首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plasma membranes were isolated from roots of bean (Phaseolus vulgaris L.) plants cultured on phosphate sufficient or phosphate deficient medium. The phospholipid composition of plasma membranes was analyzed and compared with that of the microsomal fraction. Phosphate deficiency had no influence on lipid/protein ratio in microsomal as well as plasma membrane fraction. In phosphate deficient roots phospholipid content was lower in the plasma membrane, but did not change in the microsomal fraction. Phosphatidylcholine and phosphatidylethanolamine were two major phospholipids in plasmalemma and microsomal membranes (80 % of the total). After two weeks of phosphate starvation a considerable decrease (about 50 %) in phosphatidylcholine and phosphatidylethanolamine in microsomal membranes was observed. The decline in two major phospholipids was accompanied by an increase in phosphatidic acid and lysophosphatidylcholine content. The effect of alterations in plasma membrane phospholipids on membrane function e.g. nitrate uptake is discussed.  相似文献   

2.
Gniazdowska  A.  Rychter  A. M. 《Plant and Soil》2000,226(1):79-85
Bean (Phaseolus vulgaris L.) plants were cultured for 19 d on complete or on phosphate deficient culture media. Low inorganic phosphate concentration in the roots decreased ATP level and nitrate uptake rate. The mechanisms which may control nitrate uptake rate during phosphate deficiency were examined. Plasma membrane enriched fractions from phosphate sufficient and phosphate deficient plants were isolated and compared. The decrease in total phospholipid content was observed in plasma membranes from phosphate deficient roots, but phospholipid composition was similar. No changes in ATPase and proton pumping activities measured in isolated plasma membrane of phosphate sufficient and phosphate deficient bean roots were noted. The electron microscope observations carried out on cortical meristematic cells of the roots showed that active ATPases were found in plasma membrane of both phosphate sufficient and phosphate deficient plants. The decrease in inorganic phosphate concentration in roots led to increased nitrate accumulation in roots, accompanied by a corresponding alterations in NO3 distribution between shoots and roots. Nitrate reductase activity in roots of phosphate deficient plants estimated in vivo and in vitro was reduced to 50–60% of the control. The increased NO3 concentration in root tissue may be explained by decreased NR activity and lower transport of nitrate from roots to shoots. Therefore, the reduction of nitrate uptake during phosphate starvation is mainly a consequence of nitrate accumulation in the roots.  相似文献   

3.
4.
We identified a transgenic line exhibiting albinism during our work to introduce genes through genetic engineering in dry bean (Phaseolus vulgaris). The transgenic mother plant (R0) presented a normal phenotype and generated albino and normal green plants in the first generation (R1). The segregation ratio of the albino character in the R1 and R2 generations fitted the expected ratio for a character controlled by a single recessive gene linked to a foreign gus gene, suggesting that albinism could be a consequence of insertional mutation caused by introduction of the exogenous gene. Analysis by electron microscope revealed that the albino cells possessed no chloroplasts and a greater number of mitochondria when compared to normal green plants. This transgenic bean line may be used in understanding the genetic control of chloroplast genesis, for acquiring additional knowledge of genomic structure or in physiological studies. This is the first described transgene-associated mutant bean plant.  相似文献   

5.
The mechanisms of photosynthetic adaptation to different combinations of temperature and irradiance during growth, and especially the consequences of exposure to high light (2000 micro mol m(-2) s(-1) PPFD) for 5 min, simulating natural sunflecks, was studied in bean plants (Phaseolus vulgaris L.). A protocol using only short (3 min) dark pre-treatment was introduced to maximize the amount of replication possible in studies of chlorophyll fluorescence. High light at low temperature (10 degrees C) significantly down-regulated photosynthetic electron transport capacity [as measured by the efficiency of photosystem II (PSII)], with the protective acclimation allowing the simulated sunflecks to be used more effectively for photosynthesis by plants grown in low light. The greater energy dissipation by thermal processes (lower F(v)'/F(m)' ratio) at low temperature was related to increased xanthophyll de-epoxidation and to the fact that photosynthetic carbon fixation was more limiting at low than at high temperatures. A key objective was to investigate the role of photorespiration in acclimation to irradiance and temperature by comparing the effect of normal (21 kPa) and low (1.5 kPa) O(2) concentrations. Low [O(2)] decreased F(v)/F(m) and the efficiency of PSII (Phi(PSII)), related to greater PSII down-regulation in cold pre-treated plants, but minimized further inhibition by the mild 'sunfleck' treatment used. Results support the hypothesis that photorespiration provides a 'safety-valve' for excess energy.  相似文献   

6.
UV-B increases the harvest index of bean (Phaseolus vulgaris L.)   总被引:2,自引:1,他引:1  
The effects of small changes in natural UV-B on the photosynthesis, pigmentation, flowering and yield of bean plants (Phaseolus vulgaris L. var. Label) were studied. To obtain a relatively natural growth environment, the plants were grown in small, half-open greenhouses of UV-transmitting Plexiglas of different thickness (3 and 5 mm), resulting in an 8% difference in the weighted UV-B reaching the plants. Although the UV-B doses used did not significantly influence photosynthesis on a leaf area basis during vegetative growth, important changes in biomass allocation were noted. A UV-B-O induced reduction in leaf area during the period of vegetative growth resulted in decreased dry weight after 57 d. During the flowering and pod-filling stages (57–79.d after planting), however, plants grown at high UV-B retained their photosynthetic capacity longer: maximal photosynthesis, chlorophyll and N content of the leaves were higher under the higher UV-B dose at a plant age of 79 d. Combined with an increased allocation under the higher UV-B dose of both N and biomass to the pods, this resulted in a small increase in yield and an important increase in harvest index with increased UV-B.  相似文献   

7.
The inheritance of partial resistance within eight bean cultivars to a single-pustule isolate of bean rust was studied by means of a F1 diallel test. General combining ability (GCA) and specific combining ability (SCA) were very highly significant over two seasons and in interaction with seasons. The partitioning of the sums of squares indicated the greater importance of GCA in the inheritance of the resistance. Reciprocal effects were not significant. The estimates of narrow-sense heritability in the two seasons were 0.899 ± 0.056 and 0.603 ± 0.065.  相似文献   

8.
9.
Field and greenhouse experiments were conducted to assess the nitrogen fixation rates of four cultivars of common bean (Phaseolus vulgaris L.) at different growth stages. The 15N isotope dilution technique was used to quantify biological nitrogen fixation. In the greenhouse, cultivars M4403 and Kallmet accumulated 301 and 189 mg N plant–1, respectively, up to 63 days after planting (DAP) of which 57 and 43% was derived from atmosphere. Under field conditions, cultivars Bayocel and Flor de Mayo RMC accumulated in 77 DAP, 147 and 135 kg N ha–1, respectively, of which approximately one-half was derived from the atmosphere. The rates of N2 fixation determined at different growth stages increased as the plants developed, and reached a maximum during the reproductive stage both under field and greenhouse conditions. Differences in translocation of N were observed between the cultivars tested, particularly under field conditions. Thus, the fixed N harvest index was 93 and 60 for cultivars Flor de Mayo and Bayocel, respectively. In early stages of growth, the total content of ureides in the plants correlated with the N fixation rates. The findings reported in the present paper can be used to build a strategy for enhancing biological N2 fixation in common bean.  相似文献   

10.
11.
12.
13.
14.
The effectiveness of RFLP, DAMD-PCR, ISSR and RAPD markers in assessing polymorphism and relationships between 24 commercial lines of Phaseolus vulgaris L.was evaluated. We have used a Phaseolus-specific minisatellite sequence as a probe, which enabled 23 of the bean lines tested to be fingerprinted. Based on the sequence information obtained, primers corresponding to the bean-specific minisatellite core sequence were used in subsequent PCR amplifications. Our observations indicated that while the DAMD-PCR was sensitive in detecting genetic variation between bean species and between accessions of P. vulgaris, when used alone it may be limited in its ability to detect genetic variation among cultivated bean lines due to the low number of loci amplified. Only one out of the five ISSR primers tested was efficient in generating multiple band profiles, which was insufficient to distinguish all the different bean lines. Reproducible RAPD profiles were obtained, and these allowed us to differentiate all the genotypes tested with seven primers. We ultimately used only results from RFLP and RAPD markers to explore the genetic diversity among commercial bean lines. Both analyses led to the same clustering of the bean lines according to their geographical origins (United States or Europe). With respect to the European lines, the results obtained from RAPD data also enable the lines to be clustered according to their creators. Received: 15 January 2000 / Accepted: 21 March 2000  相似文献   

15.
In order to estimate the importance of leaf movements on photosynthesis in well-watered and water-stressed field grown bean cultivars (Arroz Tuscola (AT), Orfeo INIA (OI), Bayos Titan (BT), and Hallados Dorado (HD)), CO2 assimilation, leaf temperature, and capacity for the maximum quantum yield recovery, measured as Fv/Fm, were assessed. Leaf water potential was lower in water-stressed compared to control plants throughout the day. Water status determined a decrease in the CO2 assimilation and stomatal conductance as light intensity and temperature increased up to maximal intensities at midday. Both parameters were lower in stressed compared to control plants. Even though high light intensity and water-stress induced stomatal closure is regarded as a photoinhibitory condition, the recovery of variable to maximal fluorescence (Fv/Fm) after 30min of darkness was nearly constant in both water regimes. In fact, higher values were observed in OI and AT when under stress. Photochemical and non-photochemical fluorescence quenching resulted in minor changes during the day and were similar between watered and stressed plants. It is concluded that paraheliotropism, present in the four bean cultivars, efficiently protects stressed plants from photoinhibition in the field and helps maintain leaf temperatures far below the ambient temperatures, however, it may also be responsible for low CO2 assimilation rates in watered plants.  相似文献   

16.
Folate (vitamin B9) deficiency causes several health problems globally. However, folate biofortification of major staple crops is one alternative that can be used to improve vitamin intakes in populations at risk. We increased the folate levels in common bean by engineering the pteridine branch required for their biosynthesis. GTP cyclohydrolase I from Arabidopsis (AtGchI) was stably introduced into three common bean Pinto cultivars by particle bombardment. Seed‐specific overexpression of AtGCHI caused significant increases of up to 150‐fold in biosynthetic pteridines in the transformed lines. The pteridine boost enhanced folate levels in raw desiccated seeds by up to threefold (325 μg in a 100 g portion), which would represent 81% of the adult recommended daily allowance. Unexpectedly, the engineering also triggered a general increase in PABA levels, the other folate precursor. This was not observed in previous engineering studies and was probably caused by a feedforward mechanism that remains to be elucidated. Results from this work also show that common bean grains accumulate considerable amounts of oxidized pteridines that might represent products of folate degradation in desiccating seeds. Our study uncovers a probable different regulation of folate homoeostasis in these legume grains than that observed in other engineering works. Legumes are good sources of folates, and this work shows that they can be engineered to accumulate even greater amounts of folate that, when consumed, can improve folate status. Biofortification of common bean with folates and other micronutrients represents a promising strategy to improve the nutritional status of populations around the world.  相似文献   

17.
Different viral diseases infect common bean crops in Iran. A total of 248 symptomatic samples were collected from common bean fields throughout main growing fields of Guilan province in Iran during the summer of 2006. Eight viruses were detected using double antibody-sandwich – enzyme-linked immunosorbent assay (DAS-ELISA). Bean common mosaic virus – BCMV (1%), Bean leaf roll virus – BLRV (9%), Cowpea mild mottle virus – CpMMV (6%), Southern bean mosaic virus – SBMV (3%), Cucumber mosaic virus – CMV (15%), Bean golden mosaic virus – BGMV (2%), Bean common mosaic necrosis virus – BCMNV (1%) and Bean yellow mosaic virus – BYMV (1%) were detected. Comparatively CMV (15%) was found to be more prevalent in Guilan province. Multiple infections of viruses were recorded in many samples. Weed species belonging to Chenopodiaceae, Solanaceae, Malvaceae and Amaranthaceae families were also found to be infected with the viruses.  相似文献   

18.
19.
20.
R. A. Dixon  T. Browne  M. Ward 《Planta》1980,150(4):279-285
The increase in extractable phenylalanine ammonia-lyase (PAL;EC 4.3.1.5.) activity induced in French bean cell suspension cultures in response to treatment with autoclaved ribonuclease A was inhibited by addition of the phenylpropanoid pathway intermediates cinnamic acid, 4-coumaric acid or ferulic acid. The effectiveness of inhibition was in the order cinnamic acid>4-coumaric acid>ferulic acid. Cinnamic acid also inhibited the PAL activity increase induced by dilution of the suspensions into an excess of fresh culture medium. Addition of low concentrations (<10-5M) of the pathway intermediates to cultures at the time of application of ribonuclease gave variable responses ranging from inhibition to 30–40% stimulation of the PAL activity measured at 8 h. Following addition of pathway intermediates to cultures 4–5 h after ribonuclease treatment, rapid increases followed by equally rapid declines in PAL activity were observed. The cinnamic acid-stimulated increase in enzyme activity was unaffected by treatment with cycloheximide at a concentration which gave complete inhibition of the ribonuclease-induced response. However, cycloheximide completely abolished the subsequent decline in enzyme activity. Treatment of induced cultures with -aminooxy--phenylpropionic acid (AOPPA) resulted in increased but delayed rates of enzyme appearance when compared to controls not treated with the phenylalanine analogue. The results are discussed in relation to current views on the regulation of enzyme levels in higher plants.Abbreviations AOPPA -aminooxy--phenylpropionic acid - PAL L-phenylalanine ammonia-lyase (EC 4.3.1.5) - AOA -aminooxyacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号