首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acivicin inhibits gamma-glutamyl transpeptidase activity in human keratinocytes in culture. Treatment of these cells with acivicin produces a decrease in the uptake of L-[U-14C]alanine, 2-amino-[1-14C]-isobutyrate, L-[U-14C]leucine and 1-aminocyclopentane-1-[14C]carboxylate. D-[U-14C]glucose uptake is not affected by the presence of acivicin. These results support, for the first time in vitro, the hypothesis that the gamma-glutamyl cycle may be involved in amino acid uptake by human cells.  相似文献   

2.
Glucose utilization in primary cell cultures of mouse cerebral astrocytes was studied by measuring uptake of tracer concentrations of [3H]2-deoxyglucose ([3H]2-DG). The resting rate of glucose utilization, estimated at an extracellular K+ concentration ([K+]o) of 5.4 mM, was high (7.5 nmol glucose/mg protein/min) and was similar in morphologically undifferentiated and "differentiated" (dibutyryl cyclic AMP-pretreated) cultures. Resting uptake of [3H]2-DG was depressed by ouabain, by reducing [K+]o, and by cooling. These observations suggest that resting glucose utilization in astrocytes was dependent on sodium pump activity. Sodium pump-dependent uptake in 2-3-week-old cultures was about 50% of total [3H]2-DG uptake but this fraction declined with culture age from 1 to 5 weeks. Uptake was not affected by changes in extracellular bicarbonate concentration ([HCO3-]o) in the range of 5-50 mM but was significantly reduced in bicarbonate-free solution. At high [HCO3-]o (50 mM) uptake was insensitive to pH (pH 6-8), whereas at low [HCO3-]o (less than 5 mM) uptake was markedly pH-dependent. Elevation of [K+]o from 2.3 mM to 14.2-20 mM (corresponding to extremes of the physiological range of [K+]o) resulted in a 35-43% increase in [3H]2-DG uptake that was not affected by culture age or by morphological differentiation. Our results indicate a high apparent rate of glucose utilization in astrocytes. This rate is dynamically responsive to changes in extracellular K+ concentration in the physiological range and is partially dependent on sodium pump activity.  相似文献   

3.
Circulating [14C]glucose 2, 5 and 10 min after intravenous injection of [U-14C]-L-alanine was greater in 24 hr starved than in fed rats. In vitro uptake of [14C]alanine by liver and kidney cortex slices from 24 hr starved and fed rats rose in parallel with increased medium substrate concentration. Formation of [14C]glucose from 1mM [14C]alanine was similar in liver and kidney cortex slices and increased in tissues from 24 hr starved compared with fed rats. With 5 mM [14C]alanine more [14C]glucose was produced by liver than by kidney cortex slices from 24 hr starved rats. Liver slices always produced more [14C]lactate and less [14C]-CO2 from [14C]alanine than kidney cortex slices. It is proposed that under physiological conditions, the kidneys cortex actively participates in glucose production from alanine.  相似文献   

4.
Glucose and fatty acid metabolism of resting skeletal muscle were studied by perfusion of the isolated rat hind leg with a hemoglobin-free medium. Tissue integrity was demonstrated by normal ATP, ADP and creatine phosphate levels, by a sufficient oxygen supply, and by a normal appearance of perfused muscle specimens under the electron microscope. The rates of glucose and fatty acid uptake, and of lactate, alanine, glycerol and fatty acid release were constant over a perfusion period of 60 min. Insulin (1 unit/l) caused a more than threefold increase in glucose uptake, a stimulation of lactate production, and a 20% increase in the muscular glycogen levels. Fatty acids and alanine release were significantly diminished by insulin, but glycerol release did not change. The uptake of oleate by the rat hind leg was dependent on the medium concentration in a range of 0.7-1.9mM oleate, and was stimulated by insulin. Glucose uptake was not influenced by oleate, whether sodium was present or not. When the leg was perfused with [1-14C]oleate, 75% of the incorporated fatty acids were found in muscle lipids, 10% were oxidized to CO2, and 5% were recovered in bone lipids. The absolute amount of oleate oxidation was not altered by insulin. In all experiments with and without glucose in the medium, 70-80% of the 14C label incorporated into muscle lipids was found in the triglyceride fraction. In the presence of glucose, insulin significantly increased the incorporation of [1-14C]oleate into muscle triglycerides, whereas no insulin effect, either on fatty acid uptake or on triglyceride formation, could be observed when glucose was omitted from the perfusate. The present results indicate that a "glucose-fatty acid cycle" as found in rat heart muscle does not operate in resting peripheral skeletal muscle tissue. They also demonstrate that the stimulating effect of insulin on muscular fatty acid uptake and triglyceride synthesis is dependent on glucose supply. This finding can be intrepreted as a stimulation of fatty acid esterification by sn-glycerol 3-phosphate derived from an increased glucose turnover, which is in turn due to insulin.  相似文献   

5.
A Sener  W J Malaisse 《FEBS letters》1985,193(2):150-152
Rat pancreatic islets and insulin-producing cells of the RINm5F line were incubated for 5 min at 7 or 23 degrees C in media containing 3H2O and either L-[1-14C]glucose or [2-14C]alloxan. In the islets the intracellular distribution space of [2-14C]alloxan represented, at 7 and 23 degrees C respectively, 11.4 +/- 1.0 and 25.5 +/- 2.3% of the intracellular 3H2O space. In the RINm5F cells, the distribution space of [2-14C]alloxan failed to be affected by the ambient temperature and represented, after correction for extracellular contamination, no more than 5.2 +/- 0.5% of the intracellular 3H2O space. Preincubation for 30 min at 7 degrees C in the presence of alloxan (10 mM) failed to affect subsequent D-[U-14C]glucose oxidation in the tumoral cells, whilst causing a 70% inhibition of glucose oxidation in the islets. It is proposed that RINm5F cells are resistant to the cytotoxic action of alloxan, this being attributable, in part at least, to poor uptake of the diabetogenic agent.  相似文献   

6.
To determine whether the uptake and metabolic partition of glucose are influenced by its delivery route, 12 normal volunteers underwent two 3-h euglycemic (approximately 93 mg/dl) hyperinsulinemic (approximately 43 mU/l) clamps at a 3- to 5-wk interval, one with intravenous (i.v.) and the other with intraduodenal (i.d.) glucose labeled with [3-3H]- and [U-14C]glucose. Systemic glucose was traced with [6,6-2H2]glucose in eight subjects. During the last hour of the clamps, the average glucose infusion rate (5.85 +/- 0.37 vs. 5.43 +/- 0.43 mg.kg(-1).min(-1); P = 0.02) and exogenous glucose uptake (5.66 +/- 0.37 vs. 5.26 +/- 0.41 mg.kg(-1).min(-1); P = 0.04) were borderline higher in the i.d. than in the i.v. studies. The increased uptake was entirely accounted for by increased glycolysis (3H2O production), which was attributed to the stimulation of gut metabolism by the absorptive process. No difference was observed in glucose storage whether it was calculated as glucose uptake minus glycolysis (i.d. vs. i.v.: 2.44 +/- 0.28 vs. 2.40 +/- 0.31 mg.kg(-1).min(-1)) or as glucose uptake minus net glucose oxidation (2.86 +/- 0.33 vs. 2.81 +/- 0.35 mg.kg(-1).min(-1)). Because peripheral tissues were exposed to identical glucose, insulin, and free fatty acid levels under the two experimental conditions, we assumed that their glucose uptake and storage were similar during the two tests. We therefore suggest that hepatic glycogen storage (estimated as whole body minus peripheral storage) was also unaffected by the route of glucose delivery. On the other hand, in the i.d. tests, the glucose splanchnic extraction ratio calculated by the dual-isotope technique averaged 4.9 +/- 2.3%, which is close to the figures published for i.v. glucose. Despite the limitations related to whole body measurements, these two sets of data do not support the idea that enteral glucose stimulates hepatic uptake more efficiently than i.v. glucose.  相似文献   

7.
Control of morbidity associated with schistosomiasis via chemotherapy largely relies on the drug praziquantel. Repeated therapy with praziquantel has created concerns about the possible selection of resistant worms and necessitated the search for novel drugs to treat schistosomiasis. Here, a murine model was infected with Schistosoma mansoni and treated with oral 1,2,6,7-tetraoxaspiro [7.11] nonadecane (N-89), which caused a significant reduction in fecundity and egg burden and reduced morbidity when administered at 5-weeks post-infection.The analysis showed that the mode of action occurred through the ingestion of activated N-89 by the worms, and that there was no direct external effect on the S. mansoni worms. Ultrastructural analysis of the treated worms showed disruptions in the gut lumen and the presence of large volumes of material, suggestive of undigested blood meals or red blood cells. In addition, there were reduced vitelline cells in female worms and damage to sub-tegmental musculature in male worms. Eggs recovered from the treated mice showed both damage to the eggs and the production of immature eggs. Expression of mRNA responsible for gut and digestive function and egg production was also significantly affected by N-89 treatment, whereas control genes for musculature showed no significant changes.Thus, N-89 drastically affected the total digestive function and egg production of S. mansoni worms. Physiological processes requiring heme uptake such as egg production and eggshell formation were subsequently affected, suggesting that the compound could be a possible therapeutic drug candidate for schistosomiasis control.  相似文献   

8.
An in situ and in vivo surface coil 13C NMR study was performed to study hepatic glycogen synthesis from [3-13C]alanine and [1-13C]glucose administered by intraduodenal infusion in 18-h fasted male Sprague-Dawley rats. Combined, equimolar amounts of alanine and glucose were given. Hepatic appearance and disappearance of substrate and concurrent glycogen synthesis was followed over 150 min, with 5-min time resolution. Active glycogen synthesis from glucose via the direct (glucose----glycogen) and indirect (glucose----lactate----glycogen) pathways and from alanine via gluconeogenesis was observed. The indirect pathway of glycogen synthesis from [1-13C]glucose accounted for 30% (+/- 6 S.E.) of total glycogen formed from labeled glucose. This estimate does not take into account dilution of label in the hepatic oxaloacetate pool and is, therefore, somewhat uncertain. Hepatic levels of [3-13C]alanine achieved were significantly lower than levels of [1-13C]glucose in the liver, and the period of active glycogen synthesis from [3-13C]alanine was longer than from glucose. However, the overall pseudo-first-order rate constant during the period of active glycogen synthesis from [3-13C]alanine (0.075 min-1 +/- 0.026 S.E.) was almost 3 times that from [1-13C]glucose via the direct pathway (0.025 min-1 +/- 0.005 S.E.). The most likely reason for the small rate constant governing direct glycogen formation from duodenally administered glucose compared to that from duodenally administered alanine is a low level of glucose phosphorylating capacity in the liver.  相似文献   

9.
The metabolism of [1-14C]- and [6-14C]glucose, [1-14C]ribose, [1-14C]- and [U-14C]alanine, and [1-14C]- and [5-14C]glutamate by the promastigotes of Leishmania braziliensis panamensis was investigated in cells resuspended in Hanks' balanced salt solution supplemented with ribose, alanine, or glutamate. The ratio of 14CO2 produced from [1-14C]glucose to that from [6-14C]glucose ranged from about two to six, indicating appreciable carbon flow through the pentose phosphate pathway. A functional pentose phosphate pathway was further demonstrated by the production of 14CO2 from [1-14C]ribose although the rate of ribose oxidation was much lower than the rate of glucose oxidation. The rate of 14CO2 production from [1-14C]glucose was almost linear with time of incubation, whereas that of [6-14C]glucose accelerated, consistent with an increasing rate of flux through the Embden-Meyerhof pathway during incubation. Increasing the assay temperature from 26 degrees C to 34 degrees C had no appreciable effect on the rates or time courses of oxidation of either [1-14C]- or [6-14C]glucose or of [1-14C]ribose. Both alanine and glutamate were oxidized by L. b. panamensis, and at rates comparable to or appreciably greater than the rate of oxidation of glucose. The ratios of 14CO2 produced from [1-14C]- to [U-14C]alanine and from [1-14C]- to [5-14C]glutamate indicated that these compounds were metabolized via a functioning tricarboxylic acid cycle and that most of the label that entered the tricarboxylic acid cycle was oxidized to carbon dioxide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
1. In isolated perfused rat liver maximal rates of 2-[1-14C]oxoglutarate uptake were about 0.4 mumol.g-1 .min-1; half-maximal rates of 2-[14C]oxoglutarate uptake were observed with influent concentrations of about 100 microM. 2-[14C]Oxoglutarate uptake by the liver was not affected by the direction of perfusion, but was decreased by about 80-90% when Na+ in the perfusion fluid was substituted by choline+, suggesting a Na+-dependence of hepatic 2-oxoglutarate uptake. In the absence of added ammonia, [14C]oxoglutarate uptake by the liver was about twice the net oxoglutarate uptake, indicating a simultaneous release of unlabeled oxoglutarate from perfused rat liver. 2. 14C-Labeled metabolites derived from [1-14C]oxoglutarate and recovered in the effluent perfusate were 14CO2 and 14C-labeled glutamate and glutamine; they accounted for 85-100% of the radiolabel taken up by the liver. 14CO2 was the major product (more than 70%) from [1-14C]oxoglutarate taken up the liver, provided glutamine synthesis was either inhibited by methionine sulfoximine or the endogenous rate of glutamine production was below 40 nmol.g-1.min-1. 3. Stimulation of glutamine synthesis by ammonia did not affect [14C]oxoglutarate uptake by the liver, but considerably increased net hepatic oxoglutarate uptake, indicating a decreased release of unlabeled oxoglutarate from the liver. Stepwise stimulation of hepatic glutamine synthesis led to a gradual decrease of 14CO2 production and radiolabel was recovered increasingly as [14C]glutamine in the effluent. At high rates of glutamine formation (i.e. about 0.6 mumol.g-1.min-1), about 60% of the [1-14C]oxoglutarate taken up by the liver was recovered in the effluent as [14C]glutamine. 14CO2 and [14C]glutamine production from added [1-14C]oxoglutarate were dependent on the rate of hepatic glutamine synthesis but not on the direction of perfusion. Extrapolation of 14C incorporation into glutamine to maximal rates of hepatic glutamine synthesis yielded an about 100% utilization of the [14C]oxoglutarate taken up by the liver for glutamine synthesis. This was again true for both the antegrade and the retrograde perfusion directions. On the other hand, addition of ammonia did not affect 14CO2 production from labeled oxoglutarate, when glutamine synthetase was inhibited by methionine sulfoximine. 4. The data suggest that vascular oxoglutarate is almost exclusively taken up by the small perivenous hepatocyte population containing glutamine synthetase, i.e. a cell population comprising only 6-7% of all hepatocytes. Thus, the findings demonstrate the existence of a, to date, uniquely zonally distributed oxoglutarate transport system which is probably Na+-dependent in the plasma membrane.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Flux through the glucose/glucose 6-phosphate cycle in cultured hepatocytes was measured with radiochemical techniques. Utilization of [2-3H]glucose was taken as a measure of glucokinase flux. Liberation of [14C]glucose from [U-14C]glycogen and from [U-14C]lactate, as well as the difference between the utilization of [2-3H]glucose and of [U-14C]glucose, were taken as measures of glucose-6-phosphatase flux. At constant 5 mM-glucose and 2 mM-lactate concentrations insulin increased glucokinase flux by 35%; it decreased glucose-6-phosphatase flux from glycogen by 50%, from lactate by 15% and reverse flux from external glucose by 65%, i.e. overall by 40%. Glucagon had essentially no effect on glucokinase flux; it enhanced glucose-6-phosphatase flux from glycogen by 700%, from lactate by 45% and reverse flux from external glucose by 20%, i.e. overall by 110%. At constant glucose concentrations cellular glucose 6-phosphate concentrations were essentially not altered by insulin, but were increased by glucagon by 230%. In conclusion, under basic conditions without added hormones the glucose/glucose 6-phosphate cycle showed only a minor net glucose uptake, of 0.03 mumol/min per g of hepatocytes; this flux was increased by insulin to a net glucose uptake of 0.21 mumol/min per g and reversed by glucagon to a net glucose release of 0.22 mumol/min per g. Since the glucose 6-phosphate concentrations after hormone treatment did not correlate with the glucose-6-phosphatase flux, it is suggested that the hormones influenced the enzyme activity directly.  相似文献   

12.
The effect of thyroid status on glucose recycling was measured in intact rats by comparing the fates of differently labeled [3H]- and [14C]glucose. Glucose recycling at the level of three-carbon compounds (i.e., Cori and glucose-alanine cycles) was measured by comparing the rates of turnover of [6-3H]- and [6-14C]glucose in the same animal. The rate of recycling increased (33–110%) in hyperthyroid rats and decreased (22–30%) in hypothyroid (thyroidectomized) rats. The relative importance of the Cori and glucose-alanine cycles was measured by analyzing the labeled glycolytic intermediates after the injection of labeled glucose; and by measuring the rate of glucose production from the infused labeled lactate and alanine. The results showed that the rate of the Cori cycle is much greater than the glucose-alanine cycle in rats. Substrate cycling at the level of glucokinase-glucose-6-phosphatase was measured by comparing the rates of turnover of [2-3H]- and [6-3H]glucose; and phosphofructokinase-fructose bisphosphatase was measured by comparing the rates of turnover of [3-3H]- and [6-3H]glucose. These cycles were also affected by thyroid states of the animals. The rate of the phosphofructokinase-fructose bisphosphatase cycle increased threefold in hyperthyroid rats and decreased by about half in hypothyroid rats. The glucokinase-glucose-6-phosphatase substrate cycle occurred at the rate of nearly 2 μmol/min/100 g body wt in the hyperthyroid, fasted rats; it was not detectable in hypo- or euthyroid rats. The contribution of the energy released by these cycles to thyroid thermogenesis was discussed. Effects of thyroid states on glucose metabolism in perfused muscles were also studied. There is an apparent shift in the source of energy for oxidation in the hyperthyroid rat. The ratio of lactate production to glucose uptake was significantly elevated in the hyperthyroid rats. This change predisposes for increased glucose recycling in hyperthyroid rats to avoid lactate accumulation and acidosis.  相似文献   

13.
Promastigotes from late-log phase cultures of Leishmania donovani were washed and resuspended in Hanks' Balanced Salt Solution without glucose or phenyl red but with 20 mM (N-[2-hydroxyethyl] piperazine-N'-[2-ethanesulfonic acid]) (HEPES) (HBSS-, 305 mOsm/kg). They were then added to a solution containing 86Rb such that the final osmolality and ionic composition was as desired. Samples were taken at known times and the amount of intracellular 86Rb was measured. Similarly, experiments were performed in which 86Rb was added to the cultures about 18 hr before collection, and the amount of 86Rb released from the washed cells was measured. Under iso-osmotic conditions only about 1.3% of the intracellular 86Rb was released in 900 sec. This increased about 4-fold if the osmolality was reduced from 305-153 mOsm/kg. This is much slower than the very rapid release of alanine in response to hypo-osmotic stress, indicating that alanine release is not via a non-specific pore. Reducing the temperature from 26 degrees C to 3-4 degrees C completely inhibits 86Rb release under iso-osmotic conditions and largely inhibits it under hypo-osmotic conditions. The rate of 86Rb release was not sensitive to K+ concentration and was not altered if chloride was replaced by sulfamate. Ouabain had no effect on either 86Rb uptake or release, but carbonylcyanide P-trifluoromethoxyphenylhydrazone (FCCP) reduced the rate of 86Rb release and, after about a 300 sec exposure, completely inhibited 86Rb uptake. Amiloride partially inhibited 86Rb release, but had no effect on uptake. A decrease in pH from 7.1-5.9 had little effect on 86Rb release under iso-osmotic conditions and slightly increased the rate of release under hypo-osmotic conditions, but it decreased the rate of uptake under both iso-osmotic and hypo-osmotic conditions. Cells taken from 3-day stationary phase cultures released 86Rb more slowly under iso-osmotic conditions than cells from late log phase cultures, but were more responsive to hypo-osmotic stress than were log phase cells. These data appear to rule out an [Na-K-Cl] transporter or a [K-Cl] cotransporter as the means of K+ release, but are consistent with the possibility that a K+/H+ exchanger is present. The possibility that other carrier systems may be present is also discussed.  相似文献   

14.
5-(Phenylthiophene)-3-carboxylic acid (2a), a metabolite of esonarimod (1), which was developed as a new antirheumatic drug, was considered as a lead compound for new antirheumatic drugs. A new series of 2a derivatives were synthesized and their characteristic pharmacological effects, that is their antagonistic effect toward interleukin (IL)-1 in mice and the suppressive effect against adjuvant-induced arthritis (AIA) in rats, were evaluated and compared with those of 1. The structure-activity relationships indicated that [5-(4-bromophenyl)-thiophen-3-yl]acetic acid (5d), methyl [5-(4-chlorophenyl)-thiophen-3-yl]acetate (5h), and methyl [5-(4-bromophenyl)-thiophen-3-yl]acetate (5i) suppressed AIA more potently than 1 and all of the other synthesized compounds.  相似文献   

15.
The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing, impairment of insulin action on muscle glucose transport and uptake. Thus maximal insulin-stimulated glucose uptake at 12 mM-glucose decreased from 34.8 +/- 1.9 to 11.5 +/- 1.1 mumol/h per g (mean +/- S.E.M., n = 10) during 5 h perfusion. This decrease in glucose uptake was accompanied by a similar change in muscle glucose transport as measured by uptake of 3-O-[14C]-methylglucose. Simultaneously, muscle glycogen stores increased to 2-3.5 times initial values, depending on fibre type. Perfusion for 5 h in the presence of glucose but in the absence of insulin decreased subsequent insulin action on glucose uptake by 80% of the effect of glucose with insulin, but without an increase in muscle glycogen concentration. Perfusion for 5 h with insulin but without glucose, and with subsequent addition of glucose back to the perfusate, revealed glucose uptake and transport similar to initial values obtained in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.  相似文献   

16.
The ketogenic diet is an effective treatment for seizures, but the mechanism of action is unknown. It is uncertain whether the anti-epileptic effect presupposes ketosis, or whether the restriction of calories and/or carbohydrate might be sufficient. We found that a relatively brief (24 h) period of low glucose and low calorie intake significantly attenuated the severity of seizures in young Sprague-Dawley rats (50-70 gms) in whom convulsions were induced by administration of pentylenetetrazole (PTZ). The blood glucose concentration was lower in animals that received less dietary glucose, but the brain glucose level did not differ from control blood [3-OH-butyrate] tended to be higher in blood, but not in brain, of animals on a low-glucose intake. The concentration in brain of glutamine increased and that of alanine declined significantly with low-glucose intake. The blood alanine level fell more than that of brain alanine, resulting in a marked increase ( approximately 50%) in the brain:blood ratio for alanine. In contrast, the brain:blood ratio for leucine declined by about 35% in the low-glucose group. When animals received [1-(13)C]glucose, a metabolic precursor of alanine, the appearance of (13)C in alanine and glutamine increased significantly relative to control. The brain:blood ratio for [(13)C]alanine exceeded 1, indicating that the alanine must have been formed in brain and not transported from blood. The elevated brain(alanine):blood(alanine) could mean that a component of the anti-epileptic effect of low carbohydrate intake is release of alanine from brain-to-blood, in the process abetting the disposal of glutamate, excess levels of which in the synaptic cleft would contribute to the development of seizures.  相似文献   

17.
Lactate metabolism in the perfused rat hindlimb.   总被引:2,自引:0,他引:2       下载免费PDF全文
M Shiota  S Golden    J Katz 《The Biochemical journal》1984,222(2):281-292
A preparation of isolated rat hindleg was perfused with a medium consisting of bicarbonate buffer containing Ficoll and fluorocarbon, containing glucose and/or lactate. The leg was electrically prestimulated to deplete partially muscle glycogen. The glucose was labelled uniformly with 14C and with 3H in positions 2, 5 or 6, and lactate uniformly with 14C and with 3H in positions 2 or 3. Glucose carbon was predominantly recovered in glycogen, and to a lesser extent in lactate. The 3H/14C ration in glycogen from [5-3H,U-14C]- and [6-3H,U-14C]-glucose was the same as in glucose. Nearly all the utilized 3H from [2-3H]glucose was recovered as water. Insulin increased glucose uptake and glycogen synthesis 3-fold. When the muscle was perfused with a medium containing 10 mM-glucose and 2 mM-lactate, there was little change in lactate concentration. 14C from lactate was incorporated into glycogen. There was a marked exponential decrease in lactate specific radioactivity, much greater with [3H]- than with [14C]-lactate. The 'apparent turnover' of [U-14C]lactate was 0.28 mumol/min per g of muscle, and those of [2-3H]- and [3-3H]-lactate were both about 0.7 mumol/min per g. With 10 mM-lactate as sole substrate, there was a net uptake of lactate, at a rate of about 0.15 mumol/min per g, and the apparent turnover of [U-14C]lactate was 0.3 mumol/min per g. The apparent turnover of [3H]lactate was 3-5 times greater. When glycogen synthesis was low (no prestimulation, no insulin), the incorporation of lactate carbon into glycogen exceeded that from glucose, but at high rates of glycogen deposition the incorporation of lactate carbon was much less than that of glucose. Lactate incorporation into glycogen was similar in fast-twitch white and fast-twitch red muscle, but was very low in slow-twitch red fibres. We find that (a) pyruvate in muscle is incorporated into glycogen without randomization of carbon, and synthesis is not inhibited by mercaptopicolinate or cycloserine; (b) there is extensive lactate turnover in the absence of net lactate uptake, and there is a large dilution of 14C-labelled lactate from endogenous supply; (c) there is extensive detritiation of [2-3H]- and [3-3H]-lactate in excess of 14C utilization.  相似文献   

18.
The mechanism of anorectic action of several serotonin uptake inhibitors was investigated by comparing their anorectic potencies with several biochemical and pharmacological properties and in reference to the novel compound SL 81.0385. The anorectic effect of the potent serotonin uptake inhibitor SL 81.0385 (ED50 = 4 mg/kg, i.p.) was potentiated by pretreatment with 5-hydroxytryptophan and blocked by the serotonin receptor antagonist metergoline. A good correlation (r = 0.98, p less than 0.01) was obtained between the ED50 values of anorectic action and the ED50 values of serotonin uptake inhibition in vivo (but not in vitro) for several specific serotonin uptake inhibitors. Most of the drugs tested displaced [3H]-mazindol from its binding to the anorectic recognition site in the hypothalamus, except the pro-drug zimelidine which was inactive (IC50 greater than 100 microM). Excluding zimelidine, a good correlation (r = 0.835, p less than 0.01) was obtained between the affinities of these drugs for [3H]-mazindol binding and their anorectic action indicating that their anorectic activity may be associated with an effect mediated through this site. Taken together these results suggest that the anorectic action of serotonin uptake inhibitors is directly associated to their ability to inhibit serotonin uptake and thus increasing the synaptic levels of serotonin. The interactions of these drugs with the anorectic recognition site labelled with [3H]-mazindol is discussed in connection with the serotonergic regulation of carbohydrate intake.  相似文献   

19.
Cytochalasin B (17-3 microM) virtually abolished 3-O-methyl-D-[U-14C]glucose uptake and D-[5-3H]glucose utilization in tumoral insulin-producing cells of the RINm5F line. This coincided with a marked decrease in D-[U-14C]glucose oxidation and suppression of the stimulant action of D-glucose upon insulin release. Cytochalasin B, however, augmented basal insulin release by the tumoral cells. The RINm5F cells appeared much more sensitive than normal islet cells to cytochalasin B, as judged by the relative magnitude of inhibition in either hexose uptake or utilization. In both cell types, the inhibitory action of cytochalasin B upon glucose metabolism seemed to be competitive, being more marked at low than high glucose concentration. These results are interpreted in support of the view that a decreased efficiency of hexose transport across the plasma membrane represents an essential deficiency of the RINm5F cells.  相似文献   

20.
Alanine production by skeletal muscle in tissue culture was studied using an established myogenic line (L6) of rat skeletal muscle cells. Correlation analyses were performed on rates of metabolism of alanine, glucose, lactate and pyruvate over incubation periods up to 96 h. Alanine production did not correlate significantly with glucose utilization (r = 0.24, P less than 0.20). Alanine production, however, did correlate with lactate production (r = 0.72, P less than 0.0005) as well as medium (r = 0.50, P less than 0.025) and intracellular (r = 0.85, P less than 0.0005) pyruvate concentrations. The intercepts of the latter two correlation analyses indicated that when medium or cell pyruvate fell below 0.28 mM or 1 nmol/mg protein, respectively, net alanine consumption occurred. Alanine synthesis also correlated (r = 0.71, P less than 0.0005) with the percent change in the cell mass action ratio for the sum of the alanine and aspartate aminotransferase reactions, i.e., [alanine] [malate]/[aspartate] [lactate]. These results suggest that alanine production is not necessarily linked to the rate of glucose utilization but rater to pyruvate overflow above a critical intracellular level; under conditions of pyruvate overflow, alanine synthesis is driven by the tendency to establish equilibrium between metabolites of the linked amino acid transaminases in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号