首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
M13 procoat protein was one of the first model proteins used to study bacterial membrane protein insertion. It contains a signal peptide of 23 amino acid residues and is not membrane targeted by the signal recognition particle. The translocation of its periplasmic domain is independent of the preprotein translocase (SecAYEG) but requires electrochemical membrane potential and the membrane insertase YidC of Escherichia coli. We show here that YidC is sufficient for efficient membrane insertion of the purified M13 procoat protein into energized YidC proteoliposomes. When no membrane potential is applied, the insertion is substantially reduced. Only in the presence of YidC, membrane insertion occurs if bilayer integrity is preserved and membrane potential is stable for more than 20 min. A mutant of the M13 procoat protein, H5EE, with two additional negatively charged residues in the periplasmic domain inserted into YidC proteoliposomes and SecYEG proteoliposomes with equal efficiencies. We conclude that the protein can use both the YidC-only pathway and the Sec pathway. This poses the questions of how procoat H5EE is inserted in vivo and how insertion pathways are selected in the cell.  相似文献   

2.
The leader peptide of bacteriophage M13 procoat inhibited the cleavage of M13 procoat or pre-maltose-binding protein by purified Escherichia coli leader peptidase. This finding confirms inferences that the leader is the primary site of enzyme recognition and suggests a rationale for the rapid hydrolysis of leader peptides in vivo.  相似文献   

3.
M13 procoat inserts into liposomes in the absence of other membrane proteins   总被引:11,自引:0,他引:11  
Procoat, the precursor form of the major coat protein of coliphage M13, assembles into the Escherichia coli inner membrane and is cleaved to mature coat protein by leader peptidase. This assembly process has previously been reconstituted using lipids and purified leader peptidase in a cell-free protein synthesis reaction (Watts, C., Silver, P., and Wickner, W. (1981) Cell 25, 347-353; Ohno-Iwashita, Y., and Wickner, W. (1983) J. Biol. Chem. 258, 1895-1900). We now report that procoat can also cross a liposomal membrane composed of only purified phospholipids; leader peptidase is not needed to catalyze insertion. When procoat is synthesized in vitro in the presence of liposomes with encapsulated chymotrypsin, the procoat inserts spontaneously through the membrane and is degraded. The protease was shown by several criteria to be in the lumen of the liposomes. These results demonstrate that the precursor form of an E. coli integral membrane protein can cross a membrane without the aid of leader peptidase or any other membrane proteins.  相似文献   

4.
5.
L M Shen  J I Lee  S Y Cheng  H Jutte  A Kuhn  R E Dalbey 《Biochemistry》1991,30(51):11775-11781
Leader peptidase cleaves the leader sequence from the amino terminus of newly made membrane and secreted proteins after they have translocated across the membrane. Analysis of a large number of leader sequences has shown that there is a characteristic pattern of small apolar residues at -1 and -3 (with respect to the cleavage site) and a helix-breaking residue adjacent to the central apolar core in the region -4 to -6. The conserved sequence pattern of small amino acids at -1 and -3 around the cleavage site most likely represents the substrate specificity of leader peptidase. We have tested this by generating 60 different mutations in the +1 to -6 domain of the M13 procoat protein. These mutants were analyzed for in vivo and in vitro processing, as well as for protein insertion into the cytoplasmic membrane. We find that in vivo leader peptidase was able to process procoat with an alanine, a serine, a glycine, or a proline residue at -1 and with a serine, a glycine, a threonine, a valine, or a leucine residue at -3. All other alterations at these sites were not processed, in accordance with predictions based on the conserved features of leader peptides. Except for proline and threonine at +1, all other residues at this position were processed by leader peptidase. None of the mutations at -2, -4, or -5 of procoat (apart from proline at -4) completely abolished leader peptidase cleavage in vivo although there were large effects on the kinetics of processing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The major coat protein (gene 8 product) of bacteriophage M13 is an integral membrane protein during infection of host cells. It is synthesized as a larger precursor (procoat) with a leader sequence of 23 amino acids at its amino terminus. In vivo studies have shown that procoat only inserts into the host-cell plasma membrane after its synthesis is completed. We now demonstrate that procoat can post-translationally insert into inverted cytoplasmic membrane vesicles from E. coli and can be processed proteolytically to yield coat protein. Procoat changes from an assembly-competent substrate to an incompetent (denatured) form within minutes after its synthesis; much of the procoat that accumulates during an hour of in vitro synthesis is therefore denatured. These studies emphasize the importance of stringent criteria for the demonstration of obligate cotranslational assembly.  相似文献   

7.
M13 procoat protein is processed to transmembrane coat protein by dog pancreas microsomes after completion of synthesis and in the absence of the signal recognition particle (SRP)/docking protein system. ATP is required for fast and efficient processing of procoat protein by microsomes in a reticulocyte lysate. Requirement for ATP is also observed in the absence of ribosomes or docking protein. This indicates the existence of a unique assembly pathway for procoat protein into microsomes which depends on ATP but does not depend on the SRP/docking protein and ribosome/ribosome receptor systems. We suggest that the ATP requirement is linked to a so far unknown component of the reticulocyte lysate, acting on transport competence of precursor proteins.  相似文献   

8.
The purification of M13 procoat, a membrane protein precursor.   总被引:1,自引:0,他引:1       下载免费PDF全文
Many membrane proteins and most secreted proteins are initially made as precursors with an N-terminal leader sequence. We now report the isolation of M13 procoat, the precursor of the membrane-bound form of M13 coat protein. There are 40 000 copies of M13 procoat protein/cell during M13 amber 7 virus infection. Purified procoat is quantitatively cleaved by isolated leader peptidase to yield mature-length coat protein. Rabbit antibodies to M13 procoat will precipitate procoat but not coat, suggesting that the antibody molecules are specifically recognizing the leader sequence or the conformation which it induces in the whole procoat molecule.  相似文献   

9.
Processing of M13 procoat protein to transmembrane coat protein by dog pancreas microsomes is stimulated by a component of rabbit reticulocyte lysate and ATP. We asked whether this ATP-dependent reaction, involved in membrane assembly of procoat protein in the eukaryotic system, is related to the membrane potential dependent reaction observed for the membrane assembly of procoat protein in E. coli. Specifically, we asked if a mutant procoat protein which had been previously shown to be independent of the membrane potential with respect to its assembly in E. coli (M13am8H1R1 procoat protein) shows a stimulation by reticulocyte lysate and ATP in its assembly into microsomes. Since the mutant procoat protein behaved exactly as the wild type procoat protein in the eukaryotic in vitro system, we propose that the ATP-dependent reaction observed for the eukaryotic system does not substitute for the membrane potential dependent reaction in the prokaryotic system.  相似文献   

10.
11.
Processing of M13 procoat protein, synthesized in a bacterial cell-free extract, to transmembrane coat protein by dog pancreas microsomes is stimulated by a system which is present in rabbit reticulocytes and depends on nucleoside triphosphates. This system consists of (at least) two components which act synergistically: members of the 70-kd heat shock protein family and (at least) one additional component. This component depends on ATP (or GTP) for its action.  相似文献   

12.
The M13 filamentous bacteriophage coat is a symmetric array of several thousand alpha-helical major coat proteins (P8) that surround the DNA core. P8 molecules initially reside in the host membrane and subsequently transition into their role as coat proteins during the phage assembly process. A comprehensive mutational analysis of the 50-residue P8 sequence revealed that only a small subset of the side-chains were necessary for efficient incorporation into a wild-type (wt) coat. In the three-dimensional structure of P8, these side-chains cluster into three functional epitopes: a hydrophobic epitope located near the N terminus and two epitopes (one hydrophobic and the other basic) located near the C terminus on opposite faces of the helix. The results support a model for assembly in which the incorporation of P8 is mediated by intermolecular interactions involving these functional epitopes. In this model, the N-terminal hydrophobic epitope docks with P8 molecules already assembled into the phage particle in the periplasm, and the basic epitope interacts with the acidic DNA backbone in the cytoplasm. These interactions could facilitate the transition of P8 from the membrane into the assembling phage, and the incorporation of a single P8 would be completed by the docking of additional P8 molecules with the second hydrophobic epitope at the C terminus. We constructed a minimized P8 that contained only nine non-Ala side-chains yet retained all three functional epitopes. The minimized P8 assembled into the wt coat almost as efficiently as wt P8, thus defining the minimum requirements for protein incorporation into the filamentous phage coat. The results suggest possible mechanisms of natural viral evolution and establish guidelines for the artificial evolution of improved coat proteins for phage display technology.  相似文献   

13.
A Kuhn  G Kreil    W Wickner 《The EMBO journal》1987,6(2):501-505
The assembly of phage M13 procoat protein into the plasma membrane of Escherichia coli is independent of the secY protein. To test whether this is caused by the unusually small size of procoat, we fused DNA encoding 103 amino acids to the carboxy-terminal end of the procoat gene. The resulting fusion protein, which attains the same membrane-spanning conformation as mature coat protein, still does not require the secY function for membrane assembly. To determine whether the leader sequence governs interaction with the secY protein, we genetically exchanged the leader peptides between procoat and pro-OmpA, a protein which does require secY for its membrane assembly. Each of the resulting hybrid proteins assembles across the plasma membrane, though at a reduced rate. Membrane assembly of the fusion of procoat leader and OmpA required secY function, whereas assembly of the pro-OmpA leader/coat protein fusion was independent of secY. Properties of the entire procoat molecule, rather than its small size or a specific property of its leader peptide determines its mode of membrane assembly.  相似文献   

14.
A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 Å resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.  相似文献   

15.
Receptor activator of NF-κB (RANK) and RANK ligand (RANKL) are known to play an important role in the development and progression of breast cancer. However, the mechanisms by which stimuli regulate the expression of RANK and RANKL in breast cancer cells are largely unknown. In this study, we show that hypoxia, a common feature of malignant tumors, can enhance the expression of RANK and RANKL mRNA and protein in MDA-MB-231 and MCF-7 breast cancer cells. In addition, we found that hypoxia induced hypoxia-inducible factor-1 alpha (HIF-1α) and phosphorylation of Akt, resulting in upregulation of RANK and RANKL expression; HIF-1α-targeted siRNA and PI3K-Akt inhibitor abrogated this upregulation in MDA-MB-231 cells. Furthermore, we also observed that hypoxia accelerated RANKL-mediated cell migration, which was inhibited following HIF-1α knockdown and PI3K-Akt inhibition. Thus, we provide evidence that hypoxia upregulates RANK and RANKL expression and increases RANKL-induced cell migration via the PI3K/Akt-HIF-1α pathway.  相似文献   

16.
Leader peptidase of Escherichia coli, a protein of 323 residues, has three hydrophobic domains. The first, residues 1-22, is the most apolar and is followed by a polar region (23-61) which faces the cytoplasm. The second hydrophobic domain (residues 62-76) spans the membrane. The third hydrophobic domain, which has a minimal apolar character, and the polar, carboxyl-terminal two-thirds of the protein are exposed to the periplasm. Deletion of either the amino terminus (residues 4-50) or the third hydrophobic region (residues 83-98) has almost no effect on the rate of leader peptidase membrane assembly, while the second hydrophobic domain is essential for insertion (Dalbey, R., and Wickner, W. (1987) Science 235, 783-787). To further define the roles of these domains, we have replaced the normal, cleaved leader sequence of pro-OmpA and M13 procoat with regions containing either the first or second apolar domain of leader peptidase. The second apolar domain supports the translocation of OmpA or coat protein across the plasma membrane, establishing its identity as an internal, uncleaved signal sequence. In addition to this sequence, we now find that leader peptidase needs either the amino-terminal domain or the third hydrophobic domain to permit its rapid membrane assembly. These results show that, although a signal sequence is necessary for rapid membrane assembly of leader peptidase, it is not sufficient.  相似文献   

17.
Chen M  Xie K  Yuan J  Yi L  Facey SJ  Pradel N  Wu LF  Kuhn A  Dalbey RE 《Biochemistry》2005,44(31):10741-10749
The M13 phage Procoat protein is one of the best characterized substrates for the novel YidC pathway. It inserts into the membrane independent of the SecYEG complex but requires the 60 kDa YidC protein. Mutant Procoat proteins with alterations in the periplasmic region had been found to require SecYEG and YidC. In this report, we show that the membrane insertion of these mutants also strongly depends on SecDF that bridges SecYEG to YidC. In a cold-sensitive mutant of YidC, the Sec-dependent function of YidC is strongly impaired. We find that specifically the SecDF-dependent mutants are inhibited in the cold-sensitive YidC strain. Finally, we find that subtle changes in the periplasmic loop such as the number and location of negatively charged residues and the length of the periplasmic loop can make the Procoat strictly Sec-dependent. In addition, we successfully converted Sec-independent Pf3 coat into a Sec-dependent protein by changing the location of a negatively charged residue in the periplasmic tail. Protease mapping of Pf3 coat shows that the insertion-arrested proteins that accumulate in the YidC- or in the SecDF-deficient strains are not translocated. Taken together, the data suggest that the Sec-dependent mutants insert at the interface of YidC and the translocon with SecDF assisting in the translocation step in vivo.  相似文献   

18.
Meningococcal and gonococcal outer membrane proteins were reconstituted into liposomes using detergent-mediated dialysis. The detergents octyl glucopyranoside (OGP), sodium cholate and Empigen BB were compared with respect to efficiency of detergent removal and protein incorporation. The rate of OGP removal was greater than for cholate during dialysis. Isopycnic density gradient centrifugation studies showed that liposomes were not formed and hence no protein incorporation occurred during dialysis from an Empigen BB containing reconstitution mixture. Cholate-mediated reconstitution yielded proteoliposomes with only 75% of the protein associated with the vesicles whereas all of the protein was reconstituted into the lipid bilayer during OGP-mediated reconstitution. Essentially complete protein incorporation was achieved with an initial protein-to-lipid ratio of 0.01:1 (w/w) in the reconstitution mixture; however, at higher initial protein-to-lipid ratios (0.02:1) only 75% protein incorporation was achieved. Reconstituted proteoliposomes were observed as large (>300 nm), multilamellar structures using cryo-electron microscopy. Size reduction of these proteoliposomes by extrusion did not result in significant loss of protein or lipid. Extruded proteoliposomes were unilamellar vesicles with mean diameter of about 100 nm.  相似文献   

19.
The major coat protein (gene 8 protein) of bacteriophage M13 has been studied intensively as a model of membrane assembly, protein packing, and protein-DNA interactions. Because this protein is essential for assembly of the phage, very few mutants have been isolated. We have therefore cloned the gene 8 into a plasmid under control of the araB promoter. In the presence of arabinose, the cloned gene is expressed at a rate comparable to that in an M13-infected cell. Plasmid-derived procoat is inserted across the plasma membrane and processed to coat at a normal rate. The coat can support plaque formation by a defective M13 virus (M13am8) with an amber mutation in its procoat gene. This complementation assay was used to screen the mutagenized, cloned gene 8 for mutants which fail to make fully functional coat. Mutants were obtained which fail to synthesize procoat, which do not convert procoat to mature coat protein, or in which the coat protein is incapable of assembling into infectious virions.  相似文献   

20.
The M13 phage assembles in the inner membrane of Escherichia coli. During maturation, about 2,700 copies of the major coat protein move from the membrane onto a single-stranded phage DNA molecule that extrudes out of the cell. The major coat protein is synthesized as a precursor, termed procoat protein, and inserts into the membrane via a Sec-independent pathway. It is processed by a leader peptidase from its leader (signal) peptide before it is assembled onto the phage DNA. The transmembrane regions of the procoat protein play an important role in all these processes. Using cysteine mutants with mutations in the transmembrane regions of the procoat and coat proteins, we investigated which of the residues are involved in multimer formation, interaction with the leader peptidase, and formation of M13 progeny particles. We found that most single cysteine residues do not interfere with the membrane insertion, processing, and assembly of the phage. Treatment of the cells with copper phenanthroline showed that the cysteine residues were readily engaged in dimer and multimer formation. This suggests that the coat proteins assemble into multimers before they proceed onto the nascent phage particles. In addition, we found that when a cysteine is located in the leader peptide at the -6 position, processing of the mutant procoat protein and of other exported proteins is affected. This inhibition of the leader peptidase results in death of the cell and shows that there are distinct amino acid residues in the M13 procoat protein involved at specific steps of the phage assembly process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号