首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The influence of temperature on the growth of the theromophilic Bacillus caldotenax was investigated using chemostat techniques and a chemically defined minimal medium. All determined growth constants, that is maximal specific growth rate, yield and maintenance, were temperature dependent. It was striking that the very large maintenance requirement was about 10 times higher than for mesophilic cells under equivalent conditions. A death rate, which was very substantial at optimal and supraoptimal growth temperatures, was estimated by comparing the maintenance for substrate and oxygen. There was no indication for a thermoadaptation as postulated by Haberstich and Zuber (1974).Symbols D Dilution rate (h–1) - Dc=max Critical dilution rate (h–1) - E Temperature characteristic (J mol–1) - k Organism constant - kd Death rate coefficient (h–1) - km Maintenance substrate coefficient estimated from MO (h–1) - MO Maintenance respiration, mmol O2 per g dry biomass and h (mmol g–1h–1) - MO Maintenance respiration, taking kd into account - mS Maintenance substrate coefficient, g glucose per g dry biomass and h (h–1) - OD Optical density at 546 nm - QO2 Specific O2-uptake rate (mmol g–1h–1) - Q O2 V Specific O2-uptake rate for viable portion of biomass (mmol g–1 h–1) - QS Specific glucose uptake rate (h–1) - Q S V Specific glucose uptake rate for viable portion of biomass (h–1) - R Gas constant 8.28 J mol–1K–1 - S Substrate concentration in reactor (g l–1) - SO Influent substrate concentration (g l–1) - Tmax Maximal growth temperature (°C) - Tmin Minimal growth temperature (°C) - X Dry biomass (g l–1) - XtOt=X Dry biomass containing dead and viable cells - Xv Viable portion of biomass - Y O m Potential yield for O2 corrected for maintenance respiration (g mol–1) - Y S m Potential yield for substrate corrected for maintenance requirement, g biomass per g glucose (–) - Specific growth rate (h–1) - max Maximal specific growth rate (h–1)  相似文献   

2.
Summary The growth parameters ofPenicillium cyclopium have been evaluated in a continuous culture system for the production of fungal protein from whey. Dilution rates varied from 0.05 to 0.20 h–1 under constant conditions of temperature (28°C) and pH (3.5). The saturation coefficients in the Monod equation were 0.74 g l–1 for lactose and 0.14 mg l–1 for oxygen, respectively. For a wide range of dilution rates, the yield was 0.68 g g–1 biomass per lactose and the maintenance coefficient 0.005 g g–1 h–1 lactose per biomass, respectively. The maximum biomass productivity achieved was 2 g l–1 h–1 biomass at dilution rates of 0.16–0.17 h–1 with a lactose concentration of 20 g l–1 in the feed. The crude protein and total nucleic acid contents increased with a dilution rate, crude protein content varied from 43% to 54% and total nucleic acids from 6 to 9% in the range of dilution rates from 0.05 to 0.2 h–1, while the Lowry protein content was almost constant at approximately 37.5% of dry matter.Nomenclature (mg l–1) Co initial concentration of dissolved oxygen - (h–1) D dilution rate - (mg l–1) K02 saturation coefficient for oxygen - (g l–1) Ks saturation coefficient for substrate - (g g–1 h–1) lactose per biomass) m maintenance energy coefficient - (mM g–1 h–1O2 per biomass) Q02 specific oxygen uptake rate - (g l–1) S residual substrate concentration at steady state - (g l–1) So initial substrate concentration in feed - (min) t1/2 time when Co is equal to Co/2 - (g l–1) X biomass concentration - (g l–1) X biomass concentration at steady state - (g g–1 biomass per lactose) YG yield coefficient for cell growth - (g g–1 biomass per lactose) Yx/s overall yield coefficient - (h–1) specific growth rate  相似文献   

3.
A family of 10 competing, unstructured models has been developed to model cell growth, substrate consumption, and product formation of the pyruvate producing strain Escherichia coli YYC202 ldhA::Kan strain used in fed-batch processes. The strain is completely blocked in its ability to convert pyruvate into acetyl-CoA or acetate (using glucose as the carbon source) resulting in an acetate auxotrophy during growth in glucose minimal medium. Parameter estimation was carried out using data from fed-batch fermentation performed at constant glucose feed rates of qVG=10 mL h–1. Acetate was fed according to the previously developed feeding strategy. While the model identification was realized by least-square fit, the model discrimination was based on the model selection criterion (MSC). The validation of model parameters was performed applying data from two different fed-batch experiments with glucose feed rate qVG=20 and 30 mL h–1, respectively. Consequently, the most suitable model was identified that reflected the pyruvate and biomass curves adequately by considering a pyruvate inhibited growth (Jerusalimsky approach) and pyruvate inhibited product formation (described by modified Luedeking–Piret/Levenspiel term).List of symbols cA acetate concentration (g L–1) - cA,0 acetate concentration in the feed (g L–1) - cG glucose concentration (g L–1) - cG,0 glucose concentration in the feed (g L–1) - cP pyruvate concentration (g L–1) - cP,max critical pyruvate concentration above which reaction cannot proceed (g L–1) - cX biomass concentration (g L–1) - KI inhibition constant for pyruvate production (g L–1) - KIA inhibition constant for biomass growth on acetate (g L–1) - KP saturation constant for pyruvate production (g L–1) - KP inhibition constant of Jerusalimsky (g L–1) - KSA Monod growth constant for acetate (g L–1) - KSG Monod growth constant for glucose (g L–1) - mA maintenance coefficient for growth on acetate (g g–1 h–1) - mG maintenance coefficient for growth on glucose (g g–1 h–1) - n constant of extended Monod kinetics (Levenspiel) (–) - qV volumetric flow rate (L h–1) - qVA volumetric flow rate of acetate (L h–1) - qVG volumetric flow rate of glucose (L h–1) - rA specific rate of acetate consumption (g g–1 h–1) - rG specific rate of glucose consumption (g g–1 h–1) - rP specific rate of pyruvate production (g g–1 h–1) - rP,max maximum specific rate of pyruvate production (g g–1 h–1) - t time (h) - V reaction (broth) volume (L) - YP/G yield coefficient pyruvate from glucose (g g–1) - YX/A yield coefficient biomass from acetate (g g–1) - YX/A,max maximum yield coefficient biomass from acetate (g g–1) - YX/G yield coefficient biomass from glucose (g g–1) - YX/G,max maximum yield coefficient biomass from glucose (g g–1) - growth associated product formation coefficient (g g–1) - non-growth associated product formation coefficient (g g–1 h–1) - specific growth rate (h–1) - max maximum specific growth rate (h–1)  相似文献   

4.
Using experimental data from continuous cultures of Clostridium acetobutylicum with and without biomass recycle, relationships between product formation, growth and energetic parameters were explored, developed and tested. For glucose-limited cultures the maintenance models for, the Y ATP and biomass yield on glucose, and were found valid, as well as the following relationships between the butanol (Y B/G) or butyrate (Y BE/G) yields and the ATP ratio (R ATP, an energetic parameter), Y B/G =0.82-1.35 R ATP, Y BE/G =0.54 + 1.90 R ATP. For non-glucose-limited cultures the following correlations were developed, Y B/G =0.57-1.07 , Y B/G =0.82-1.35 R ATPATP and similar equations for the ethanol yield. All these expressions are valid with and without biomass recycle, and independently of glucose feed or residual concentrations, biomass and product concentrations. The practical significance of these expressions is also discussed.List of Symbols D h–1 dilution rate - m e mol g–1 h–1 maintenance energy coefficient - m G mol g–1 h–1 maintenance energy coefficient - R biomass recycle ratio, (dimensionless) - R ATP ATP ratio (eqs.(5), (10) and (11)), (dimensionless) - X kg/m3 biomass concentration - Y ATP g biomass per mol ATP biomass yield on ATP - Y ATP max g biomass per mol ATP maximum Y ATP - Y A/G mol acetate produced per mol glucose consumed molar yield of acetate - y an/g mol acetone produced per mol glucose consumed molar yield of acetone - Y B/G mol butanol produced per mol glucose consumed molar yield of butanol - y be/g mol butyrate produced per mol glucose consumed molar yield of butyrate - Y E/G mol ethanol produced per mol glucose consumed molar yield of ethanol - Y X/G g biomass per mol glucose consumed biomass yield on glucose - Y ATP max g biomass per mol maximum Y X/G glucose consumed - h–1 specific growth rate  相似文献   

5.
Summary Three yeasts of the genus Candida (Candida intermedia, candida lipolytica and Candida tropicalis) were cultivated batchwise on three different carbon sources: glucose, acetate, and hexadecane. Growth curves, oxygen uptake rates, CO2 evolution rates and the amount of oxygen required for biomass production were determined. The data were compared and discussed from the point of maximum specific growth rate, maximum oxygen uptake rate, carbon conversion into CO2 and biomass, consumption of oxygen and available energy for cell synthesis. The results indicated a relationship between m m, Ys, YO, and for different carbon sources. YO and were in the same order of magnitude for acetate (0.58 and 0.38 respectively) and hexadecane (0.45 and 0.40 respectively). These values were remarkably lower than those for glucose (1.26 and 0.54 respectively).Symbols av e Available electrons per mol of substrate (dimensionless) - Eav Energy available per mol of substrate (dimensionless) - Cd Dissimilated carbon (%) - m Maximum specific rate of oxygen uptake (mMO2 h–1 g–1) - RQ CO2 evolved per O2 consumed - mol. wt. Molecular weight - YATP Biomass mass yield based on mol of ATP generated (g) - Biomass mass yield based on available energy (g) - YM Biomass mass yield based on mol of organic substrate (g) - YO Biomass mass yield based on oxygen consumed (gg–1) - 1/YO Oxygen consumed for one gram of biomass produced (gg–1) - Ys Biomass mass yield based on organic substrate (dimensionless) - b Reductance degree of biomass (equiv. available electrons/g atom carbon) - s Reductance degree of organic substrate (equiv. available electrons/g atom carbon) - Fraction of energy in organic substrate which is converted to biomass - b Weight fraction carbon in biomass (dimensionless) - s Weight fraction carbon in organic substrate (dimensionless) - m Maximum specific growth rate (h–1)  相似文献   

6.
Synopsis The standard and routine oxygen consumptions of Astyanax fasciatus from one surface population (Rio Teapao) and three cave populations (Chica, Micos and Pachon caves: sAnoptichthys jordani, the Micosfish and Anoptichthys antrobius) were determined individually over 24 hours by the use of a flow-through respirometer and polarographic oxygen electrodes. The phylogenetically oldest Pachon fish had a significantly lower standard metabolic rate (0.230 ± 0.036 mg O2 g-1 h-1) than the epigean Teapao fish, the hybrid Chica fish and the phylogenetically younger Micos fish (0.314 ± 0.081 mg O2g--1h-1, 0.284 ± 0.048 mg O2g-1h-1, 0.277 ± 0.063 mg O2g-1h-1). No significant differences could be determined among the latter three populations. A significant difference in routine metabolic rate existed only between the Pachon fish (0.309 ± 0.0.56 mg O2g-1h-1) and the Teapao fish (0.415 ± 0.071 mg O2g-1h-1). The Chica fish (0.356 ± 0.084 mg O2g-1h-1) and the Micos fish (0.355 ± 0.080 mg O2 g-1h-1) could not be separated from either the Teapao or the Pachon fish, but a decreasing trend from the surface population through the Chica and the Micos to the Pachon population was obvious. During a starvation period of 29 days the metabolic rate of epigean Teapao and hypogean Pachon fish decreased significantly by 32.5% and 34.8% (standard oxygen consumption rate) and 27.5% and 28.2% (routine oxygen consumption rate), respectively. Body mass loss during the starvation period was 16.3% for the Teapao fish and 9.5% for the Pachon fish.  相似文献   

7.
An unsaturated fatty acid auxotroph of the oleaginous yeast Apiotrichum curvatum, named UfaM3, blocked in the conversion of stearic to oleic acid was cultivated in single-stage continuous culture. The influence of consumed carbon to nitrogen ratios (C/N ratios, g g–1) obtained at various dilution rates (D) on fatty acid (FA) accumulation and its profiles were studied. In continuous culture in N-limited medium a maximum FA accumulation of 45.6% (g g–1 of dry biomass) was obtained at an optimal D of 0.049 h–1, recording an efficiency of substrate conversion of 0.48 g g–1 and 0.22 g g–1 for biomass and lipids, respectively. The quality of lipid approached cocoa butter at an optimal C/N ratio of between 20 and 30. The C/N ratio in the incoming medium was 38.5 g g–1 with 30 g l–1 of glucose and both C and N sources were completely consumed at a critical D of 0.07 h–1. The stability of the mutant was demonstrated in the steady-state conditions of the chemostat with regard to the FA composition of its lipids. Correspondence to: P. J. Blanc  相似文献   

8.
A fermentation medium based on millet (Pennisetum typhoides) flour hydrolysate and a four-phase feeding strategy for fed-batch production of baker's yeast,Saccharomyces cerevisiae, are presented. Millet flour was prepared by dry-milling and sieving of whole grain. A 25% (w/v) flour mash was liquefied with a thermostable 1,4--d-glucanohydrolase (EC 3.2.1.1) in the presence of 100 ppm Ca2+, at 80°C, pH 6.1–6.3, for 1 h. The liquefied mash was saccharified with 1,4--d-glucan glucohydrolase (EC 3.2.1.3) at 55°C, pH 5.5, for 2 h. An average of 75% of the flour was hydrolysed and about 82% of the hydrolysate was glucose. The feeding profile, which was based on a model with desired specific growth rate range of 0.18–0.23 h–1, biomass yield coefficient of 0.5 g g–1 and feed substrate concentration of 200 g L–1, was implemented manually using the millet flour hydrolysate in test experiments and glucose feed in control experiments. The fermentation off-gas was analyzed on-line by mass spectrometry for the calculation of carbon dioxide production rate, oxygen up-take rate and the respiratory quotient. Off-line determination of biomass, ethanol and glucose were done, respectively, by dry weight, gas chromatography and spectrophotometry. Cell mass concentrations of 49.9–51.9 g L–1 were achieved in all experiments within 27 h of which the last 15 h were in the fedbatch mode. The average biomass yields for the millet flour and glucose media were 0.48 and 0.49 g g–1, respectively. No significant differences were observed between the dough-leavening activities of the products of the test and the control media and a commercial preparation of instant active dry yeast. Millet flour hydrolysate was established to be a satisfactory low cost replacement for glucose in the production of baking quality yeast.Nomenclature C ox Dissolved oxygen concentration (mg L–1) - CPR Carbon dioxide production rate (mmol h–1) - C s0 Glucose concentration in the feed (g L–1) - C s Substrate concentration in the fermenter (g L–1) - C s.crit Critical substrate concentration (g L–1) - E Ethanol concentration (g L–1) - F s Substrate flow rate (g h–1) - i Sample number (–) - K e Constant in Equation 6 (g L–1) - K o Constant in Equation 7 (mg L–1) - K s Constant in Equation 5 (g L–1) - m Specific maintenance term (h–1) - OUR Oxygen up-take rate (mmol h–1) - q ox Specific oxygen up-take rate (h–1) - q ox.max Maximum specific oxygen up-take rate (h–1) - q p Specific product formation rate (h–1) - q s Specific substrate up-take rate (g g–1 h–1) - q s.max Maximum specific substrate up-take rate (g g–1 h–1) - RQ Respiratory quotient (–) - S Total substrate in the fermenter at timet (g) - S 0 Substrate mass fraction in the feed (g g–1) - t Fermentation time (h) - V Instantaneous volume of the broth in the fermenter (L) - V 0 Starting volume in the fermenter (L) - V si Volume of samplei (L) - x Biomass concentration in the fermenter (g L–1) - X 0 Total amount of initial biomass (g) - X t Total amount of biomass at timet (g) - Y p/s Product yield coefficient on substrate (–) - Y x/e Biomass yield coefficient on ethanol (–) - Y x/s Biomass yield coefficient on substrate (–) Greek letters Moles of carbon per mole of yeast (–) - Moles of hydrogen atom per mole of yeast (–) - Moles of oxygen atom per mole of yeast (–) - Moles of nitrogen atom per mole of yeast (–) - Specific growth rate (h–1) - crit Critical specific growth rate (h–1) - E Specific ethanol up-take rate (h–1) - max.E Maximum specific ethanol up-take rate (h–1)  相似文献   

9.
Summary The influence of the concentration of oxygen on lipase production by the fungus Rhizopus delemar was studied in different fermenters. The effect of oxygen limitation ( 47 mol/l) on lipase production by R. delemar is large as could be demonstrated in pellet and filamentous cultures. A model is proposed to describe the extent of oxygen limitation in pellet cultures. Model estimates indicate that oxygen is the limiting substrate in shake flask cultures and that an optimal inoculum size for oxygen-dependent processes can occur.Low oxygen concentrations greatly negatively affect the metabolism of R. delemar, which could be shown by cultivation in continuous cultures in filamentous growth form (Doptimal=0.086 h-1). Continuous cultivations of R. delemar at constant, low-oxygen concentrations are a useful tool to scale down fermentation processes in cases where a transient or local oxygen limitation occurs.Symbols and Abbreviations CO Oxygen concentration in the gas phase at time = 0 (kg·m-3) - CO 2i Oxygen concentration at the pellet liquid interface (kg·m-3) - CO 2i Oxygen concentration in the bulk (kg·m-3) - D Dilution rate (h-1) - IDO 2 Diffusion coefficient for oxygen (m2·s-1) - dw Dry weight of biomass (kg) - f Conversion factor (rs O 2 to oxygen consumption rate per m3) (-) - k Radial growth rate (m·s-1) - K Constant - kla Volumetric mass transfer coefficient (s-1) - klA Oxygen transfer rate (m-3·s-1) - kl Mass transfer coefficient (m·s-1) - K O 2 Affinity constant for oxygen (mol·m-3) - K w Cotton plug resistance (m-3·s-1) - M Henry coefficient (-) - NV Number of pellets per volume (m-3) - R Radius (m) - RO Radius of oxygen-deficient core (m) - RQ Respiration quotient (mol CO2/mol O2) - rs O 2 Specific oxygen consumption rate per dry weight biomass (kg O2·s-1[kg dw]-1) - rX Biomass production rate (kg·m-3·s-1) - SG Soytone glucose medium (for shake flask experiments) - SG 4 Soytone glucose medium (for tower fermenter and continuous culture experiments) - V Volume of medium (m-3) - X Biomass (dry weight) concentration (kg·m-3) - XR o Biomass concentration within RO for a given X (kg·m-3) - Y O 2 Biomass yield calculated on oxygen (kg dw/kg O2) - Thiele modulus - Efficiency factor =1-(RO/R)3 (-) - Growth rate (m-1·s-1·kg1/3) - Dry weight per volume of pellet (kg·m-3)  相似文献   

10.
Summary The kinetics ofBordetella pertussis growth was studied in a glutamate-limited continuous culture. Growth kinetics corresponded to Monod's model. The saturation constant and maximum specific growth rate were estimated as well as the energetic parameters, theoretical yield of cells and maintenance coefficient. Release of pertussis toxin (PT) and lipopolysaccharide (LPS) were growth-associated. In addition, they showed a linear relationship between them. Growth rate affected neither outer membrane proteins nor the cell-bound LPS pattern.Nomenclature X cell concentration (g L–1) - specific growth rate (h–1) - m maximum specific growth rate (h–1) - D dilution rate (h–1) - S concentration of growth rate-limiting nutrient (glutamate) (mmol L–1 or g L–1) - Ks substrate saturation constant (mol L–1) - ms maintenance coefficient (g g–1 h–1) - Yx/s theoretical yield of cells from glutamate (g g–1) - Yx/s yield of cells from glutamate (g g–1) - YPT/s yield of soluble PT from glutamate (mg g–1) - YKDO/s yield of cell-free KDO from glutamate (g g–1) - YPT/x specific yield of soluble PT (mg g–1) - YKDO/x specific yield of cell-free KDO (g g–1) - qPT specific soluble PT production rate (mg g–1 h–1) - qKDO specific cell-free KDO production rate (g g–1 h–1)  相似文献   

11.
Summary Open-system infra red gas analysis was used to measure the CO2 output throughout a year of four species of earthworm. The respiratory quotients (R.Q.s) of the four species were determined by means of a Warburg apparatus and it was found that they varied with season. In some instances R.Q.s did not fall within the expected range of 0.7 to 1.0 and the low values were attributed to calciferous gland activity and the fixation of metabolic CO2.The results from CO2 output measurements at 10°C and R.Q.s were used to calculate oxygen uptake, this varied seasonally but the mean annual values at 10°C for adult, large immature and small immature A. rosea were 64.17, 72.66 and 78.56 l O2 g-1 fresh wt h-1 respectively. Mixed size groups of L. castaneus had a mean annual oxygen consumption at 10°C of 155.83 l O2 g-1 fresh wt h-1 and equivalent values for D. rubida and O. cyaneum were 112.02 and 69.35 l O2 g-1 fresh wt h-1. The apparent relationship between a high respiratory rate per unit weight and a litter dwelling habit (e.g. L. castaneus and D. rubida) disappeared when allowance was made for the weight of gut contents. Mean annual values for oxygen uptake in l O2 g-1 gut free fresh wt h-1 at 10°C were L. castaneus (194.79), D. rubida (142.22), A. rosea (95.70) and O. cyaneum (139.28). No size specific metabolism could be demonstrated either within or between species, this is believed to be correlated with the different levels of activity shown by different species and their life stages.Rates of oxygen consumption per unit weight for A. rosea were shown to be proportional to ambient temperature. Q 10 slopes of this relation, between 6 and 15°C, were higher for large immature A. rosea (2.42) and small immatures (1.96) than for adult clitellate worms (1.42). The mean Q 10 relationship for all size classes of A. rosea was 1.93 over the same temperature range and the equivalent value for cocoons was 1.63. The relationship between the oxygen consumption rate of all size classes of A. rosea and ambient temperature was not significantly affected by acclimatisation at 5 and 10° C prior to measurements being made at 6, 10 and 15° C.  相似文献   

12.
Summary Chaetomium cellulolyticum (ATCC 32319) was cultivated on glucose, Avicel and/or Sigmacell in a 20-1 stirred tank batch reactor. The substrate (cellulose) concentration, the cell mass concentration (through protein and/or nitrogen content), reducing sugar concentration, the enzyme activity, the alkali consumption rate, the dissolved O2 and CO2 concentrations in the outlet gas were measured. The specific growth rate, the substrate yield coefficient, cell productivity, the oxygen consumption rate, the CO2 production rate and the volumetric mass transfer coefficient were determined. At the beginning of the growth phase the oxygen utilization rate exhibits a sharp maximum. This maximum could be used to start process control. Because of the long lag phase periodic batch operation is recommended.Symbols CP cell protein concentration (g l–1) - FPA FP enzyme activity (IU l–1) - GP dissolved protein concentration (g l–1) - IU international unit of enzyme activity - kLa volumetric mass tranfer coefficient (h–1) - LG alkali (1 n NaOH) consumption (ml) - LGX specific alkali consumption rate per cell mass (ml g–1 h–1) - P cell mass productivity (g l–1 h–1) - specific oxygen consumption rate per cell mass (g g–1 h–1) - Q aeration rate (volumetric gas flow rate per volume of medium, vvm) (min–1) - N impeller speed (revolution per minute, rpm) (min–1) - S substrate concentration (g l–1) - S0 S at tF=0 (g l–1) - S0 S in feed (g l–1) - SR acid consumption (ml) - TDW total dry weight (g l–1) - T temperature (° C) - tF cultivation time (h) - U substrate conversion - X cell mass concentration (g l–1) - YX/S vield coefficient - specific growth rate (h–1) - m maximum specific growth rate (h–1)  相似文献   

13.
We have studied the ethanolic fermentation of D-xylose with Pachysolen tannophilus in batch cultures. We propose a model to predict variations in D-xylose consumed, and biomass and ethanol produced, in which we include parameters for the specific growth rate, for the consumption of D-xylose and production of ethanol either related or not to growth.The ideal initial pH for ethanol production turned out to be 4.5. At this pH value the net specific growth rate was 0.26 h–1, biomass yield was 0.16 g.g–1, the cell-maintenance coefficient was 0.073 g.g–1.h–1, the parameter for ethanol production non-related to growth was 0.064 g.g–1,h–1 and the maximum ethanol yield was 0.32 g.g–1.List of Symbols A c Carbon atomic weight - a d1/h Specific cell-maintenance rate defined in Eq. (8) - c Mass fraction of carbon in the biomass - E g/l Ethanol concentration - f x Correction factor defined in Eq. (13) - f x Correction factor defined in Eq. (13) - f xi Correction factor defined in Eq. (14) - k d1/h Death constant - M E Ethanol molecular weight - M s Xylose molecular weight - M xi Xylitol molecular weight - m g xylose/g biomass Maintenance coefficient for substrate - m dg xylose/g biomass Maintenance coefficient when k d - q Eg ethanol/g biomass. Specific ethanol production rate - s g/l Residual xylose concentration - s 0 g/l Initial xylose concentration - t h Time - x g/l Biomass concentration - x 0 g/l Initial biomass concentration - Y E/sg ethanol/g xylose Instantaneous ethanol yield - ¯Y E/sg ethanol/g xylose Mean ethanol yield - Y E s/T g ethanol/g xylose Theoretical ethanol yield - Y E s/* g ethanol/g xylose Corrected instantaneous ethanol yield - ¯Y E s/* g ethanol/g xylose Corrected mean ethanol yield - Y x/sg biomass/g xylose Biomass yield - ¯Y xi/sg xylitol/g xylose Mean xylitol yield Greek Letters g ethanol/g biomass Growth-associated product formation parameter - g ethanol/g biomass.h Non-growth-associated product formation parameter - dg ethanol/g biomass.h Non-growth-associated product formation parameter when k d0 - h Variable defined in Eq. (6) or Eq. (7) - 1/h Specific growth rate - m1/h Maximum specific growth rate  相似文献   

14.
Summary The present study describes the growth of Pseudomonas putida cells (ATCC 33015) in batch and continuous cultures on two toxic substrates; toluene and m-toluic acid as sole carbon and energy sources. In fed-batch cultures on m-toluic acid up to 3.55 g cell dry weight/1 were achieved with a maximal specific growth rate (max) of 0.1 h-1. The average cellular yield was 1.42 g cell dry weight/g m-toluic acid utilized. When liquid toluene was added to shake-flask cultures in the presence of 0.7 g/1 m-toluic acid, the average cellular yield obtained was 1.3 g cell dry weight/g toluene utilized and the max was 0.13 h-1. Growth on toluene vapour in the presence of 0.7 g/l m-toluic acid in batch cultures resulted in a cellular yield of 1.28 g cell dry weight/g toluene utilized, with growth kinetics almost identical to those with liquid toluene (max liquid=0.13 h-1, max vapour=0.12 h-1). The maximal biomass concentration was 3.8 g cell dry weight/l, obtained in both cases after 100 h of incubation. Pseudomonas putida was grown in a chemostat initially on 0.7 g/l m-toluic acid and vapour toluene and then in the steady state on toluene as the sole source of carbon and energy. Toluene was added continuously to the culture as vapour with the inflowing airstream. Chemostat cultures could be maintained at steady state for several months on toluene. The maximal biomass concentration obtained in the chemostat culture was 3.2 g cell dry weight/l. The maximum specific growth rate was 0.13 h-1, with a cellular yield of 1.05 g cell dry weight/g toluene utilized. Approximately 70% of the toluene consumed was converted into biomass, and the remainder was converted to CO2 and unidentified byproducts.  相似文献   

15.
Photosynthetic characteristics of the red macroalgae Phyllophora antarctica and Phymatolithon foecundum collected from under sea ice at Cape Evans, McMurdo Sound (Ross Sea) were determined using in situ fluorometric and lab-based oxygen exchange techniques. Only 0.16% of incident irradiance penetrated the 2.5 m thick ice cover and photosynthetic parameters for both taxa were characteristic of highly shade-adapted plants. Saturation onset parameter (E k) did not exceed 13 mol photons m-2 s-1 in either taxon. For Phyllophora antarctica the light saturated photosynthetic rate at –1°C was 10 mol O2 g-1 FW h-1 and respiration averaged 3.3 mol O2 g-1 FW h-1 between sampled depths of 10 and 25 m. A light meter deployed at 15 m depth for a year recorded a marked increase in underwater irradiance on the last day of January 2002 coinciding with ice-breakout, and a maximum value for irradiance of 120 mol photons m-2 s-1 on 9 February 2002. The 2-month ice-free period was the only time when irradiance consistently exceeded compensation (photosynthesis=respiration) and enabled Phyllophora antarctica to accumulate sufficient carbon to result in a measurable increase in thallus area equivalent to a biomass increment of 1.87 mg (DW) per frond. Near the southern global limit for marine macroalgae, conditions that dictate the availability of underwater irradiance are extremely variable from year to year. Low respiration rates enhance longevity of the Phyllophora antarctica thallus, enabling it to not only survive the winter darkness, but also to retain photosynthetic capacity and thus take advantage of windows of higher irradiance.  相似文献   

16.
A mathematical model for pellet development of filamentous microorganisms is presented, which simulates in detail location and growth of single hyphal elements. The basic model for growth, septation and branching of discrete hyphae is adopted from Yang et al. [2, 23]. Exact solutions to the intracellular mass-balance equations of a growth-limiting key component is given for two types of either branched or unbranched cellular compartments. Furthermore, the growth model was extended in regard to the external mass-balance equations of limiting substrates (oxygen, glucose) under the assumption that the substrates can enter the denser regions of the pellet only diffusively. Penetration of the substrates into the more porous outer regions of the pellet occurs more easily due to microeddies in the surrounding fluid. Chipping of hyphae from the pellet surface by shear forces was included in the model as well. The application of shear forces leads to a marked smoothing of the simulated pellet surface. The development of pellets from spore germination up to late stages with cell-lysis due to shortage of substrates in the pellet centre can be described. The effects of various model parameters are discussed.List of Symbols A i algebraic coefficient (i = 1, 2,..., 6) - B i algebraic coefficient (i = 1, 2,..., 6) - C i mass-concentration of component i (i = O2, S) (gl–1) - C i,crit concentration of substance i critical for lysis (i=O2, S) (gl–1) - C i,stop concentration of substance i below which cells are inactivated (gl–1) - C(l i,t) intracellular concentration of the key component at site l i and time t (gl–1) - C m maximal intracellular concentration of the key component (gl–1) - C X Concentration of dry biomass (gl–1) - D intracellular diffusion coefficient of the key component (m2 h–1) - D max,i maximal molecular diffusion coefficient of substrate i (i = O2, S) (m2 h–1) - D eff,i effective diffusion coefficient of component i (i = O2) (m2 h–1) - d h cross-sectional diameter of hyphae (m) - k production coefficient for the key component (h–1) - K s Monod coefficient for glucose (gl–1) - k 0 Monod coefficient for oxygen (gl–1) - L c total length of a compartment (m) - L i total length of branch i (i=1, 2, 3) (m) - l i position on branch i (i=1, 2, 3) - L m maximal length of a segment (m) - m i maintenance coefficient of substrate i (h–1) - N m maximal number of segments in a compartment - n iR number of tips of type i in layer R, i=1, 2 - p auxiliary variable (see Eq. (7)) - P Br probability that a hypha is chipped off (%h–1) - pO 2 partial pressure of oxygen in the liquid phase (%) - Q auxiliary variable (see Eq. (8)) - Q i uptake rate of substrate i (i = O2, S) (gl–1 h–1) - q auxiliary variable (see Eq. (7)) - R index of radial layer (R=1, 2, 3,..., R max) - r radius (m) - r crit critical radius, Eq. (15) (m) - r max pellet radius (m) - r tip distance from the pellet centre to the tip position (m) - r thr threshold radius (m) - s auxiliary variable (see Eq. (7)) - S index for glucose - t time (h) - v R volume of layer R (1) - Y Mi observable yield coefficient of biomass on substrate i (gg–1) - Y Xi yield coefficient of biomass on substrate i (gg–1) Greek Letters i actual tip expansion rate (m h–1) - i,m actual maximal extension rate of tip i (i=1, 2) (m h–1) - 1y lysis rate (h–1) - m maximal tip extension rate (m h–1) - auxiliary variable in Eq. (2) - auxiliary variable in Eq. (3) - auxiliary variable defined in Eq. (4) (m–1) - shear shear force parameter - R overall specific growth rate in layer R (h–1) - m maximal specific hyphal growth rate (h–1) - cell volume density (l cell volume per 1) - crit critical cell volume density in Eq. (15) - S shear force parameter - X cell mass density (g dry weight per 1 wet cells) - (C i) growth kinetics on substrate i - proportional factor in Eq. (34) (l g–1) We thank the Deutsche Forschungsgemeinschaft (DFG) for financially supporting parts of this work.We thank the Deutsche Forschungsgemeinschaft (DFG) for financially supporting parts of this work.  相似文献   

17.
The thermoregulatory characteristics of three species of Cryptomys from Zambia and Angola are examined and, together with published data on four other species of Cryptomys from southern Africa, used to determine whether scaling occurs in this genus of subterranean rodents. The thermoregulatory properties of acclimated giant Zambian mole-rats, Cryptomys mechowi ( =267 g), Angolan mole-rats, Cryptomys bocagei ( =94 g) and Zambian common mole-rats Cryptomys hottentotus amatus ( =77 g) are as follows. Mean resting metabolic rates (RMRs) within the respective thermoneutral zones were 0.60±0.08 cm3 O2 g-1 h-1 (n=12) for C. mechowi; 0.74±0.06 cm3 O2 g-1 h-1 (n=8) for C. bocagei and 0.63±0.06 cm3O2 g-1 h-1 (n=21) for C. h. amatus. The thermoneutral zones (TNZs) of all three species are narrow: 29–30°C for C. mechowi; 31.5–32.5°C for C. bocagei and 28–32° C for C. h. amatus. The increase in mean RMR at the lowest temperatures tested (15° C for C. mechowi, 18° C for C. bocagei and C. h. amatus) was 2.35, 2.2 and 3.82 times their RMR in the TNZ respectively. Body temperatures are low, 34±0.53° C (n=24) for C. mechowi, 33.7±0.32° C (n=20) for C. bocagei and 33.8±0.43° C (n=40) for C. h amatus. At the lower limit of thermoneutrality, conductances are 0.09±0.01 cm3 O2 g-1 h-1 °C-1 (n=30) in C. mechowi; 0.12±0.01 cm3 O2 g-1 h-1 °C-1 (n=20) in C. bocagei and 0.12±0.03 cm3 O2 g-1 h-1 °C-1 (n=32) in C. h. amatus. The range in mean body mass among the seven species of Cryptomys examined for scaling was 60 g (C. darlingi) to 267 g (C. mechowi). There is no clear relationship between RMR within the TNZ and body mass. The resultant relationship is represented by the power curve RMR=2.45 mass-0.259.  相似文献   

18.
Growth of autotrophically growing duck-weeds (Lemna gibba L., G1) was stimulated by sucrose. The rate of respiration increased when plants had been grown on sucrose (8.7 mol O2 g-1 fresh weight (FW) h-1) and was reduced after growth without sucrose in the dark or under longday conditions (2.5 mol O2 g-1 FW h-1). Photosynthesis was induced already by low light intensities (0.1 klx).Short-time application of glucose or sucrose stimulated respiration in proportion to the hexose uptake rate. Sucrose is probably not taken up as the disaccharide. The transported sugar species after addition of sucrose are its hexose moieties produced by the high activity of the cell wall invertase. Fructose stimulated to a lesser extent; mannitol induced no enhancement; 2-deoxyglucose slightly inhibited O2 uptake. After mild carbon starvation of the plants the uptake of glucose and 3-O-methylglucose proceeded without any lag phase, with similar saturation kinetics in both cases. The initial uptake rate at substrate saturation was 2.6 mol glucose g-1 FW h-1 in the dark. Light stimulated hexose uptake by 2 to 3 times. The results show that Lemna gibba has an energy-dependent constitutive system for hexose uptake.Abbreviation FW fresh weight - LD long day - SD short day  相似文献   

19.
Summary Investigations were made into the improvement of growth yield (Y) of Pichia pinus MH 4 growing continuously on methanol by feeding formate so as to create an increasing concentration gradient (transient state). Under particular formate supply conditions, Y could be increased from 0.37 g·g-1 on methanol alone to 0.55 and 0.47 g·g-1 in the presence of formate at dilution rates (D) of 0.045 and 0.075 h-1, respectively. These differences could be explained as being due to a limiting formate consumption rate of 50–60 nmol·min-1·g-1 dry wt., coupled to a net-energy generation independent of D. Any further formate oxidation proceeded without energy gain. Deviations from optimum conditions of biomass increase are discussed in terms of different formate oxidizing systems and uncoupling properties of formate itself. These results are compared to and confirmed by steady-state considerations.Abbreviations a steepness of the formate gradient (g·l-1·h-1) - a acceleration of change of formate concentration in the fermenter (g·l-1·h-2) - D dilution rate (h-1) - Ft formate - S1 and S2 initial and final formate concentration of the gradient (g·l-1) - Y growth yield in g·g-1 methanol  相似文献   

20.
Summary The effect of various culture conditions on growth kinetics of an homofermentative strain of the lactic acid bacterium Streptococcus cremoris were investigated in batch cultures, in order to facilitate the production of this organism as a starter culture for the dairy industry. An optimal pH range of 6.3–6.9 was found and a lactose concentration of 37 g·l-1 was shown to be sufficient to cover the energetic demand for biomass formation, using the recommended medium. The study of the effect of lactic acid concentration on growth kinetics revealed that the end-product was not the sole factor affecting growth. The strain was characterized for its tolerance towards lactic acid and a critical concentration of 70 g·l-1 demonstrated. With the product yield of 0.9 g·g-1 at non-lactose limiting conditions the lactic acid concentration of 33 g·l-1 could not explain the low growth rates obtained, implicating a nutritional limitation.Symbols t f fermentation duration (h) - X Biomass concentration (g·l-1) - X m maximum biomass concentration (g·l-1) - S lactose concentration (g·l-1) - S r residual lactose concentration (g·l-1) - P produced lactic acid concentration (g·l-1) - P a added lactic acid concentration (g·l-1) - P c critical lactic acid concentration (g·l-1) - specific growth rate (h-1) - max maximum specific growth rate (h-1) - R x/S biomass yield (g·g-1) calculated when =0 - R P/S product yield (g·g-1)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号