozoa using the eosin-aniline blue stain after thawing at 37 degrees C compared with that at 75 degrees C. In conclusion, our laboratory results indicated that stud farms using frozen semen should thaw the straws at 37 degrees C instead of 75 degrees C. The lower temperature is easier to work with, as thawing at the higher temperature requires special equipment and has to be timed very carefully to avoid damage to the spermatozoa.  相似文献   

7.
The effects of different freezing and thawing rates on the post-thaw motility and membrane integrity of boar spermatozoa, processed as split samples in Maxi-straws or flat PET-plastic packages (FlatPack) were studied. A programmable freezing device was used to obtain freezing rates of either 20, 50 or 80 degrees C/min. Thawing of the samples was performed in a bath of circulating water; for 40s at 50 degrees C or 27s at 70 degrees C for Maxi-straws and 23s at 35 degrees C, 13s at 50 degrees C or 8s at 70 degrees C for the FlatPacks. Sperm motility was assessed both visually and with a computer assisted semen analysis (CASA) apparatus, while plasma membrane integrity was assessed using the fluorescent probes Calcein AM and ethidium homodimer-1. Temperature changes during freezing and thawing were monitored in both forms of packaging. Values for motile spermatozoa, sperm velocity and lateral head displacement variables were significantly (p<0.05) higher for samples frozen in FlatPacks than in Maxi-straws, with superior results at higher thawing rates. Freezing at 50 degrees C/min yielded better motility than 20 or 80 degrees C/min, although the effect was rather small. Neither freezing rate nor thawing rate had any effect on membrane integrity (p>0.05). A significant boar effect was seen for several parameters. The most striking difference in temperature courses between containers was a 4-5-fold lowering of the thawing rate, between -20 and 0 degrees C, in the center of the Maxi-straw, compared with the FlatPack. This is apparently due to the insulating effect of the thawed water in the periphery of the Maxi-straw. The improvement in sperm motility seen when using the FlatPack appears to be related to the rapid thawing throughout the sample, which decreases the risk of cell damage due to recrystallization during thawing. Since sperm motility patterns have been reported to be correlated with fertility both in vitro and in vivo it is speculated that the use of the FlatPack might improve the results when using frozen-thawed boar spermatozoa for artificial insemination.  相似文献   

8.
Huang C  Dong Q  Walter RB  Tiersch TR 《Cryobiology》2004,48(3):220-308
Sperm cryopreservation for fishes with internal fertilization is essentially unexplored although many species of these fishes are valuable biomedical research models. To explore methods for sperm cryopreservation within the live-bearing genus Xiphophorus, this study used X. helleri to evaluate the effects of cryoprotectant, osmotic pressure, cooling rate, equilibration time, and sperm-to-extender ratio. Sperm motility and survival duration after thawing showed significant differences among different cryoprotectants with the highest motility at 10 min after thawing obtained with 14% glycerol. With subsequent use of 14% glycerol as the cryoprotectant, the highest motility after thawing was observed with Hanks' balanced salt solution (HBSS) at 300 mOsmol/kg. Samples cooled from 5 to -80 degrees C at 20 degrees C/min yielded the highest post-thaw motility although no significant difference was found in the first 4h after thawing for cooling rates across the range of 20-35 degrees C/min. Evaluation of equilibration time revealed no significant difference between 20 min and 2h, but the highest motility at 10 min after thawing was found with a 20-min equilibration. Dilution ratios of sperm-to-extender at 1:20, 1:60, and 1:120 showed no significant differences in motility and survival duration after thawing, but the dilution of sperm solutions with HBSS (320 mOsmol/kg) immediately after thawing reduced the decline of sperm motility, and significantly prolonged the survival duration. Based on these findings, the highest average sperm motility (77%) at 10 min after thawing was obtained when sperm were suspended in HBSS at 300 mOsmol/kg with 14% glycerol as cryoprotectant, diluted at a ratio of sperm to HBSS-glycerol of 1:20, equilibrated for 10 min, cooled at 20 degrees C/min from 5 to -80 degrees C before being plunged in liquid nitrogen, and thawed in a 40 degrees C water bath for 7s. If diluted immediately after thawing, sperm frozen by the protocol above retained continuous motility after thawing for more than 8 days when stored at 4 degrees C.  相似文献   

9.
Linhart O  Rodina M  Cosson J 《Cryobiology》2000,41(3):241-250
In this study, fish sperm cryopreservation methods were elaborated upon for ex situ conservation of nine strains of Bohemian common carp. Common carp sperm were diluted in Kurokura medium and chilled to 4 degrees C and dimethyl sulfoxide was added. Cryotubes of sperm with media were then cooled from +4 to -9 degrees C at a rate of 4 degrees C min(-1) and then from -9 to -80 degrees C at a rate of 11 degrees C min(-1), held for 6 min at -80 degrees C, and finally transferred into liquid N(2). The spermatozoa were thawed in a water bath at 35 degrees C for 110 s and checked for fertilization yield, hatching yield of embryos, and larval malformations. Fresh and frozen/thawed sperm were evaluated for the percentage and for the velocity of motile sperm from video frames using image analysis. The percentage and velocity of sperm motility at 15 s after activation of frozen/thawed sperm was significantly lower than that of fresh sperm (nine males). ANOVA showed a significant influence of fresh vs frozen/thawed sperm on fertilization rate (P < 0.0001), but differences in hatching rate and in larval malformation (0-6.8%) were not significant, and different males had a significant influence on fertilization and hatching rate (P < 0.003 and P < 0.007, respectively). Multiple range analysis (LSD) showed significant differences between fresh and frozen/thawed sperm regarding fertilization rate (68 +/- 11 and 56 +/- 10%, respectively) and insignificant differences between fresh and frozen/thawed sperm on the hatching rate (50 +/- 18 and 52 +/- 9%, respectively). The percentage and velocity of fresh sperm motility were correlated, respectively, with the fertilization yield of frozen/thawed sperm at the levels r = 0.51 and r = 0.54.  相似文献   

10.
11.
A study was conducted to determine an optimum technique for semen cryopreservation and the biological competence of frozen-thawed ferret spermatozoa. Fifty-two fresh electroejaculates from 4 males were evaluated for sperm percentage motility, forward progressive motility, motility index (SMI) and acrosomal integrity. To determine the optimum temperature for maintaining sperm motility in vitro and the influence of glycerol on sperm motility, seminal aliquants were diluted in TEST diluent (containing either 0 or 4% glycerol) and maintained at 25 degrees or 37 degrees C. For cryopreservation, semen was diluted in each of 3 cryodiluents (TEST, PDV, BF5F), cooled for 30 min at 5 degrees C and pelleted on solid CO2 or frozen in 0.25 ml straws (20 degrees C/min to -100 degrees C). Following thawing, SMI and acrosomal integrity were determined. Ten females with maximum vulval swelling were given 90 i.u. human chorionic gonadotrophin and laparoscopically inseminated in utero with spermatozoa previously frozen using the optimum diluent and freeze-thaw method. The maintenance temperature of 25 degrees C was superior (P less than 0.05) to 37 degrees C for sustaining sperm motility, and glycerol did not influence (P greater than 0.05) motility for up to 11 h of culture. After thawing, motile spermatozoa were recovered in all treatment groups, but sperm motility and normal acrosomal ratings were highest using the PDV diluent, the pelleting method and thawing at 37 degrees C (P less than 0.05). Seven of the 10 ferrets (70%) inseminated with spermatozoa frozen by this approach became pregnant and produced 31 kits (mean litter size 4.4; range 1-9 kits).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Gwo JC 《Theriogenology》1994,41(5):989-1004
The effects of both osmolality and cation in the initiation of sperm motility were examined in yellowfin seabream, Acanthopagrus latus. Various factors involved in the cryopreservation of yellowfin seabream spermatozoa on motility are discussed. Extender containing only glucose proved to be a suitable medium for freezing yellowfin seabream spermatozoa to -196 degrees C. Glycerol seems to have a direct osmotic effect on yellowfin seabream sperm cells, and it induced sperm motility before freezing and during thawing. However, this exhausted the energy needed for sperm motility for fertilization. Dimethyl sulfoxide (DMSO) proved superior to ethylene glycerol, propylene glycerol, glycerol and methanol as a cryoprotectant. Prolonged equilibration time had a detrimental effect on both prefreezing and post-thawing sperm motility. The estimated optimum freezing rate was in the range of -20 to -154 degrees C/min. More frozen-thawed than fresh spermatozoa are required to achieve comparable fertilization rates.  相似文献   

13.
Aluminium phosphide (AlP) a grain fumigant is the leading cause of intentional poisoning in North India. The mechanisms involved in toxicity are not known and there is no antidote till date. The present study was carried out to investigate the oxygen free radical generation, methemoglobinemia and effect of methylene blue treatment on survival time in rat model of AlP poisoning. AlP (50 mg/kg, intragastric) was administered in one group and the other group received AlP + Methylene Blue (MB) (0.1%, 1 mg/kg/5 min, i.v.). Malonyldialdehyde (MDA) and methemoglobin (MeHb) levels were measured at 10 and 30 min intervals. Blood MDA levels increased at 10 and 30 min after AlP exposure with simultaneous rise in MeHb levels suggesting methemoglobinemia could be due to increased oxygen free radical generation. Methylene blue caused a significant fall in both the parameters with prolongation of survival time. It is concluded that AlP causes methemoglobinemia responding to methylene blue treatment.  相似文献   

14.
Three experiments were designed to analyze the effects of cooling rate on survival of stallion spermatozoa in a milk-based extender, at 0 to 96 hours after reaching the desired temperature. The samples were warmed to 37 degrees C and were evaluated by computer-assisted analysis of sperm motility. In Experiment 1, rate of cooling between 37 and 20 degrees C was evaluated. Sperm motion was not affected by cooling at plunge, -0.42 or -0.28 degrees C/minute. However, storage of spermatozoa at 5 degrees C after slow cooling below 20 degrees C was superior to storage at 20 degrees C. In Experiment 2, 3 cooling rates from 37 degrees to 5 degrees C were evaluated. Cooling at either -0.05 or -0.7 degrees C/minute was superior (P<0.05) to plunging spermatozoa to 5 degrees C. Cooling at -0.05 degrees C/minute rather than -0.7 degrees C/minute maximized the percentage of motile spermatozoa and their curvilinear velocity. In Experiment 3, cooling rates from 20 to 5 degrees C were evaluated, with all samples cooled at -0.7 degrees C/minute from 37 to 20 degrees C. Sperm motion was similar (P>0.05) after cooling below 20 degrees C at -0.012, -0.05 or -0.10 degrees C/minute, and the 2 slower rates were superior (P<0.05) to cooling at -0.3 degrees C/minute. It was concluded that stallion spermatozoa can be cooled rapidly from 37 to 20 degrees C, but should be cooled at 相似文献   

15.
Freeze-thawing cat sperm in cryoprotectant results in extensive membrane damage. To determine whether cooling alone influences sperm structure and viability, we compared the effect of cooling rate on sperm from normospermic (N; > 60% normal sperm per ejaculate) and teratospermic (T; < 40% normal sperm per ejaculate) domestic cats. Electroejaculates were divided into raw or washed (Ham's F-10 + 5% fetal calf serum) aliquots, with the latter resuspended in Ham's F-10 medium or Platz Diluent Variant Filtered without glycerol (20% egg yolk, 11% lactose). Aliquots were 1) maintained at 25 degrees C (no cooling; control), 2) cooled to 5 degrees C in a commercial refrigerator for 30 min (rapid cooling; approximately 4 degrees C/min), 3) placed in an ice slush at 0 degrees C for 10 min (ultrarapid cooling; approximately 14 degrees C/min), or 4) cooled to 0 degrees C at 0.5 degrees C/min in a programmable alcohol bath (slow cooling); and aliquots were removed every 4 degrees C. All samples then were warmed to 25 degrees C and evaluated for percentage sperm motility and the proportion of intact acrosomes using a fluorescein-conjugated peanut agglutinin stain. In both cat populations, sperm percentage motility remained unaffected (p > 0.05) immediately after exposure to low temperatures and after warming to 25 degrees C. However, the proportion of spermatozoa with intact acrosomes declined (p < 0.05) after rapid cooling ( approximately 4 degrees C/min) to 5 degrees C (N, 65.6%; T, 27.5%) or ultrarapid cooling ( approximately 14 degrees C/min) to 0 degrees C (N, 62.1%; T, 23.0%) in comparison to the control value (N, 81.5%; T, 77.5%). Transmission electron microscopy of cooled sperm revealed extensive damage to acrosomal membranes. In contrast, slow cooling (0.5 degrees C/min) to 5 degrees C maintained (p > 0.05) a high proportion of spermatozoa with intact acrosomes (N, 75.5%; T, 68.3%), which also remained similar (p > 0.05) between cat populations (N, 64.7%; T, 56.8%) through continued cooling to 0 degrees C. Results demonstrate that 1) rapid cooling of domestic cat sperm induces significant acrosomal damage without altering sperm motility, 2) spermatozoa from teratospermic males are more susceptible to cold-induced acrosomal damage than normospermic counterparts, and 3) reducing the rate of initial cooling markedly decreases sperm structural damage.  相似文献   

16.
Sperm cryopreservation offers potential for long-term storage of genetic resources. However, the current protocols for zebrafish Danio rerio are cumbersome and poorly reproducible. Our objective was to facilitate adoption of cryopreservation by streamlining methods from sperm collection through thawing and use. First, sperm activation was evaluated, and motility was completely inhibited when osmolality of the extender was >/=295-300mOsmol/kg. To evaluate cryoprotectant toxicity, sperm were incubated with dimethyl sulfoxide (DMSO), N,N-dimethyl acetamide (DMA), methanol, or glycerol at 5, 10, and 15% concentrations. Based on motility, DMSO, DMA, and methanol (相似文献   

17.
Methylene blue immobilized on porous glass beads was used to catalyze the photooxidation of methionine alone and the methionine residues of lysozyme. A solution of 2 mM methionine in 50% acetic acid was oxidized to methionine sulfoxide in the presence of immobilized methylene blue after 6 h of photooxidation at 37 degrees C. Selective photooxidation of the methionyl residues in lysozyme was achieved after 26 h of reaction in 84% acetic acid at 4 degrees C. The specific activity of lysozyme exposed to light in the presence of methylene blue decreased by 94%, while that of a lysozyme solution in the presence of methylene blue not exposed to light decreased by 21%. The lysozyme solution exposed to light but not containing the methylene blue beads lost 33% of its specific activity after the same period of photooxidation. It was shown that the decrease in enzyme activity was not caused by adsorption of the enzyme onto the beads.  相似文献   

18.
This investigation was carried out to develop a simple sperm cryopreservation model using a chemically defined synthetic medium (modified Ringer's solution) and mature goat cauda epididymal sperm as the model system. Rates of cooling, freezing, and maximum freezing temperature were manipulated with the help of a computer-controlled programmable biofreezer. Highly motile goat cauda sperm dispersed in a modified Ringer's solution was subjected to the freezing protocol: cooling 0.25 degrees C min(-1) to 5 degrees C, 5 degrees C min (-1) to -20 degrees C, 20 degrees C min(-1) to -100 degrees C, prior to plunging into liquid nitrogen. In the absence of any cryoprotective agent, all of the spermatozoa lost their motility. Addition of glycerol (0.22 to 0.87 M) caused a dose-dependent increase of sperm motility recovery. The highest recovery of forward and total motility was (32 and 35%, respectively) at 0.87 M. Further increase of the glycerol concentration caused a marked decrease in motility. Changes in the cooling rate particularly before and during freezing had a notable effect on the sperm motility recovery. There was no or low recovery (0-18%) of sperm motility when the cells were transferred directly to liquid nitrogen from the initial two cooling stages. The data demonstrate the importance of all of the cooling stages in the cryopreservation of the cells. Like glycerol, dimethyl sulfoxide (Me(2)SO) and ethylene glycol also showed a dose-dependent increase in motility recovery as well as a biphasic curve of cryoprotection. At optimal concentrations, dimethyl sulfoxide (1.00 M) and ethylene glycol (1.29 M) were effective in recovering sperm motility to the extent of 20 and 13%, respectively. Thus these reagents have markedly lower cryoprotection potential than glycerol.  相似文献   

19.
The enzyme carbon monoxide:methylene blue oxidoreductase from CO autotrophically grown cells of Pseudomonas carboxydovorans strain OM5, was purified to homogeneity. The enzyme was obtained in 26% yield and was purified 36-fold. The enzyme was stable for at least 6 days, had a molecular weight of 230,000, gave a single protein and activity band on polyacrylamide gel electrophoresis, and was homogeneous by the criterion of sedimentation equilibrium. Sodium dodecyl sulfate gel electrophoresis revealed a single band of molecular weight 107,000. Carbon monoxide:methylene blue oxidoreductase did not catalyze reduction of pyridine or flavin nucleotides but catalyzed the oxidation of CO to CO2 in the presence of methylene blue, thionine, toluylene blue, dichlorophenolindophenol, or pyocyanine under strictly anaerobic conditions. The visible spectrum revealed maxima at 405 and 470 nm. The millimolar extinction coefficients were 43.9 (405 nm) and 395.5 (275 nm), respectively. Absorption at 470 nm decreased in the presence of dithionite, and the spectrum was not affected by the substrate CO. Maximum reaction rates were found at pH 7.0 and 63 degrees C; temperature dependence followed the Arrhenius equation, with an activation energy (delta H degree) of 36.8 kJ/mol (8.8 kcal/mol). The apparent Km was 53 microM for CO. The purified enzyme was incapable of oxidizing methane, methanol, or formaldehyde in the presence of methylene blue as electron acceptor.  相似文献   

20.
The availability of tetraploid Pacific oysters provides a unique opportunity for comparative studies of sperm cryopreservation between diploids and tetraploids. In parallel to studies with sperm from diploid oysters, this study reports systematic factor optimization for sperm cryopreservation of tetraploid oysters. Specifically, this study evaluated the effects of cooling rate, single or combined cryoprotectants at various concentrations, equilibration time (exposure to cryoprotectant), and straw size. Similar to sperm from diploids, the optimal cooling rate was 5 degrees C/min to -30 degrees C, followed by cooling at 45 degrees C/min to -80 degrees C before plunging into liquid nitrogen. Screening of single or combined cryoprotectants at various concentrations showed that a combination of the cryoprotectants 6% polyethylene glycol/4% propylene glycol and 6% polyethylene glycol/4% dimethyl sulfoxide yielded consistently high post-thaw motility. A long equilibration (60 min) yielded higher percent fertilization, and confirmed that extended equilibration could be beneficial when low concentrations of cryoprotectant are used. There was no significant difference in post-thaw motility between straw sizes of 0.25 and 0.5 mL. Despite low post-thaw fertilization (<10%) in general for sperm from tetraploids, optimized protocols in the present study effectively retained post-thaw motility for sperm from tetraploid oysters. This study confirmed that sperm from tetraploid Pacific oysters were more negatively affected by cryopreservation than were those of diploids. One possible explanation is that sperm from these two ploidies are different in their plasma membrane properties (e.g., structure, permeability, and elasticity), and the plasma membrane of sperm from tetraploids is more sensitive to cryopreservation effects. The fact that combinations of non-permeating and permeating cryoprotectants improved post-thaw motility in sperm from tetraploids provided presumptive evidence for this interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号