首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclophosphamide causes lung injury in rats through its ability to generate free radicals with subsequent endothelial and epithelial cell damage. In order to observe the protective effects of a potent anti-inflammatory antioxidant, curcumin (diferuloyl methane) on cyclophosphamide-induced early lung injury, healthy pathogen free male Wistar rats were exposed to 20 mg/100 g body weight of cyclophosphamide, intraperitoneally as a single injection. Prior to cyclophosphamide intoxication oral administration of curcumin was performed daily for 7 days. At various time intervals (2, 3, 5 and 7 days post insult) serum and lung samples were analyzed for angiotensin converting enzyme, lipid peroxidation, reduced glutathione and ascorbic acid. Bronchoalveolar lavage fluid was analyzed for biochemical constituents. The lavage cells were examined for lipid peroxidation and glutathione content. Excised lungs were analyzed for antioxidant enzyme levels. Biochemical analyses revealed time course increases in lavage fluid total protein, albumin, angiotensin converting enzyme (ACE), lactate dehydrogenase, N-acetyl--D-glucosaminidase, alkaline phosphatase, acid phosphatase, lipid peroxide levels and decreased levels of glutathione (GSH) and ascorbic acid 2, 3, 5 and 7 days after cyclophosphamide intoxication. Increased levels of lipid peroxidation and decreased levels of glutathione and ascorbic acid were seen in serum, lung tissue and lavage cells of cyclophosphamide groups. Serum angiotensin converting enzyme activity increased which coincided with the decrease in lung tissue levels. Activities of antioxidant enzymes were reduced with time in the lungs of cyclophosphamide groups. However, a significant reduction in lavage fluid biochemical constituents, lipid peroxidation products in serum, lung and lavage cells with concomitant increase in antioxidant defense mechanisms occurred in curcumin fed cyclophosphamide rats. Therefore, our results suggest that curcumin is effective in moderating the cyclophosphamide induced early lung injury and the oxidant-antioxidant imbalance was partly abolished by restoring the glutathione (GSH) with decreased levels of lipid peroxidation.  相似文献   

2.
Interleukin 2 (IL-2) is a potent cytokine with diverse effects, including the ability to stimulate lymphocyte differentiation into cells capable of lysing tumor. Its therapeutic efficacy is limited because of side effects such as breakdown of the microvascular barrier and edema. Control of the microvascular barrier is in part regulated by endothelial cell cytoskeletal contractile proteins. This study tests whether the cyclopeptides that maintain actin filament organization and distribution and reduce macromolecular flux across the endothelial cell junction in vitro would similarly maintain barrier tightness and prevent early edema produced by IL-2 in vivo. Anesthetized rats were treated at 30-min periods with intravenous saline (0.5 ml, n = 41), phalloidin (20 micrograms in 0.5 ml, n = 21), or antamanide, (20 micrograms in 0.5 ml, n = 21), starting 30 min before the 1-h infusion of 10(6) U of recombinant human IL-2 or saline. Six hours after the start of IL-2, there was edema in the saline/IL-2 group, as measured by increased wet-to-dry ratios (W/D) in the lungs, heart, and kidney. With saline/IL-2, bronchoalveolar lavage (BAL) fluid contained an elevated protein concentration and higher plasma thromboxane levels compared with controls. The number of neutrophils sequestered in the lungs was more than twice that of saline controls. Phalloidin significantly attenuated edema in lung and reduced BAL protein leak. Antamanide treatment was as effective in limiting lung and heart edema, but, in contrast to phalloidin, antamanide prevented kidney edema and did not lead to an alteration in the liver W/D. Antamanide also prevented BAL fluid protein leak.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Lung lavage fluid of patients with acute lung injury (ALI) has increased levels of interleukin-1 (IL-1) and neutrophils, but their relationship to the lung leak that characterizes these patients is unclear. To address this concern, we investigated the role of the neutrophil agonist platelet-activating factor [1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF)] in the development of the acute neutrophil-dependent lung leak that is induced by giving IL-1 intratracheally to rats. We found that PAF acetyltransferase and PAF activities increased in lungs of rats given IL-1 intratracheally compared with lungs of sham-treated rats given saline intratracheally. The participation of PAF in the development of lung leak and lung neutrophil accumulation after IL-1 administration was suggested when treatment with WEB-2086, a commonly used PAF-receptor antagonist, decreased lung leak, lung myeloperoxidase activity, and lung lavage fluid neutrophil increases in rats given IL-1 intratracheally. Additionally, neutrophils recovered from the lung lavage fluid of rats given IL-1 intratracheally reduced more nitro blue tetrazolium (NBT) in vitro than neutrophils recovered from control rats or rats that had been given WEB-2086 and then IL-1. Histological examination indicated that the endothelial cell-neutrophil interfaces of cerium chloride-stained lung sections of rats given IL-1 contained increased cerium perhydroxide (the reaction product of cerium chloride with hydrogen peroxide) compared with lungs of control rats or rats treated with WEB-2086 and then given IL-1 intratracheally. These in vivo findings were supported by parallel findings showing that WEB-2086 treatment decreased neutrophil adhesion to IL-1-treated cultured endothelial cells in vitro. We concluded that PAF contributes to neutrophil recruitment and neutrophil activation in lungs of rats given IL-1 intratracheally.  相似文献   

4.

Background

Leptospiral glycolipoprotein (GLP) is a potent and specific Na/K-ATPase inhibitor. Severe pulmonary form of leptospirosis is characterized by edema, inflammation and intra-alveolar hemorrhage having a dismal prognosis. Resolution of edema and inflammation determines the outcome of lung injury. Na/K-ATPase activity is responsible for edema clearance. This enzyme works as a cell receptor that triggers activation of mitogen-activated protein kinase (MAPK) intracellular signaling pathway. Therefore, injection of GLP into lungs induces injury by triggering inflammation.

Methods

We injected GLP and ouabain, into mice lungs and compared their effects. Bronchoalveolar lavage fluid (BALF) was collected for cell and lipid body counting and measurement of protein and lipid mediators (PGE2 and LTB4). The levels of the IL-6, TNFα, IL-1B and MIP-1α were also quantified. Lung images illustrate the injury and whole-body plethysmography was performed to assay lung function. We used Toll-like receptor 4 (TLR4) knockout mice to evaluate leptospiral GLP-induced lung injury. Na/K-ATPase activity was determined in lung cells by nonradioactive rubidium incorporation. We analyzed MAPK p38 activation in lung and in epithelial and endothelial cells.

Results

Leptospiral GLP and ouabain induced lung edema, cell migration and activation, production of lipid mediators and cytokines and hemorrhage. They induced lung function alterations and inhibited rubidium incorporation. Using TLR4 knockout mice, we showed that the GLP action was not dependent on TLR4 activation. GLP activated of p38 and enhanced cytokine production in cell cultures which was reversed by a selective p38 inhibitor.

Conclusions

GLP and ouabain induced lung injury, as evidenced by increased lung inflammation and hemorrhage. To our knowledge, this is the first report showing GLP induces lung injury. GLP and ouabain are Na/K-ATPase targets, triggering intracellular signaling pathways. We showed p38 activation by GLP-induced lung injury, which was may be linked to Na/K-ATPase inhibition. Lung inflammation induced by GLP was not dependent on TLR4 activation.  相似文献   

5.
Regulatory effects of eotaxin on acute lung inflammatory injury   总被引:3,自引:0,他引:3  
Eotaxin, which is a major mediator for eosinophil recruitment into lung, has regulatory effects on neutrophil-dependent acute inflammatory injury triggered by intrapulmonary deposition of IgG immune complexes in rats. In this model, eotaxin mRNA and protein were up-regulated during the inflammatory response, resulting in eotaxin protein expression in alveolar macrophages and in alveolar epithelial cells. Ab-induced blockade of eotaxin in vivo caused enhanced NF-kappaB activation in lung, substantial increases in bronchoalveolar lavage levels of macrophage inflammatory protein (MIP)-2 and cytokine-induced neutrophil chemoattractant (CINC), and increased MIP-2 and CINC mRNA expression in alveolar macrophages. In contrast, TNF-alpha levels were unaffected, and IL-10 levels fell. Under these experimental conditions, lung neutrophil accumulation was significantly increased, and vascular injury, as reflected by extravascular leak of (125)I-albumin, was enhanced. Conversely, when recombinant eotaxin was administered in the same inflammatory model of lung injury, bronchoalveolar lavage levels of MIP-2 were reduced, as was neutrophil accumulation and the intensity of lung injury. In vitro stimulation of rat alveolar macrophages with IgG immune complexes greatly increased expression of mRNA and protein for MIP-2, CINC, MIP-1alpha, MIP-1beta, TNF-alpha, and IL-1beta. In the copresence of eotaxin, the increased levels of MIP-2 and CINC mRNAs were markedly diminished, whereas MIP-1alpha, MIP-1beta, TNF-alpha, and IL-1beta expression of mRNA and protein was not affected. These data suggest that endogenous eotaxin, which is expressed during the acute lung inflammatory response, plays a regulatory role in neutrophil recruitment into lung and the ensuing inflammatory damage.  相似文献   

6.
Pulmonary protective effects of curcumin against paraquat toxicity   总被引:21,自引:0,他引:21  
Venkatesan N 《Life sciences》2000,66(2):PL21-PL28
An early feature of paraquat (PQ) toxicity is the influx of inflammatory cells, releasing proteolytic enzymes and oxygen free radicals, which can destroy the lung epithelium and result in pulmonary fibrosis. Therefore, the ability to suppress early lung injury seems to be an appropriate therapy of pulmonary damage before the development of irreversible fibrosis. Here I show curcumin confers remarkable protection against PQ lung injury. A single intraperitoneal injection of PQ (50 mg/kg) resulted in a significant rise in the levels of protein, angiotensin converting enzyme (ACE), alkaline phosphatase (AKP), N-acetyl-beta-D-glucosaminidase (NAG) and thiobarbituric acid reactive substances (TBARS), and neutrophils in the bronchoalveolar lavage fluid (BALF), while a decrease in glutathione levels. In paraquat rats bronchoalveolar lavage (BAL) cell TBARS concentration was increased with a simultaneous decrease in glutathione content. In addition, the data also demonstrated that PQ caused a decrease in ACE and glutathione levels and an increase in levels of TBARS and myeloperoxidase (MPO) activity in the lung. Interestingly, curcumin prevented the general toxicity and mortality induced by PQ and blocked the rise in BALF protein, ACE, AKP, NAG TBARS and neutrophils. Similarly, curcumin prevented the rise in TBARS content in both BAL cell and lung tissue and MPO activity of the lung. In addition, PQ induced reduction in lung ACE and BAL cell and lung glutathione levels was abolished by curcumin treatment. These findings indicate that curcumin has important therapeutic implications in facilitating the early suppression of PQ lung injury.  相似文献   

7.

Background

Angiotensin-converting enzyme (ACE), which metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling, as well as in reproductive functions, is expressed as a type-1 membrane glycoprotein on the surface of endothelial and epithelial cells. ACE also presents as a soluble form in biological fluids, among which seminal fluid being the richest in ACE content - 50-fold more than that in blood.

Methods/Principal Findings

We performed conformational fingerprinting of lung and seminal fluid ACEs using a set of monoclonal antibodies (mAbs) to 17 epitopes of human ACE and determined the effects of potential ACE-binding partners on mAbs binding to these two different ACEs. Patterns of mAbs binding to ACEs from lung and from seminal fluid dramatically differed, which reflects difference in the local conformations of these ACEs, likely due to different patterns of ACE glycosylation in the lung endothelial cells and epithelial cells of epididymis/prostate (source of seminal fluid ACE), confirmed by mass-spectrometry of ACEs tryptic digests.

Conclusions

Dramatic differences in the local conformations of seminal fluid and lung ACEs, as well as the effects of ACE-binding partners on mAbs binding to these ACEs, suggest different regulation of ACE functions and shedding from epithelial cells in epididymis and prostate and endothelial cells of lung capillaries. The differences in local conformation of ACE could be the base for the generation of mAbs distingushing tissue-specific ACEs.  相似文献   

8.
9.
The systemic vasculature in and surrounding the lung is proangiogenic, whereas the pulmonary vasculature rarely participates in neovascularization. We studied the effects of the proangiogenic ELR+ CXC chemokine MIP-2 (macrophage inflammatory protein-2) on endothelial cell proliferation and chemotaxis. Mouse aortic, pulmonary arterial, and lung microvascular endothelial cells were isolated and subcultured. Proliferation ([3H]thymidine uptake) and migration (Transwell chemotaxis) were evaluated in each cell type at baseline and upon exposure to MIP-2 (1-100 ng/ml) without and with exposure to hypoxia (24 h)-reoxygenation. Baseline proliferation did not vary among cell types, and all cells showed increased proliferation after MIP-2. Aortic cell chemotaxis increased markedly upon exposure to MIP-2; however, neither pulmonary artery nor lung microvascular endothelial cells responded to this chemokine. Assessment of CXCR2, the G protein-coupled receptor through which MIP-2 signals, displayed no baseline difference in mRNA, protein, or cell surface expression among cell types. Exposure to hypoxia increased expression of CXCR2 of aortic endothelial cells only. Additionally, aortic cells, compared with pulmonary cells, showed significantly greater protein and activity of cathepsin S, a proteolytic enzyme important for cell motility. Thus the combined effects of increased cathepsin S activity, providing increased motility and enhanced CXCR2 expression after hypoxia, both contribute to the proangiogenic phenotype of systemic arterial endothelial cells.  相似文献   

10.
Interleukin-1-induced granulocytopenia and pulmonary leukostasis in rabbits   总被引:6,自引:0,他引:6  
Pulmonary leukostasis is a postulated prerequisite lesion for acute lung injury. Interleukin-1 (IL-1) mediates components of the acute-phase response, stimulates granulocyte metabolism and secretion, and augments endothelial adhesiveness. We studied the effects of murine IL-1 infusion on circulating granulocytes, their sequestration within the pulmonary microvasculature, lung water, and bronchoalveolar lavage fluid (BALF) protein concentration in rabbits at 3 and 24 h after infusion. IL-1 administration induced significant (P less than 0.01) granulocytopenia compared with saline-injected controls and at 3 h induced significant increases in both mean alveolar septal wall granulocytes per high power field (HPF) (P less than 0.001) and mean myeloperoxidase (MPO) activity per gram lung tissue (P less than 0.001). At 24 h, IL-1 induced a marked granulocytosis and again significantly increased both mean alveolar septal wall granulocytes per HPF (P less than 0.001) and lung MPO (P less than 0.01). Increased lung water or BALF protein concentration could not be demonstrated in animals killed at either 3 or 24 h after IL-1 administration. Therefore, IL-1 can induce an early profound granulocytopenia followed by later granulocytosis, as well as sustained pulmonary leukostasis in the absence of detectable pulmonary edema formation or an alveolar-capillary leak.  相似文献   

11.
Preterm delivery is frequently preceded by chorioamnionitis, resulting in exposure of the fetal lung to inflammation. We hypothesized that ventilation of the antenatally inflamed lung would result in amplification of the lung injury. Therefore, we induced fetal lung inflammation with intra-amniotic endotoxin (10 mg of Escherichia coli 055:B5) 4 days before premature delivery at 130 days of gestation. Lung function and lung inflammation after surfactant treatment and 4 h of mechanical ventilation were evaluated. Inflammatory cell numbers in amniotic fluid were increased >10-fold by antenatal endotoxin exposure. Antenatal endotoxin exposure had minimal effects on blood pressure, heart rate, lung compliance, and blood gas values. The endotoxin-exposed lungs required higher ventilation pressures. Ventilation did not increase the number of inflammatory cells or the protein in bronchoalveolar lavage fluid of the endotoxin-exposed animals above that measured in endotoxin-exposed fetuses that were not ventilated. IL-1beta, IL-6, and IL-8 mRNA in cells from bronchoalveolar lavage fluid were increased by antenatal endotoxin exposure but not changed by ventilation. IL-1beta and IL-8 protein was increased in lung tissue by 4 h of ventilation. Very little inflammation was induced by ventilation in this premature lamb model of surfactant treatment and gentle ventilation. After lung inflammation was induced by intra-amniotic endotoxin injection, ventilation did not increase lung injury.  相似文献   

12.
Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from less than 10 min to 40 h, reduces immunogenicity, and decreases sensitivity to proteolysis. Because PEG has surface active properties and can induce cell fusion, we hypothesized that PEG conjugation could enhance cell binding and association of normally membrane-impermeable enzymes. Incubation of cultured porcine aortic endothelial cells with 125I-PEG-catalase or 125I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Endothelial cell cultures incubated with PEG-superoxide dismutase and PEG-catalase for 24 h and then extensively washed were protected from the damaging effects of reactive oxygen species derived from exogenous xanthine oxidase as judged by two criteria: decreased release of intracellular 51Cr-labeled proteins and free radical-induced changes in membrane fluidity, measured by electron paramagnetic resonance spectroscopy of endothelial membrane proteins covalently labeled with 4-maleimido-2,2,6,6-tetramethylpiperidinooxyl. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species.  相似文献   

13.
The statins are a class of 3-hydroxy-3-methylglutaryl-coenzyme A-reductase inhibitors that are recognized to have pleiotropic properties. We previously reported the attenuation of LPS-induced murine acute lung injury (ALI) by simvastatin in vivo and identified relevant effects of simvastatin on endothelial cell (EC) signaling, activation, and barrier function in vitro. In particular, simvastatin induces the upregulation of integrin-β4, which in turn inhibits EC inflammatory responses via attenuation of MAPK signaling. The role of integrin-β4 in murine ALI protection by simvastatin, however, is unknown. We initially confirmed a time- and dose-dependent effect of simvastatin on increased integrin-β4 mRNA expression in human lung EC with peak protein expression evident at 16 h. Subsequently, reciprocal immunoprecipitation demonstrated an attenuation of LPS-induced integrin-β4 tyrosine phosphorylation by simvastatin (5 μM, 16 h). Increased expression of EC inflammatory cytokines [IL-6, IL-8, monocyte chemoattractant protein (MCP)-1, regulated on activation normal T cell expressed and secreted (RANTES)] by LPS (500 ng/ml, 4 h) was also significantly attenuated by simvastatin pretreatment (5 μM, 16 h), but this effect was reversed by cotreatment with an integrin-β4-blocking antibody. Finally, although simvastatin (20 mg/kg) conferred significant protection in murine ALI as evidenced by decreased bronchoalveolar lavage fluid cell counts, protein, inflammatory cytokines (IL-6, IL-1β, MCP-1, RANTES), decreased Evans blue dye albumin extravasation in lung tissue, and changes on lung histology, these effects were reversed by the integrin-β4-blocking antibody (IV, 1 mg/kg, 2 h before LPS). These findings support integrin-β4 as an important mediator of ALI protection by simvastatin and implicate signaling by integrin-β4 as a novel therapeutic target in patients with ALI.  相似文献   

14.
IL-11 is a pleiotropic cytokine that induces tissue remodeling with subepithelial fibrosis when expressed in the airway. Its effects on the Th2-dominated airway inflammation that is characteristic of asthma, however, are poorly understood. To characterize the effects of IL-11 on Th2 tissue inflammation, we compared the inflammatory responses elicited by OVA in sensitized mice in which IL-11 is overexpressed in a lung-specific fashion (CC10-IL-11) with that in transgene- wild-type littermate controls. Transgene- and CC10-IL-11 transgene+ mice had comparable levels of circulating Ag-specific IgE after sensitization. OVA challenge of sensitized transgene- mice caused airway and parenchymal eosinophilic inflammation, Th2 cell accumulation, and mucus hypersecretion with mucus metaplasia. Exaggerated levels of immunoreactive endothelial cell VCAM-1, mucin (Muc) 5ac gene expression and bronchoalveolar lavage and lung IL-4, IL-5, and IL-13 protein and mRNA were also noted. In contrast, OVA challenge in CC10-IL-11 animals elicited impressively lower levels of tissue and bronchoalveolar lavage inflammation, eosinophilia, and Th2 cell accumulation, and significantly lower levels of VCAM-1 and IL-4, IL-5, and IL-13 mRNA and protein. IL-11 did not cause a comparable decrease in mucus hypersecretion, Muc 5ac gene expression, or the level of expression of RANTES, monocyte chemoattractant protein-2, or monocyte chemoattractant protein-3. In addition, IL-11 did not augment IFN-gamma production demonstrating that the inhibitory effects of IL-11 were not due to a shift toward Th1 inflammation. These studies demonstrate that IL-11 selectively inhibits Ag-induced eosinophilia, Th2 inflammation, and VCAM-1 gene expression in pulmonary tissues.  相似文献   

15.
16.
IL-13 is a critical effector at sites of Th2 inflammation and remodeling. As a result, anti-IL-13-based therapies are being actively developed to treat a variety of diseases and disorders. However, the beneficial effects of endogenous IL-13 in the normal and diseased lung have not been adequately defined. We hypothesized that endogenous IL-13 is an important regulator of oxidant-induced lung injury and inflammation. To test this hypothesis, we compared the effects of 100% O(2) in mice with wild-type and null IL-13 loci. In this study, we demonstrate that hyperoxia significantly augments the expression of the components of the IL-13R, IL-13Ralpha1, and IL-4Ralpha. We also demonstrate that, in the absence of IL-13, hyperoxia-induced tissue inflammation is decreased. In contrast, in the IL-13 null mice, DNA injury, cell death, caspase expression, and activation and mortality are augmented. Interestingly, the levels of the cytoprotective cytokines vascular endothelial cell growth factor, IL-6, and IL-11 were decreased in the bronchoalveolar lavage fluid. These studies demonstrate that the expression of the IL-13R is augmented and that the endogenous IL-13-IL-13R pathway contributes to the induction of inflammation and the inhibition of injury in hyperoxic acute lung injury.  相似文献   

17.
IL-23 induces IL-17 production in activated CD4+ T cells and participates in host defense against many encapsulated bacteria. However, whether the IL-23/IL-17 axis contributes to a Mycoplasma pneumoniae (Mp)-induced lung inflammation (e.g., neutrophils) has not been addressed. Using an acute respiratory Mp infection murine model, we found significantly up-regulated lung IL-23p19 mRNA in the early phase of infection (4h), and alveolar macrophages were an important cell source of Mp-induced IL-23. We further showed that Mp significantly increased IL-17 protein levels in bronchoalveolar lavage (BAL). Lung gene expression of IL-17, IL-17C and IL-17F was also markedly up-regulated by Mp in vivo. IL-17 and IL-17F were found to be derived mainly from lung CD4+ T cells, and were increased upon IL-23 stimulation in vitro. In vivo blocking of IL-23p19 alone or in combination with IL-23/IL-12p40 resulted in a significant reduction of Mp-induced IL-17 protein and IL-17/IL-17F mRNA expression, which was accompanied by a trend toward reduced lung neutrophil recruitment, BAL neutrophil activity, and Mp clearance. However, IL-23 neutralization had no effect on Mp-induced lung IL-17C mRNA expression. These results demonstrate that IL-17/IL-17F production is IL-23-dependent in an acute Mp infection, and contributes to neutrophil recruitment and activity in the lung defense against the infection.  相似文献   

18.

Background

Human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuate hyperoxic neonatal lung injury primarily through anti-inflammatory effects. We hypothesized that intratracheal transplantation of human UCB-derived MSCs could attenuate Escherichia coli (E. coli)-induced acute lung injury (ALI) in mice by suppressing the inflammatory response.

Methods

Eight-week-old male ICR mice were randomized to control or ALI groups. ALI was induced by intratracheal E. coli instillation. Three-hours after E. coli instillation, MSCs, fibroblasts or phosphate-buffered saline were intratracheally administered randomly and survival was analyzed for 7 days post-injury. Lung histology including injury scores, myeloperoxidase (MPO) activity, and protein levels of interleukin (IL)-1α, IL-1β, IL-6, tumor necrosis factor (TNF)-α, and macrophage inflammatory protein (MIP)-2 as well as the wet-dry lung ratio and bacterial counts from blood and bronchoalveolar lavage (BAL) were evaluated at 1, 3, and 7 days post-injury. Levels of inflammatory cytokines in the lung were also profiled using protein macroarrays at day 3 post-injury which showed peak inflammation.

Results

MSC transplantation increased survival and attenuated lung injuries in ALI mice, as evidenced by decreased injury scores on day 3 post-injury and reduced lung inflammation including increased MPO activity and protein levels of IL-1α, IL-1β, IL-6, TNF-α, and MIP-2 on day 3 and 7 post-injury. Inflammatory cytokine profiles in the lungs at day 3 post-injury were attenuated by MSC transplantation. MSCs also reduced the elevated lung water content at day 3 post-injury and bacterial counts in blood and BAL on day 7 post-injury.

Conclusions

Intratracheal transplantation of UCB-derived MSCs attenuates E. coli-induced ALI primarily by down-modulating the inflammatory process and enhancing bacterial clearance.  相似文献   

19.
Administration of lymphokine-activated killer (LAK) cells in combination with interleukin 2 (IL-2) has been effective in reducing tumor mass in humans, but has been accompanied by significant toxicity. We used a chronic awake sheep model to investigate the cause of the vascular leak syndrome associated with IL-2 administration. Sheep repeatedly infused with human recombinant IL-2 (hrIL-2) developed mild pulmonary hypertension, systemic hypotension, acidemia, hypoxemia, and increased flow of protein rich lung lymph. We hypothesized that LAK cells may damage lung endothelium in vivo and cause increased lung vascular permeability. Sheep peripheral blood and lung lymph lymphocytes incubated in vitro with hrIL-2 generated cytotoxic activity for human K-562 cells and sheep pulmonary microvascular endothelial cells. In addition, cytotoxic effector cells were isolated from the peripheral blood of a sheep which had received hrIL-2. These observations suggest that LAK cells possess the ability to damage endothelial cells and may contribute to an increased pulmonary vascular permeability observed following hrIL-2 infusion in sheep.  相似文献   

20.
Rats were sacrificed 2 months after a single dose of 10-30 Gy of 60Co gamma rays delivered to either a right unilateral or a bilateral thoracic port. Four indices of lung endothelial function were measured: the activities of angiotensin-converting enzyme (ACE) and plasminogen activator (PLA) and the production of prostacyclin (PGI2) and thromboxane (TXA2). The number of macrophages recovered by bronchoalveolar lavage (BAL) and the degree of right ventricular hypertrophy (an index of pulmonary hypertension) also were determined. Right lung ACE and PLA activity decreased linearly, and PGI2 and TXA2 production increased linearly with increasing radiation dose. The response curves for right unilateral and bilateral thoracic irradiation were not significantly different. In contrast, bilateral irradiation was more toxic than unilateral, since rats exposed to the former exhibited decreased body weight, an increased incidence of pleural effusions, an increase in the number of macrophages recovered by BAL, and right ventricular hypertrophy. These data demonstrate that pulmonary endothelial dysfunction induced by hemithorax irradiation represents a direct response of the endothelium to radiation injury and is not secondary to other phenomena such as shunting of function to the shielded lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号