首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary The islets of Langerhans in normal and obese-hyperglycemic mice were studied by electron microscopy. Two different types of islet cells with ultrastructural features well distinguished from the majority of B cells were observed. While one of them was provided with complete cell membranes, the other appeared to be arranged in a syncytium. It was postulated that these islet cells may be identified with the argyrophil A1 cells and the non argyrophil A2 cells demonstrated in different species with light microscopy. In the normal mouse the fine structure of the islet B cells corresponds in the main to what has been observed previously in the rat. However, in addition to the great majority of spherical B cell granules some appear rectangular, i.e. show similar morphological characteristics as described for the granules in the dog. The long termada ptation of the B cells to increased functional demands in the obese-hyperglycemic syndrome was associated with a pronounced degranulation with margination of the granules and with obvious changes of some organelles. The mechanisms for formation and liberation of insulin from the B cells are discussed in the light of the ultrastructural appearance of these cells in the obese-hyperglycemic mice.Supported by the Swedish Medical Research Council and the research grant A-5759 from the National Institute of Arthritis and Metabolic Diseases, United States Public Health Service.  相似文献   

3.
Development of techniques for cryopreservation of pancreatic islets of Langerhans could potentially allow for increased freedom from the time restrictions presently affecting viability in islet cell transplantation. While several investigators have attempted islet cell freezing and have obtained favorable in vitro results after thawing, there have been few reported in vivo successes with islets transplanted after freezing. We have developed a simple system for freezing islet cell pancreatic fragments to ?196 °C and have either stored them in liquid nitrogen for 24 hr or immediately thawed the islets prior to transplantation. In addition, antilymphoblast globulin has been used as graft pretreatment modality in order to modify islet cell immunogenicity. We found that ALG was effective in prolongation of graft survival after freezing as well as on fresh nonfrozen transplants. The use of freezing and ALG appears, therefore, to have a favorable effect on the immunogenicity of the pancreatic islet cell allograft.  相似文献   

4.
5.
Rejection of islet allografts is generally explained by immunologic problems, due to both cellular and antibody mechanisms. But another great problem is in the isolation of intact and viable islets of Langerhans: it is necessary to use a good method of pancreas distention, to determine the optimal concentration of collagenase for digestion, to select an effective technique for purifying the islets. This study correlates the morphology of isolated pancreatic islets of rats and dogs with secretion of insulin. The islets are incubated in a perifusion system and are tested during four periods; the glucose concentrations of the perifusion fluid are: 5.5 mM during the initial 70 min. period, 16.5 mM during the second 60 min. period, 5.5 mM during the third 60 min. period and 16.5 during the fourth 50 min. period. This "double glucose stimulation" is a good test of islet viability. The intact, viable isolated islets showed a significant increase of insulin secretion during the two 16.5 mM glucose periods. Damaged islets with some little morphologic alterations after showed a good insulin release during the first glucose stimulation, but a very poor insulin response to glucose during the second stimulation period.  相似文献   

6.
7.
Type 1 diabetes may depend on cytokine-induced β-cell death and therefore the current investigation was performed in order to elucidate this response in Shb-deficient islets.A combination of interleukin-1β and interferon-γ caused a diminished β-cell death response in Shb null islets. Furthermore, the induction of an unfolded protein response (UPR) by adding cyclopiazonic acid did not increase cell death in Shb-deficient islets, despite simultaneous expression of UPR markers. The heat-shock protein Hsp70 was more efficiently induced in Shb knockout islets, providing an explanation for the decreased susceptibility of Shb-deficient islets to cytokines.It is concluded that islets deficient in the Shb protein are less susceptible to cytotoxic conditions, and that this partly depends on their increased ability to induce Hsp70 under such circumstances. Interference with Shb signaling may provide means to improve β-cell viability under conditions of β-cell stress.  相似文献   

8.
9.
The use of Cre and FLP recombinases to analyze embryogenesis and organogenesis in Xenopus has not been applied so far. We report on the generation of transgenic Xenopus animals containing a Cre-activated reporter gene cassette expressing blue fluorescent protein that can be switched over to yellow fluorescent protein expression upon Cre-mediated recombination. By injecting Cre mRNA into the two-cell stage embryo we show that Cre-mediated activation of the yellow fluorescent protein gene occurs. In addition, we observe upon injection an extinction of blue fluorescence in animals expressing the transgene and the induction of blue fluorescence in larvae containing a silent reporter gene. By crossing the reporter strains with animals expressing a muscle-specific Cre transgene we obtained an efficient and specific recombination of the reporter gene that leads to yellow fluorescence in myotomes and myofibrils of the developing larvae. Removal of the tail tips of these larvae allows the continuous recording of muscle cell differentiation in the regenerating tail. We detect a dramatic increase in transgene expression at the site of tissue removal in the tail stump. In the regenerated tail, yellow fluorescence is restricted to the myotomes thus excluding transdifferentiation of muscle cells.  相似文献   

10.
11.
Vitrification of human islets of Langerhans   总被引:2,自引:0,他引:2  
Cryopreservation of human islets of Langerhans by vitrification was studied. Isolated islets were divided into four groups: (1) control islets which were cultured for 6 days, (2) islets which were vitrified after 2 days of culture, (3) control islets which were cultured for 10-13 days, and (4) islets which were vitrified after 6-9 days of culture. After warming, islets from groups 2 and 4 were cultured for 4 days. The thus treated islets were investigated with respect to insulin secretion in the presence of 2.5 or 25 mM glucose, capacity to survive during postwarming culture, and morphology. The insulin secretion in islets from all groups could be stimulated by an increase of the concentration of glucose from 2.5 to 25 mM. No significant differences were observed between the insulin secretions of the vitrified and control islets or between the islets vitrified after 2 and 6-9 days of culture. It is concluded that human islets of Langerhans cryopreserved by vitrification are functional in vitro.  相似文献   

12.
The LGI1 gene has been implicated in the development of epilepsy and the invasion phenotype of glial cells. Controversy over the specific tissue expression pattern of this gene has stemmed from conflicting reports generated using immunohistochemistry and the polymerase chain reaction. LGI1 is one of a four-member family of secreted proteins with high homology and here we demonstrate, using GFP-tagged constructs from the four LGI1family members, that commonly used antibodies against LGI1 cross-react with different family members. With the uncertainty surrounding the use of commercially available antibodies to truly establish the expression pattern of LGI1, we generated transgenic mice carrying the LGI1-containing BAC, RP23-127G7, which had been modified to express the GFP reporter gene under the control of the endogenous regulatory elements required for LGI1 expression. Three founder mice were generated, and immunohistochemistry was used to determine the tissue-specific pattern of expression. In the brain, distinct regions of glial and neuronal cell expression were identified, as well as the choriod plexus, which is largely pia-derived. In addition, strong expression levels were identified in glandular regions of the prostate, individual tubules in the kidney, sympathetic ganglia in the kidney, sebaceous glands in the skin, the islets of Langerhans, the endometrium, and the ovary and testes. All other major organs analyzed were negative. The pattern of reporter gene expression was identical in three individual founder mice, arguing against a position effect altering expression profile due to the integration site of the BAC.  相似文献   

13.
Glucokinase in B-cell-depleted islets of Langerhans   总被引:3,自引:0,他引:3  
Glucose phosphorylation was studied in B-cell-enriched or in B-cell-depleted pancreatic islets from normal or streptozotocin-diabetic rats, respectively, using quantitative histochemical procedures. The data indicate that B-cell-enriched preparations from normal animals and whole islets from normals, diabetics, and insulin-treated diabetic animals have comparable glucokinase activities. Average maximum velocities were (mmol/kg dry tissue/hr) 134.1 +/- 7.3 for whole islets and 125.6 +/- 10.7 for the B-cell-enriched preparations from normal rats, 143.1 +/- 13.6 for B-cell-depleted islets from diabetic rats, and 124.4 +/- 10.7 for B-cell-depleted islets from insulin-treated diabetic animals. The Kmax for glucose of the enzyme in islets from untreated diabetic rats was 16 mM, comparable to the Kmax found for glucokinase from normal rat islets. Mannoheptulose, previously shown to be a competitive inhibitor of glucokinase from liver and normal islets, also inhibited glucokinase in B-cell-depleted islets from diabetic rats. The data indicate that glucokinase is not selectively located in the B-cell, as was previously assumed, but is also found in A- and/or D-cells of diabetic rats. This observation raises significant questions about the functional role of islet glucokinase under control and diabetic conditions.  相似文献   

14.
Jo J  Choi MY  Koh DS 《Biophysical journal》2007,93(8):2655-2666
Pancreatic beta-cells are clustered in islets of Langerhans, which are typically a few hundred micrometers in a variety of mammals. In this study, we propose a theoretical model for the growth of pancreatic islets and derive the islet size distribution, based on two recent observations: First, the neogenesis of new islets becomes negligible after some developmental stage. Second, islets grow via a random process, where any cell in an islet proliferates with the same rate regardless of the present size of the islet. Our model predicts either log-normal or Weibull distributions of the islet sizes, depending on whether cells in an islet proliferate coherently or independently. To confirm this, we also measure the islet size by selectively staining islets, which are exposed from exocrine tissues in mice after enzymatic treatment. Indeed revealed are skewed distributions with the peak size of approximately 100 cells, which fit well to the theoretically derived ones. Interestingly, most islets turned out to be bigger than the expected minimal size (approximately 10 or so cells) necessary for stable synchronization of beta-cells through electrical gap-junction coupling. The collaborative behavior among cells is known to facilitate synchronized insulin secretion and tends to saturate beyond the critical (saturation) size of approximately 100 cells. We further probe how the islets change as normal mice grow from young (6 weeks) to adult (5 months) stages. It is found that islets may not grow too large to maintain appropriate ratios between cells of different types. Our results implicate that growing of mouse islets may be regulated by several physical constraints such as the minimal size required for stable cell-to-cell coupling and the upper limit to keep the ratios between cell types. Within the lower and upper limits the observed size distributions of islets can be faithfully regenerated by assuming random and uncoordinated proliferation of each beta-cell at appropriate rates.  相似文献   

15.
Metabolism of glucose in the islets of Langerhans   总被引:31,自引:0,他引:31  
  相似文献   

16.
17.
Cyclic AMP (cAMP) and Ca(2+) are two ubiquitous second messengers in transduction pathways downstream of receptors for hormones, neurotransmitters and local signals. The availability of fluorescent Ca(2+) reporter dyes that are easily introduced into cells and tissues has facilitated analysis of the dynamics and spatial patterns for Ca(2+) signaling pathways. A similar dissection of the role of cAMP has lagged because indicator dyes do not exist. Genetically encoded reporters for cAMP are available but they must be introduced by transient transfection in cell culture, which limits their utility. We report here that we have produced a strain of transgenic mice in which an enhanced cAMP reporter is integrated in the genome and can be expressed in any targeted tissue and with tetracycline induction. We have expressed the cAMP reporter in beta-cells of pancreatic islets and conducted an analysis of intracellular cAMP levels in relation to glucose stimulation, Ca(2+) levels, and membrane depolarization. Pancreatic function in transgenic mice was normal. In induced transgenic islets, glucose evoked an increase in cAMP in beta-cells in a dose-dependent manner. The cAMP response is independent of (in fact, precedes) the Ca(2+) influx that results from glucose stimulation of islets. Glucose-evoked cAMP responses are synchronous in cells throughout the islet and occur in 2 phases suggestive of the time course of insulin secretion. Insofar as cAMP in islets is known to potentiate insulin secretion, the novel transgenic mouse model will for the first time permit detailed analyses of cAMP signals in beta-cells within islets, i.e. in their native physiological context. Reporter expression in other tissues (such as the heart) where cAMP plays a critical regulatory role, will permit novel biomedical approaches.  相似文献   

18.
Insulin is a small but beautifully organized protein with a unique two-chain structure, the first protein to be sequenced. The mechanism of its biosynthesis invited much initial speculation but was finally clarified by the discovery of proinsulin, its single-chain precursor. The rich present-day field of protein precursor processing via post-translational proteolysis within the secretory pathway arose in the early 1970s as an offshoot of studies on insulin biosynthesis, which provided a novel paradigm for the generation of many other small neuroendocrine peptides. Before long, this mechanism was also found to play a role in the production of a much wider spectrum of proteins traversing the secretory pathway (receptors, growth factors, blood-clotting components, and even many viral envelope proteins) occurring in almost all eukaryotic cells. Indeed, yeast provided a key clue in the search for the proprotein convertases, the endoproteases that work along with carboxypeptidases and other modifying enzymes, such as the amidating enzyme complex (PAM), in converting inactive or less active precursor proteins into their fully active peptide products. In this "Reflections" article, I have tried to recount the people and events in my life that led to my involvement first in basic biochemical research and then on to insulin, proinsulin, and many relevant related areas that continue to fascinate and challenge my colleagues and me, as well as many other biomedical scientists today, as diabetes mellitus increasingly threatens human health throughout our contemporary world.  相似文献   

19.
20.
Nestin-expressing cells in the pancreatic islets of Langerhans   总被引:31,自引:0,他引:31  
The pancreatic islets of Langerhans produce several peptide hormones, predominantly the metabolically active hormones insulin and glucagon, which are critical for maintaining normal fuel homeostasis. Some evidence exists that pancreatic endocrine cells turn over at a slow rate and can regenerate in certain conditions. This could be due to the presence of pluripotent cells residing in the pancreas. Recently the intermediate filament protein nestin has been identified to be a marker for a multipotent stem cell in the central nervous system. Given the similarity between the pancreatic islets and neuronal cells, we hypothesized that stem cells expressing nestin might be present in the pancreas. Here we present evidence that a subset of cells in the pancreatic islets express the stem cell marker nestin. These cells might serve as precursors of differentiated pancreatic endocrine cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号