共查询到20条相似文献,搜索用时 15 毫秒
1.
Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/-) and knockout (-/-) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT -/- behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT -/- mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait - a phenotype generally consistent with 'serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT -/- mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT -/- mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice. 相似文献
2.
Shaldubina A Buccafusca R Johanson RA Agam G Belmaker RH Berry GT Bersudsky Y 《Genes, Brain & Behavior》2007,6(3):253-259
Inositol plays a key role in dopamine, serotonin, noradrenaline and acetylcholine neurotransmission, and inositol treatment is reported to have beneficial effects in depression and anxiety. Therefore, a reduction in brain intracellular inositol levels could be a cause of some psychiatric disorders, such as depression or anxiety. To determine the behavioural consequences of inositol depletion, we studied the behaviour of sodium-dependent myo-inositol cotransporter-1 heterozygous knockout mice. In heterozygous mice, free inositol levels were reduced by 15% in the frontal cortex and by 25% in the hippocampus, but they did not differ from their wild-type littermates in cholinergic-mediated lithium-pilocarpine seizures, in the apomorphine-induced stereotypic climbing model of dopaminergic system function, in the Porsolt forced-swimming test model of depression, in amphetamine-induced hyperactivity, or in the elevated plus-maze model of anxiety. Reduction of brain inositol by more than 25% may be required to elicit neurobehavioural effects. 相似文献
3.
4.
5.
Mairi Levitt 《New genetics and society》2013,32(1):4-17
For the legal system to function effectively people are generally viewed as autonomous actors able to exercise choice and responsible for their actions. It is conceivable that genetic traits associated with violent and antisocial behavior could call into question an affected individual's responsibility for acts of criminal violence. Evidence concerning genes associated with violent and antisocial behavior has been introduced in criminal courts in the USA and Italy, either alone or with associated environmental factors. One example of a “genetic defense” is based on low levels of monoamine oxidase A (MAOA) activity, with a prevalence of around 30% in Caucasian males. In countries with trial by jury it is particularly relevant to consider the views of publics on criminal liability and the significance they assign to evidence citing genetic influences on behavior. This article draws on largely qualitative research looking at participants' explanations of, and assigning of responsibility for, violent and antisocial behavior where environmental or genetic influences are claimed. Genetic factors were not viewed deterministically by participants but were considered by most to be irrelevant to personal responsibility. Notions of human agency, free will and choice were crucial to explanations of problem behaviors and ensured that offenders could be held responsible despite evidence on environmental and genetic factors. 相似文献
6.
Tohru Kitada Antonio Pisani†‡ Maha Karouani§ Marian Haburcak§ Giuseppina Martella†‡ Anne Tscherter†‡ Paola Platania†‡ Bei Wu Emmanuel N. Pothos§ Jie Shen 《Journal of neurochemistry》2009,110(2):613-621
Parkin is the most common causative gene of juvenile and early-onset familial Parkinson's diseases and is thought to function as an E3 ubiquitin ligase in the ubiquitin-proteasome system. However, it remains unclear how loss of Parkin protein causes dopaminergic dysfunction and nigral neurodegeneration. To investigate the pathogenic mechanism underlying these mutations, we used parkin −/− mice to study its physiological function in the nigrostriatal circuit. Amperometric recordings showed decreases in evoked dopamine release in acute striatal slices of parkin −/− mice and reductions in the total catecholamine release and quantal size in dissociated chromaffin cells derived from parkin −/− mice. Intracellular recordings of striatal medium spiny neurons revealed impairments of long-term depression and long-term potentiation in parkin −/− mice, whereas long-term potentiation was normal in the Schaeffer collateral pathway of the hippocampus. Levels of dopamine receptors and dopamine transporters were normal in the parkin −/− striatum. These results indicate that Parkin is involved in the regulation of evoked dopamine release and striatal synaptic plasticity in the nigrostriatal pathway, and suggest that impairment in evoked dopamine release may represent a common pathophysiological change in recessive parkinsonism. 相似文献
7.
Most nonhuman primate research on risk factors underlying vulnerability to stress has focused on early psychosocial experiences in various species of macaques. To test for genetic and experiential effects on emotional vulnerability in randomly bred squirrel monkeys, here we combined a paternal half-sibling analysis with three postnatal rearing protocols that altered aspects of maternal availability. In one condition offspring were periodically removed from natal groups, whereas differences in maternal availability were produced in two other conditions by manipulating the effort required of lactating mothers to successfully locate food. After completion of these protocols at 21 weeks of age, social affinities, maternal separation induced peep-calls, and plasma levels of cortisol were assessed from 29 to 37 weeks of age. Significant postnatal rearing effects and the lowest heritabilities were detected in peak elevations of cortisol measured 1 day after the removal of mothers from otherwise undisturbed groups. Individual differences in cortisol 3-7 days later revealed negligible postnatal rearing effects and the highest heritabilities (h(2) approximately. 70), as offspring sired by certain fathers failed to return to the preseparation level found in undisturbed natal groups. Paternal half-siblings that responded with long lasting increases in cortisol spent more time near their mother in undisturbed groups and exhibited long-lasting increases in separation induced peep-calls. These findings concur with human twin studies that suggest genetic and experiential factors contribute to individual differences in vulnerability to emotional distress. 相似文献
8.
Objectives Postpartum psychiatric disorders (PPPD) can be serious and disabling, and may lead to long-term adverse consequences. Partners of women with PPPD are also affected by the illness, but their experiences are seldom described. The aim of this study was to explore men's experience of women with PPPD.Methods Eleven written narratives from the internet were used to analyse men's perceived experience of their partner's PPPDs. Data were analysed using content analysis.Results The men revealed a major disruption in their lives. They expressed fear, confusion and anger; they were also extremely concerned about their partners, and felt unable to help in overcoming the disorder. Most of the men described making sacrifices in order to hold the relationship and the family together. Although the disorder improved over time, they were left to face an uncertain future with a woman who seemed to be very different from the person they had known previously. Most of the men gained maturity and increased self-esteem, but for some the result was divorce, custody disputes and loneliness.Conclusions The men in this study experienced the woman's PPPD as a difficult time, when everything familiar was turned upside down. Health professionals should pay more attention to men's mental health in the postpartum period. Furthermore, information regarding the possibility of these disorders should be given to expectant couples in prenatal classes. Further research is needed to ascertain how and to what extent this should be included in the education. 相似文献
9.
Clearance rates for serotonin (5-HT) in heterozygote (+/-) and homozygote (-/-) serotonin transporter (5-HTT) knockout (KO) mice have not been determined in vivo. Moreover, the effect of selective serotonin reuptake inhibitors (SSRIs) on 5-HT clearance in these mice has not been examined. In this study, the rate of clearance of exogenously applied 5-HT was measured in the CA3 region of the hippocampus of anesthetized mice using high-speed chronoamperometry. Compared with wild-type mice, the maximal rate of 5-HT clearance from extracellular fluid (ECF) was decreased in heterozygotes and more markedly so in KO mice. Heterozygote mice were more sensitive to the 5-HT uptake inhibitor, fluvoxamine, resulting in longer clearance times for 5-HT than in wild-type mice; as expected, the KO mice were completely unresponsive to fluvoxamine. There were no associated changes in norepinephrine transporter density, nor was there an effect of the norepinephrine uptake inhibitor, desipramine, on 5-HT clearance in any genotype. Thus, adaptive changes in the norepinephrine transport system do not occur in the CA3 region of hippocampus as a consequence of 5-HTT KO. These data highlight the potential of the heterozygote 5-HTT mutant mice to model the dynamic in vivo consequences of the human 5-HTT polymorphism. 相似文献
10.
Surguladze SA Elkin A Ecker C Kalidindi S Corsico A Giampietro V Lawrence N Deeley Q Murphy DG Kucharska-Pietura K Russell TA McGuffin P Murray R Phillips ML 《Genes, Brain & Behavior》2008,7(5):543-551
A distributed, serotonergically innervated neural system comprising extrastriate cortex, amygdala and ventral prefrontal cortex is critical for identification of socially relevant emotive stimuli. The extent to which a genetic variation of serotonin transporter gene 5-HTTLPR impacts functional connectivity between the amygdala and the other components of this neural system remains little examined. In our study, neural activity was measured using event-related functional magnetic resonance imaging in 29 right-handed, white Caucasian healthy subjects as they viewed mild or prototypical fearful and neutral facial expressions. 5-HTTLPR genotype was classified as homozygous for the short allele ( S/S ), homozygous for the long allele ( L/L ) or heterozygous ( S/L ). S/S showed greater activity than L/L within right fusiform gyrus (FG) to prototypically fearful faces. To these fearful faces, S/S more than other genotype subgroups showed significantly greater positive functional connectivity between right amygdala and FG and between right FG and right ventrolateral prefrontal cortex (VLPFC). There was a positive association between measure of psychoticism and degree of functional connectivity between right FG and right VLPFC in response to prototypically fearful faces. Our data are the first to show that genotypic variation in 5-HTTLPR modulates both the amplitude within and the functional connectivity between different components of the visual object-processing neural system to emotionally salient stimuli. These effects may underlie the vulnerability to mood and anxiety disorders potentially triggered by socially salient, emotional cues in individuals with the S allele of 5-HTTLPR. 相似文献
11.
Arabidopsis SOI33/AtENT8 Gene Encodes a Putative Equilibrative Nucleoside Transporter That Is Involved in Cytokinin Transport In Planta 总被引:6,自引:0,他引:6
JiaqiangSUN NaoyaHIROSE XingchunWANG PeiWEN LiXUE HitoshiSAKAKIBARA JianruZUO 《植物学报(英文版)》2005,47(5):588-603
The plant phytohormone cytokinin plays an important role in many facets of plant growth and development by regulating cell division and differentiation. Recent studies have shed significant light into the mechanisms of cytokinin metabolism and signaling. However, little is known about how the hormone is transported in planta, although it has been proposed that the hormone is presumably transported in nucleoside-conjugated forms. Here, we report the identification and characterization of cytokinin transporters in Arabidopsis. We previously reported that a gain-of-function mutation in the PGA22/AtlPT8 gene caused overproduction of cytokinins in planta. In an effort to screen for suppressor of pga22/atipt8 (soi) mutants, we identified a mutant soi33-1. Molecular and genetic analyses indicated that S0133 encodes a putative equilibrative nucleoside transporter (ENT), previously designated as AtENT8. Members of this small gene family are presumed to be involved in the transport of nucleosides in eukaryodc cells. Under conditions of nitrogen starvation, loss-of-function mutations in SOI33/AtENT8 or in a related gene AtENT3 cause a reduced sensitivity to the nucleoside-type cytokinins isopentenyladenine riboside (iPR) and transzeatin riboside (tZR), but display a normal response to the free base-type cytokinins isopentenyladenine (iP) and trans-zeatin (tZ). Conversely, overexpression of SOI33/AtENT8 renders transgenic plants hypersensitive to iPR but not to iP. An in planta measurement experiment indicated that uptake efficiency of^3Hlabeled iPR was reduced more than 40% in soi33 and atent3 mutants. However, a mutation in AtENT1 had no substantial effect on the cytokinin response and iPR uptake efficiency. Our results suggest that SOI33/AtENT8 and AtENT3 are involved in the transport of nucleoside-type cytokinins in Arabidopsis. 相似文献
12.
Johanna Ceschin Hans Caspar Hürlimann Christelle Saint-Marc Delphine Albrecht Typhaine Violo Michel Moenner Bertrand Daignan-Fornier Beno?t Pinson 《The Journal of biological chemistry》2015,290(39):23947-23959
5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside monophosphate (AICAR) is a natural metabolite with potent anti-proliferative and low energy mimetic properties. At high concentration, AICAR is toxic for yeast and mammalian cells, but the molecular basis of this toxicity is poorly understood. Here, we report the identification of yeast purine salvage pathway mutants that are synthetically lethal with AICAR accumulation. Genetic suppression revealed that this synthetic lethality is in part due to low expression of adenine phosphoribosyl transferase under high AICAR conditions. In addition, metabolite profiling points to the AICAR/NTP balance as crucial for optimal utilization of glucose as a carbon source. Indeed, we found that AICAR toxicity in yeast and human cells is alleviated when glucose is replaced by an alternative carbon source. Together, our metabolic analyses unveil the AICAR/NTP balance as a major factor of AICAR antiproliferative effects. 相似文献
13.
14.
15.
Jiaqiang SUN Naoya HIROSE Xingchun WANG Pei WEN Li XUE Hitoshi SAKAKIBARA Jianru ZUO 《植物学报(英文版)》2005,47(5)
The plant phytohormone cytokinin plays an important role in many facets of plant growth and development by regulating cell division and differentiation. Recent studies have shed significant light into the mechanisms of cytokinin metabolism and signaling. However, little is known about how the hormone is transported in planta, although it has been proposed that the hormone is presumably transported in nucleoside-conjugated forms. Here, we report the identification and characterization of cytokinin transport ers in Arabidopsis. We previously reported that a gain-of-function mutation in the PGA22/AtIPT8 gene caused overproduction of cytokinins in planta. In an effort to screen for suppressor of pga22/atipt8 (soi) mutants, we identified a mutant soi33-1. Molecular and genetic analyses indicated that SOI33 encodes a putative equilibrative nucleoside transporter (ENT), previously designated as AtENT8. Members of this small gene family are presumed to be involved in the transport of nucleosides in eukaryotic cells. Under conditions of nitrogen starvation, loss-of-function mutations in SOI33/AtENT8 or in a related gene AtENT3 cause a reduced sensitivity to the nucleoside-type cytokinins isopentenyladenine riboside (iPR) and trans zeatin riboside (tZR), but display a normal response to the free base-type cytokinins isopentenyladenine (iP) and trans-zeatin (tZ). Conversely, overexpression of SOI33/AtENT8 renders transgenic plants hyper sensitive to iPR but not to iP. An in planta measurement experiment indicated that uptake efficiency of 3H labeled iPR was reduced more than 40% in soi33 and atent3 mutants. However, a mutation inAtENT1 had no substantial effect on the cytokinin response and iPR uptake efficiency. Our results suggest that SOI33/ AtENT8 and AtENT3 are involved in the transport of nucleoside-type cytokinins in Arabidopsis. 相似文献
16.
James J. Gattuso;Carey Wilson;Anthony J. Hannan;Thibault Renoir; 《Journal of neurochemistry》2024,168(9):1687-1720
Psilocybin is the main psychoactive compound found in hallucinogenic/magic mushrooms and can bind to both serotonergic and tropomyosin receptor kinase b (TrkB) receptors. Psilocybin has begun to show efficacy for a range of neuropsychiatric conditions, including treatment-resistant depression and anxiety disorders; however, neurobiological mechanisms are still being elucidated. Clinical research has found that psilocybin can alter functional connectivity patterns in human brains, which is often associated with therapeutic outcomes. However, preclinical research affords the opportunity to assess the potential cellular mechanisms by which psilocybin may exert its therapeutic effects. Preclinical rodent models can also facilitate a more tightly controlled experimental context and minimise placebo effects. Furthermore, where there is a rationale, preclinical researchers can investigate psilocybin administration in neuropsychiatric conditions that have not yet been researched clinically. As a result, we have systematically reviewed the knowledge base, identifying 82 preclinical studies which were screened based on specific criteria. This resulted in the exclusion of 44 articles, with 34 articles being included in the main review and another 2 articles included as Supporting Information materials. We found that psilocybin shows promise as a lead candidate molecule for treating a variety of neuropsychiatric conditions, albeit showing the most efficacy for depression. We discuss the experimental findings, and identify possible mechanisms whereby psilocybin could invoke therapeutic changes. Furthermore, we critically evaluate the between-study heterogeneity and possible future research avenues. Our review suggests that preclinical rodent models can provide valid and translatable tools for researching novel psilocybin-induced molecular and cellular mechanisms, and therapeutic outcomes. 相似文献
17.
Leonhard Schilbach 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2016,371(1686)
Psychiatric disorders can affect our ability to successfully and enjoyably interact with others. Conversely, having difficulties in social relations is known to increase the risk of developing a psychiatric disorder. In this article, the assumption that psychiatric disorders can be construed as disorders of social interaction is reviewed from a clinical point of view. Furthermore, it is argued that a psychiatrically motivated focus on the dynamics of social interaction may help to provide new perspectives for the field of social neuroscience. Such progress may be crucial to realize social neuroscience''s translational potential and to advance the transdiagnostic investigation of the neurobiology of psychiatric disorders. 相似文献
18.
The developing fetus and neonate are highly sensitive to maternal environment. Besides the well‐documented effects of maternal stress, nutrition and infections, maternal mutations, by altering the fetal, perinatal and/or early postnatal environment, can impact the behavior of genetically normal offspring. Mutation/premutation in the X‐linked FMR1 (encoding the translational regulator FMRP) in females, although primarily responsible for causing fragile X syndrome (FXS) in their children, may also elicit such maternal effects. We showed that a deficit in maternal FMRP in mice results in hyperactivity in the genetically normal offspring. To test if maternal FMRP has a broader intergenerational effect, we measured social behavior, a core dimension of neurodevelopmental disorders, in offspring of FMRP‐deficient dams. We found that male offspring of Fmr1+/? mothers, independent of their own Fmr1 genotype, exhibit increased approach and reduced avoidance toward conspecific strangers, reminiscent of ‘indiscriminate friendliness’ or the lack of stranger anxiety, diagnosed in neglected children and in patients with Asperger's and Williams syndrome. Furthermore, social interaction failed to activate mesolimbic/amygdala regions, encoding social aversion, in these mice, providing a neurobiological basis for the behavioral abnormality. This work identifies a novel role for FMRP that extends its function beyond the well‐established genetic function into intergenerational non‐genetic inheritance/programming of social behavior and the corresponding neuronal circuit. As FXS premutation and some psychiatric conditions that can be associated with reduced FMRP expression are more prevalent in mothers than full FMR1 mutation, our findings potentially broaden the significance of FMRP‐dependent programming of social behavior beyond the FXS population. 相似文献
19.
Much of the current genetic research into aggressive and violent behavior focuses on young people and might appear to offer the hope of targeted prediction and intervention. In the UK data are collected on children from various agencies and collated to produce “at risk of offending” identities used to justify intervention. Information from behavioral genetic tests could conceivably be included. Regulatory frameworks for collecting, storing and using information from DNA samples differ between the health service and the police particularly in the need for consent and the treatment of children. This paper draws on discussions with professionals involved with “problem” young people to consider their views on the utility of genetic research for tackling violent/aggressive behavior and the impact an identification of genetic susceptibility might have on their clients. 相似文献
20.
The present study used voltammetry to ascertain whether electrically stimulated somatodendritic dopamine release in ventral tegmental area slices from C57BL/6 and dopamine transporter knockout mice was due to exocytosis or dopamine transporter reversal, as has been debated. The maximal concentration of electrically evoked dopamine release was similar between ventral tegmental area slices from dopamine transporter knockout and C57BL/6 mice. Dopamine transporter blockade (10 μM nomifensine) in slices from C57BL/6 mice inhibited dopamine uptake but did not alter peak evoked dopamine release. In addition, dopamine release and uptake kinetics in ventral tegmental area slices from dopamine transporter knockout mice were unaltered by the norepinephrine transporter inhibitor, desipramine (10 μM), or the serotonin transporter inhibitor, fluoxetine (10 μM). Furthermore, maximal dopamine release in ventral tegmental area slices from both C57BL/6 and dopamine transporter knockout mice was significantly decreased in response to Na+ channel blockade by 1 μM tetrototoxin, removal of Ca2+ from the perfusion media and neuronal vesicular monoamine transporter inhibition by RO-04-1284 (10 μM) or tetrabenazine (10 and 100 μM). Finally, the glutamate receptor antagonists AP-5 (50 and 100 μM) and CNQX (20 and 50 μM) had no effect on peak somatodendritic dopamine release in C57BL/6 mice. Overall, these data suggest that similar mechanisms, consistent with exocytosis, govern electrically evoked dopamine release in ventral tegmental area slices from C57BL/6 and dopamine transporter knockout mice. 相似文献