共查询到20条相似文献,搜索用时 0 毫秒
1.
Ion channel and membrane translocation of diphtheria toxin 总被引:3,自引:0,他引:3
Cesare Montecucco Emanuele Papini Giampietro Schiavo Elisabetta Padovan Ornella Rossetto 《FEMS microbiology letters》1992,105(1-3):101-111
Abstract Diphtheria toxin is the best studied member of a family of bacterial protein toxins which act inside cells. To reach their cytoplasmic targets, these toxins, which include tetanus and botulinum neurotoxins and anthrax toxin, have to cross the hydrophobic membrane barrier. All of them have been shown to form ion channels across planar lipid bilayer and, in the case of diphtheria toxin, also in the plasma membrane of cells. A relation between the ion channel and the process of membrane translocation has been suggested and two different models have been put forward to account for these phenomena. The two models are discussed on the basis of the available experimental evidence and in terms of the focal points of difference, amenable to further experimental investigations. 相似文献
2.
Translocation is a necessary and rate-limiting step for diphtheria toxin (DT) cytotoxicity. We have reconstituted DT translocation in a cell-free system using endosomes purified from lymphocytes and have demonstrated this using two different probe/cell systems, which provided identical results: 125I-DT/human CEM cells and 125I-transferrin-DT/mouse BW cells. The cell-free DT translocation process was found to be dependent on the presence of the pH gradient endosome (pH 5.3)/cytosol (pH 7). Among the pH equilibrating agents, nigericin (5 microM) was found to be the most effective, inhibiting DT translocation by 88%. An optimum pH value of 7 on the cytosolic side of the membrane (pH gradient approximately 1.7) was determined. ATP per se is not required for DT translocation. 125I-DT translocation was 3-fold more active from late than from early endosomes, probably because of their slightly more acidic pH. Only the A chain of the toxin was found to escape from either 125I-DT/CEM or 125I-transferrin-DT/BW endosomes. Translocation of control endosome labels (125I-transferrin and 125I-horseradish peroxidase) was never observed. We also show that DT receptors present on resistant (mouse) cells block the translocation of the toxin and are responsible for the resistance of these cells to DT. 相似文献
3.
Rodnin MV Kyrychenko A Kienker P Sharma O Vargas-Uribe M Collier RJ Finkelstein A Ladokhin AS 《Biophysical journal》2011,(10):L41-L43
The translocation (T) domain plays a key role in the action of diphtheria toxin and is responsible for transferring the N-terminus-attached catalytic domain across the endosomal membrane into the cytosol in response to acidification. The T-domain undergoes a series of pH-triggered conformational changes that take place in solution and on the membrane interface, and ultimately result in transbilayer insertion and N-terminus translocation. Structure-function studies along this pathway have been hindered because the protein population occupies multiple conformations at the same time. Here we report that replacement of the three C-terminal histidine residues, H322, H323, and H372, in triple-R or triple-Q mutants prevents effective translocation of the N-terminus. Introduction of these mutations in the full-length toxin results in decrease of its potency. In the context of isolated T-domain, these mutations cause loss of characteristic conductance in planar bilayers. Surprisingly, these mutations do not affect general folding in solution, protein interaction with the membranes, insertion of the consensus transmembrane helical hairpin TH8-9, or the ability of the T-domain to destabilize vesicles to cause leakage of fluorescent markers. Thus, the C-terminal histidine residues are critical for the transition from the inserted intermediate state to the open-channel state in the insertion/translocation pathway of the T-domain. 相似文献
4.
The diphtheria toxin A chain (DTA) is a potent cytocidal agent that inactivates elongation factor 2. This activity of DTA inhibits protein synthesis and rapidly leads to cell death through apoptosis. In this paper, we have developed a simple in vitro assay for DTA activity in which in vitro-translated DTA is used to inhibit the translation of proteins in wheat germ extracts. Inhibition of translation by DTA is dependent on cofactor NAD+, and the analysis of an attenuated DTA mutant indicates that this in vitro assay accurately reflects the in vivo activity of DTA. We have also identified aspartic acid at residue 8 (Asp-8) of DTA as a site of cleavage by the cell-death protease caspase-3. Cleavage of DTA by caspase-3 inactivates its ability to inhibit translation in wheat germ extracts. Conservative mutations at Asp-8 render DTA resistant to cleavage by caspase-3, but only slightly affect the ability of DTA to inhibit translation in vitro. Moreover, caspase-3-resistant DTA mutants are toxic in cells in tissue culture. The in vitro assay that we describe here will be useful for the rapid analysis of DTA activity and the development of DTA mutants with altered biological properties that may be of therapeutic value. Lastly, these studies serve as a prototype for the creation of caspase-resistant effector molecules. 相似文献
5.
Takahashi T Umata T Mekada E 《Biochemical and biophysical research communications》2001,281(3):690-696
Diphtheria toxin (DT) binds to the EGF-like domain of the DT receptor (DTR), followed by internalization and translocation of the enzymatically active fragment A into the cytosol. The juxtamembrane domain (JM) of the DTR is the linker domain connecting the transmembrane and EGF-like domains. We constructed mutants of DTRs with altered JMs and studied their abilities for DT intoxication. Although DTR mutants with extended JMs showed normal DT binding activity, the cells expressing the mutants showed both reduced translocation of DT fragment A into the cytosol and reduced sensitivity to DT, when compared with cells expressing wild-type DTR. These results indicate that the JM contributes to DT intoxication by providing a space appropriate for the interaction of DT with the cell membrane. The present study also indicates that consideration of epitopes of an immunotoxins would be an important factor in the design of potent immunotoxins. 相似文献
6.
GPI-anchored diphtheria toxin receptor allows membrane translocation of the toxin without detectable ion channel activity. 总被引:1,自引:0,他引:1 下载免费PDF全文
We have investigated the role of the transmembrane and cytoplasmic domains of the diphtheria toxin (DT) receptor [heparin-binding epidermal growth factor (HB-EGF) precursor] in the intoxication pathway. Two mutants were constructed in which these domains were replaced by either a 37 amino acid sequence signalling membrane attachment via a glycosylphosphatidylinositol (GPI) anchor (DTR-GPI) or by the transmembrane and cytoplasmic domains of the human EGF receptor (DTR-EGFR). Similar amounts of DTA fragment were translocated through the plasma membrane of NIH 3T3 cells transfected with the wild-type receptor (DTR), DTR-GPI and DTR-EGFR, but translocation was about six times less efficient in the case of DTR-GPI and DTR-EGFR when taking into account the number of receptors expressed. Interestingly, DT-induced 22Na+ influx was weak in DTR-EGFR cells and not detectable in DTR-GPI cells. Whole cell patch-clamp analysis showed the DT at low pH induced depolarization and decreased input resistance in DTR cells (and to a lesser extent also in DTR-EGFR cells) but not in DTR-GPI cells. These results suggest that the transmembrane and cytoplasmic part of the receptor might be involved in channel activity and that translocation of the A fragment is independent of toxin-induced cation channel activity. 相似文献
7.
Requirement of specific receptors for efficient translocation of diphtheria toxin A fragment across the plasma membrane 总被引:8,自引:0,他引:8
The role of specific receptors in the translocation of diphtheria toxin A fragment to the cytosol and for the insertion of the B fragment into the cell membrane was studied. To induce nonspecific binding to cells, toxin was either added at low pH, or biotinylated toxin was added at neutral pH to cells that had been treated with avidin. In both cases large amounts of diphtheria toxin became associated with the cells, but there was no increase in the toxic effect. There was also no increase in the amount of A fragment that was translocated to the cytosol, as estimated from protection against externally added Pronase E. In cells where specific binding was abolished by treatment with 12-O-tetradecanoyl-phorbol 13-acetate, trypsin, or 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid, unspecific binding did not induce intoxication or protection against protease. This was also the case in untreated L cells, which showed no specific binding of the toxin. When Vero cells with diphtheria toxin bound to specific receptors were exposed to low pH, the cells were permeabilized to K+, whereas this was not the case when the toxin was bound nonspecifically at low pH or via avidin-biotin. The data indicate that the cell-surface receptor for diphtheria toxin facilitates both insertion of the B fragment into the cell membrane and translocation of the A fragment to the cytosol. 相似文献
8.
A C terminus cysteine of diphtheria toxin B chain involved in immunotoxin cell penetration and cytotoxicity 总被引:3,自引:0,他引:3
L Dell'Arciprete M Colombatti R Rappuoli G Tridente 《Journal of immunology (Baltimore, Md. : 1950)》1988,140(7):2466-2471
The role of diphtheria toxin (DT) B-chain subdomains in DT cytotoxicity and immunotoxin mechanism of action has been investigated. OKT3 (mAb to the CD3 surface Ag of human T lymphocytes) was conjugated to DT or the DT mutant CRM 1001, which has a cys----tyr substitution at position 471 of the B chain. OKT3-CRM 1001 immunotoxin was about 1400-fold less cytotoxic for CD3 Jurkat cells than OKT3-DT and had a 12-fold slower kinetics of protein synthesis inactivation, CRM 1001 killed DT-sensitive Vero cells at a 5000-fold higher concentration than DT. Its cell surface-binding activity was comparable to DT. Based on kinetics of cell inactivation, toxicity determination at low extracellular pH and Triton X-114 distribution, it was concluded that CRM 1001 is defective in at least one crucial step of toxin penetration and is unable to cross cell membranes as efficiently as DT. The substituted cysteine appears to be important for DT translocating functions. Data on the function of DT B-chain subdomains are relevant for the study of whole toxin conjugates and their mechanism of action. 相似文献
9.
The membrane-inserting T domain of diphtheria toxin aids the low-pH-triggered translocation of the catalytic A chain of the toxin across endosomal membranes. To evaluate the role of the isolated A chain in translocation, the topography of isolated A chain inserted into model membrane vesicles was investigated using a mixture either of dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylglycerol (DOPG) or of dimyristoleoylphosphatidylcholine (DMoPC) and DOPG. The latter mixture was previously found to promote deep insertion of the T domain. A series of single Cys mutants along the A chain sequence were labeled with bimane or BODIPY groups. After A chain insertion into model membranes, the location of these groups within the lipid bilayer was determined via bimane fluorescence emission lambda(max), binding of externally added anti-BODIPY antibodies, and a novel technique involving the comparison of the quenching of bimane fluorescence by aqueous iodide and membrane-associated 10-doxylnonadecane. The results show that in both DOPC- and DMoPC-containing bilayers, membrane-inserted residues all along the A chain sequence occupy shallow locations that are relatively exposed to the external solution. There were only small differences between A chain topography in the two different types of lipid mixtures. However, the behavior of the A chain in the two different lipid mixtures was distinct in that it strongly oligomerized in DMoPC-containing vesicles as judged by Trp fluorescence. In addition, A chain selectively induced fusion of the DMoPC-containing vesicles, and this may aid oligomerization by increasing the A chain/vesicle ratio. Fusion may also explain why A chain also selectively induced leakage of the contents of DMoPC-containing vesicles. We propose that isolated A chain is unlikely to be inserted in a transmembrane orientation, and thus its interaction with the T domain is likely to be critical for properly orienting the A chain within the bilayer in a fashion that allows translocation. 相似文献
10.
Single mutation in the A domain of diphtheria toxin results in a protein with altered membrane insertion behavior 总被引:6,自引:0,他引:6
The insertion of the A domain of diphtheria toxin into model membranes has been shown to be both pH- and temperature-dependent (Hu and Holmes (1984) J. Biol. Chem. 259, 12226-12233). In this report, the insertion behavior of two mutant proteins of diphtheria toxin, CRM197 and CRM9, was studied and compared to that of wild-type toxin. Results indicated that both CRM197 and CRM9 resembled toxin with respect to the pH-dependence of binding to negatively-charged liposomes at room temperature. However, CRM197 differed from toxin with respect to both the pH- and temperature-dependence of fragment A insertion; fragment A197 inserts more readily into the bilayer at 0 degrees C and low pH or at neutral pH and room temperature than does wild type fragment A under these same conditions. This result indicates that the single amino acid substitution in the A domain of CRM197 facilitates entry of fragment A197 into the membrane, suggesting that CRM197 may be conformationally distinct from native toxin. In fact, the fluorescence spectra of CRM197 and wild-type toxin as well as their respective tryptic peptide patterns indicate that, at pH 7, CRM197 more closely resembles the acid form of wild-type toxin than the native form of toxin. These data suggest that CRM197 may be naturally in a more 'insertion-competent' conformation. In contrast, the mutation in the B domain of CRM9 which results in a 1000-fold decrease in binding affinity for plasma membrane receptors apparently does not cause a change in either the insertion of fragment A9 or the lipid-binding properties of CRM9 relative to toxin. 相似文献
11.
Roles of Glu 349 and Asp 352 in membrane insertion and translocation by diphtheria toxin. 总被引:1,自引:0,他引:1 下载免费PDF全文
P. Kaul J. Silverman W. H. Shen S. R. Blanke P. D. Huynh A. Finkelstein R. J. Collier 《Protein science : a publication of the Protein Society》1996,5(4):687-692
Acidic conditions within the endosomal lumen induce the T domain of receptor-bound diphtheria toxin (DT) to insert into the endosomal membrane and mediate translocation of the toxin's catalytic domain to the cytosol. A conformational rearrangement in the toxin occurring near pH5 allows a buried apolar helical hairpin of the native T domain (helices TH8 and TH9) to undergo membrane insertion. If the inserted hairpin spans the bilayer, as hypothesized, then the two acidic residues within the TL5 interhelical loop, Glu 349 and Asp 352, should become exposed at the neutral cytosolic face of the membrane and reionize. To investigate the roles of these residues in toxin action, we characterized mutant toxins in which one or both acidic residues had been replaced with nonionizable ones. Each of two double mutants examined showed a several-fold reduction in cytotoxicity in 24-h Vero cell assays (sixfold for E349A + D352A and fourfold for E349Q + D352N), whereas the individual E349Q and D352N mutations caused smaller reductions in toxicity. The single and double mutations also attenuated the toxin's ability to permeabilize Vero cells to Rb+ at low pH and decreased channel formation by the toxin in artificial planar bilayers. Neither of the double mutations affected the pH-dependence profile of the toxin's conformational rearrangement in solution, as measured by binding of the hydrophobic fluorophore, 2-p-toluidinyl-naphthalene 6-sulfonate. The results demonstrate that, although there is no absolute requirement for an acidic residue within the TL5 loop for toxicity, Glu 349 and Asp 352 do significantly enhance the biological activity of the protein. The data are consistent with a model in which ionization of these residues at the cytosolic face of the endosomal membrane stabilizes the TH8/TH9 hairpin in a transmembrane configuration, thereby facilitating channel formation and translocation of the toxin's catalytic chain. 相似文献
12.
Previous work has shown that when Vero cells with surface-bound diphtheria toxin are exposed to low pH, toxin entry across the plasma membrane is induced and that this entry involves two steps, insertion of the B-fragment of the toxin into the membrane and translocation of the enzymatically active A-fragment to the cytosol. Here we have studied the role of permeant anions in this process. It was found that when the B-fragment was inserted into the membrane, part of it, a 25-kDa polypeptide, was shielded from externally added Pronase. This insertion did not require permeant anions. The translocation of the A-fragment was monitored by measuring either its ability to inhibit protein synthesis in the cells or the appearance of radioactively labeled 21-kDa fragment after treatment of the cells with externally applied Pronase. The translocation of the A-fragment was dependent on the presence of permeant anions in the medium. However, when the cells were depleted of Cl- by incubation in Cl- free buffer at high pH, translocation of the A-fragment did not require permeant anions in the medium. The possibility that translocation of the A-fragment is inhibited by an outward directed chloride gradient rather than by the absence of chloride is discussed. 相似文献
13.
V G Johnson D Wilson L Greenfield R J Youle 《The Journal of biological chemistry》1988,263(3):1295-1300
The role of the receptor in the transport of diphtheria toxin (DT) to the cytosol was examined. A point-mutant form of DT, CRM 107 (CRM represents cross-reacting material), that has an 8,000-fold lower affinity for the DT receptor than native toxin was conjugated to transferrin and monoclonal antibodies specific for the cell-surface receptors T3 and Thy1. Conjugating the binding site-inactivated CRM 107 to new binding moieties reconstituted full toxicity, indistinguishable from native DT linked to the same ligand, indicating that the entry activity of the DT B chain can be fully separated from the receptor binding function. Like DT, the toxin conjugates exhibited a dose-dependent lag period before first-order inactivation of protein synthesis. Inactivation of the binding site of the toxin portion of the conjugate was found to have no effect on the kinetics of protein synthesis inactivation. The receptor used by the toxin determined the length of the lag period relative to the killing rate. Comparing the potency of CRM 107 conjugates with native DT, standardized for receptor occupancy, shows that new receptors can be as or more efficient than the DT receptor in transporting DT to the cytosol. The transferrin-CRM 107 conjugate, unlike native DT, was highly toxic to murine cells. All the data presented are consistent with a model that the DT receptor, other than initiating rapid internalization of the toxin to low pH compartments, is unnecessary for transport of the toxin to the cytosol and that membrane translocation activity is expressed by the DT B subunit independent of the receptor-binding site. 相似文献
14.
On the membrane translocation of diphtheria toxin: at low pH the toxin induces ion channels on cells. 总被引:7,自引:3,他引:7 下载免费PDF全文
Diphtheria toxin (DT) in acidic media forms ion-conducting channels across the plasma membrane and inhibits protein synthesis of both highly and poorly DT-sensitive cell lines. This results in loss of cell potassium and in entry of both sodium and protons with a concomitant rapid lowering of membrane potential. The pH dependency of the permeability changes is similar to that of the inhibition of cell protein synthesis. DT-induced ion channels close when the pH of the external medium is returned to neutrality and cells recover their normal monovalent cation content. Similar permeability changes were induced by two DT mutants defective either in enzymatic activity or in cell binding, but not with a mutant defective in membrane translocation. The implication of these findings for the mechanism of DT membrane translocation is discussed. 相似文献
15.
Requirements for the translocation of diphtheria toxin fragment A across lipid membranes 总被引:2,自引:0,他引:2
The translocation of the enzymatic moiety of diphtheria toxin, fragment A, across the membranes of pure lipid vesicles was demonstrated. A new assay, which employed vesicles made to contain radiolabeled NAD and elongation factor-2, was used to measure the appearance of the enzymatic activity of the A fragment in the vesicles. When the vesicles were exposed to a low-pH medium in the presence of diphtheria toxin, small molecules, such as NAD, escaped into the extravesicular medium, whereas large molecules mostly remained inside the vesicles. The vesicle-entrapped elongation factor-2 became ADP-ribosylated, indicating the entry of fragment A into the vesicle. The translocation of the A fragment depended upon the pH of the medium, being negligible at pH greater than 7.0 and maximal at pH 4.5. The entire toxin molecule was needed for function; neither the A fragment nor the B fragment alone was able to translocate itself across and react with the sequestered substrates. After exposure of the toxin to low pH, the entry of the A fragment was rapid, being virtually complete within 2-3 min at pH 5.5, and within 1 min at pH 4.7. Translocation occurred in the absence of any protein in the vesicle membrane. These results are consistent with the notion that the diphtheria toxin molecule enters the cytoplasm of a cell by escaping from an acidic compartment such as an endocytic vesicle. 相似文献
16.
A genetic approach is described for exploring the mechanism by which diphtheria toxin undergoes pH-dependent membrane insertion
and transfer of its enzymic A fragment into the cytoplasm of mammalian cells. The cloned toxin expressed inEscherichia coli is secreted to the periplasmic space, where it is processed normally and folds into a native structure. When bacteria synthesizing
the toxin are exposed to pH 5, they die rapidly. The toxin undergoes a conformational change that is believed to allow it
to be inserted into the bacterial inner membrane and form channels, which proves lethal for the cell. The membrane insertion
event mimics the process by which the toxin inserts into the endosomal membrane of mammalian cells, leading to release of
the enzymic A fragment into the cytoplasm. The observation of pH-dependent bacterial lethality provides the basis for a positive
genetic selection method for mutant forms of the toxin that are altered in ability to undergo membrane insertion or pore formation. 相似文献
17.
Low pH is believed to play a critical role in the penetration of membranes by diphtheria toxin in vivo. In this report, the pH dependence of the conformation of fragment A of diphtheria toxin has been studied using fluorescence techniques. As pH is decreased, fragment A in solution undergoes a reversible conformational change beginning below pH 5. The conformational change occurs rapidly upon exposure to low pH. It involves both an increase in the exposure of tryptophanyl residues to solution and a switch from a hydrophilic state to a hydrophobic state as judged by fragment A binding to micelles of a mild detergent (Brij 96). At low pH fragment A also rapidly and tightly binds to and penetrates model membranes. Binding is reversed when pH is neutralized. The transition pH, the apparent midpoint of the change between the hydrophilic state and the membrane-penetrating hydrophobic state, occurs at about pH 3.5 in the presence of Brij 96 micelles, pH 4 in the presence of small unilamellar vesicles (SUV) composed of zwitterionic phosphatidylcholine, and pH 5 in the presence of SUV composed of 25 mol % anionic phosphatidylglycerol and 75% phosphatidylcholine. The effects of high temperature provide an important clue as to the nature of the changes at low pH. At neutral pH and high temperature, i.e. in the thermally denatured state, a conformational change similar to that observed at low pH occurs, although fragment A does not become hydrophobic. In addition, the effects of low pH and high temperature on the stability of the native state are cumulative. This indicates that the changes in fragment A both at high temperature and at low pH involve denaturation, although there appears to be only partial unfolding under these conditions. Based on the results of this study, the role of fragment A in diphtheria toxin membrane penetration and translocation is evaluated. 相似文献
18.
R Iwamoto H Senoh Y Okada T Uchida E Mekada 《The Journal of biological chemistry》1991,266(30):20463-20469
A monoclonal antibody that blocks the binding of diphtheria toxin to Vero cells was isolated by immunizing mice with Vero cell membrane. The antibody inhibits the binding of diphtheria toxin and also CRM197, a mutant form of diphtheria toxin, to Vero cells, and consequently inhibits the cytotoxicity of diphtheria toxin. This antibody does not directly react with the receptor molecule of diphtheria toxin (DTR14.5). Immunoprecipitation and immunoblotting studies revealed that this antibody binds to a novel membrane protein of 27 kDa (DRAP27). When diphtheria toxin receptor was passed through an affinity column made with this antibody, the receptor was trapped only in the presence of DRAP27. These results indicate that DRAP27 and DTR14.5 closely associate in Vero cell membrane and that the inhibition of the binding of diphtheria toxin to the receptor is due to the binding of the antibody to the DRAP27 molecule. Binding studies using 125I-labeled antibody showed that there are many more molecules of DRAP27 on the cell surface than diphtheria toxin-binding sites. However, there is a correlation between the sensitivity of a cell line to diphtheria toxin and the number of DRAP27 molecules on the cell surface, suggesting that DRAP27 is involved in the entry of diphtheria toxin into the target cell. 相似文献
19.
An endosomal model system was developed for studying the effects of pH on vesicle-entrapped diphtheria toxin. The "endosomes" were prepared from dioleoylphosphatidylcholine (1 mg), diphtheria toxin (0.25 mg), and lysozyme (2.25 mg) in water at pH 8.4. The method used for preparing large unilamellar vesicles was adapted from the procedure of Shew and Deamer (Shew, R. L., and Deamer, D. W. (1985) Biochim. Biophys. Acta 816, 1-8). Efficiencies of trapping (typically 45-75%) and separation from untrapped proteins (typically 95-100%) were assessed by fluorescamine assays conducted before and after column chromatography and in the presence and absence of Tergitol Nonidet P-40. Intramembranous photolabeling revealed that diphtheria toxin inserts into the vesicle bilayer when the pH is dropped to 4; surface labeling revealed that the same treatment leads to exposure of diphtheria toxin at the trans surface of the vesicles. Release of toxin to the solution was not detected under the experimental conditions employed (i.e. with nicked or unnicked toxin, +/- exogenous trypsin, pH 4 or 8.4). Preliminary results indicate that this model system will be a valuable tool for elucidating the pathway by which the ADP ribosyltransferase domain of diphtheria toxin gains access to the cytoplasmic compartment of cells after endosomal uptake. 相似文献
20.
Sokołowska I Wälchli S Węgrzyn G Sandvig K Słomińska-Wojewódzka M 《The Biochemical journal》2011,436(2):371-385
Ricin is a potent plant cytotoxin composed of an A-chain [RTA (ricin A-chain)] connected by a disulfide bond to a cell binding lectin B-chain [RTB (ricin B-chain)]. After endocytic uptake, the toxin is transported retrogradely to the ER (endoplasmic reticulum) from where enzymatically active RTA is translocated to the cytosol. This transport is promoted by the EDEM1 (ER degradation-enhancing α-mannosidase I-like protein 1), which is also responsible for directing aberrant proteins for ERAD (ER-associated protein degradation). RTA contains a 12-residue hydrophobic C-terminal region that becomes exposed after reduction of ricin in the ER. This region, especially Pro250, plays a crucial role in ricin cytotoxicity. In the present study, we introduced a point mutation [P250A (substitution of Pro250 with alanine)] in the hydrophobic region of RTA to study the intracellular transport of the modified toxin. The introduced mutation alters the secondary structure of RTA into a more helical structure. Mutation P250A increases endosomal-lysosomal degradation of the toxin, as well as reducing its transport from the ER to the cytosol. Transport of modified RTA to the cytosol, in contrast to wild-type RTA, appears to be EDEM1-independent. Importantly, the interaction between EDEM1 and RTA(P250A) is reduced. This is the first reported evidence that EDEM1 protein recognition might be determined by the structure of the ERAD substrate. 相似文献