共查询到20条相似文献,搜索用时 11 毫秒
1.
Expression of the argF gene of Pseudomonas aeruginosa in Pseudomonas aeruginosa, Pseudomonas putida, and Escherichia coli 总被引:3,自引:3,他引:0 下载免费PDF全文
R' plasmids carrying argF genes from Pseudomonas aeruginosa strains PAO and PAC were transferred to Pseudomonas putida argF and Escherichia coli argF strains. Expression in P. putida was similar to that in P. aeruginosa and was repressed by exogenous arginine. Expression in E. coli was 2 to 4% of that in P. aeruginosa. Exogenous arginine had no effect, and there were no significant differences between argR' and argR strains of E. coli in this respect. 相似文献
2.
Regulation and over-expression of the fnr gene of Escherichia coli 总被引:33,自引:0,他引:33
3.
4.
Actinobacillus pleuropneumoniae hlyX gene homology with the fnr gene of Escherichia coli. 总被引:7,自引:5,他引:7 下载免费PDF全文
The hlyX gene from Actinobacillus pleuropneumoniae, which confers a hemolytic phenotype on Escherichia coli, was sequenced, and its role in regulation of gene expression was investigated. No similarity was found between the hlyX sequence and sequences of known hemolysin or cytotoxin genes. However, the hlyX sequence was very similar to that of the fnr gene of Escherichia coli which encodes the global regulatory protein, FNR. Comparison of the deduced amino acid sequence of the hlyX gene product (HlyX) with that of FNR revealed a high degree of well-aligned sequence correlation throughout the polypeptide chain. For example, 23 of 24 amino acids in the DNA-binding region of FNR are identical in the corresponding region of HlyX. Four cysteine residues in the amino-terminal region are also conserved. The promoter region of hlyX is very similar to that of fnr. It has a putative -10 sequence which closely resembles the E. coli -10 consensus sequence. This sequence is overlapped by a potential operator which is very similar to the FNR-binding-site consensus sequence. Functional homology between HlyX and FNR was also demonstrated. Plasmids carrying hlyX complemented the nutritional lesion of an fnr deletion strain of E. coli. These data suggest that HlyX may regulate, rather than mediate, hemolytic activity in E. coli, but the possibility that HlyX is both a regulator of gene expression and a hemolysin cannot be excluded. 相似文献
5.
Expression of the phospholipase C gene of Pseudomonas aeruginosa in Escherichia coli and Pseudomonas
V N Zinov'eva I S Sever G M Vakhrameeva 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》1989,(9):33-38
The plc gene for phospholipase of Pseudomonas aeruginosa, able to be transcribed only from its own promoter, has been introduced into Escherichia coli, Pseudomonas aeruginosa and Pseudomonas putida cells in the recombinant plasmid pPMS21 of a wide host range. The expression of plc gene in all recipient cells has been shown to be phosphate regulated. The fact emphasizes the identity of pho-regulation systems in Escherichia coli and Pseudomonas cells. The level of phospholipase activity is similar in Pseudomonas putida and Pseudomonas aeruginosa under the conditions of the gene derepression, while in Escherichia coli cells the level does not exceed 10% of activity registered in Pseudomonas cells. 相似文献
6.
fixK, a gene homologous with fnr and crp from Escherichia coli, regulates nitrogen fixation genes both positively and negatively in Rhizobium meliloti. 总被引:37,自引:0,他引:37 下载免费PDF全文
J Batut M L Daveran-Mingot M David J Jacobs A M Garnerone D Kahn 《The EMBO journal》1989,8(4):1279-1286
Nitrogen fixation genes are shown to undergo a complex positive and negative regulation in Rhizobium meliloti. Activation of fixN by fixLJ is shown to require a third regulatory gene, fixK. As fixK is activated by fixLJ, we propose a cascade model for fixN regulation such that fixLJ activates fixN via fixK. In addition fixK negatively regulates expression of the nif-specific activator nifA as well as its own expression by autoregulation. Thus nifA and fixK are subject to a mixed regulation, positive (by fixLJ) and negative (by fixK). The sequence of fixK shows homology with the Escherichia coli regulators fnr and crp, which makes fixK the third characterized member of this family of prokaryotic regulators. 相似文献
7.
Use of gene fusions to study the expression of fnr, the regulatory gene of anaerobic electron transfer in Escherichia coli 总被引:3,自引:0,他引:3
Marie-Claire Pascal Violaine Bonnefoy Michel Fons Marc Chippaux 《FEMS microbiology letters》1986,36(1):35-39
Abstract Fusions between fnr , the regulatory gene for anaerobic electron transfer, and lacZ were obtained by insertion of Mu d II1734 bacteriophage in the fnr gene cloned in a plasmid. After transfer onto the chromosome, study of the fusion showed that the expression of fnr is independent of anaerobiosis, negatively regulated by its own product and partly positively controlled by cyclic AMP. 相似文献
8.
9.
The algR2 (also known as algQ) gene of Pseudomonas aeruginosa has previously been identified as being necessary for alginate production at 37°C. We have cloned two genes, from a cosmid library of Escherichia coli, which can restore mucoidy to an algR2 mutant of P. aeruginosa. The complementing regions of both cosmids were localized by subcloning restriction fragments. One of the E. coli genes identified here has not previously been described; we have named this gene rnk (regulator of nucleoside diphosphate kinase). It encodes a 14.9 kDa protein with no homo-logy to any other protein. The other gene, sspA, is a regulator involved in stationary-phase regulation in E. coli. Either gene will restore mucoidy to an algR2-deficient strain of P. aeruginosa. AlgR2 has been shown to regulate at least two enzymes, succinyl-CoA synthetase (Scs) and nucleoside diphosphate kinase (Ndk), which form a complex in P. aeruginosa. When we examined the ability of the E. coli analogues to regulate Ndk, we found that rnk but not sspA was able to restore Ndk activity to the P. aeruginosa algR2 mutant. Furthermore, rnk was able to restore growth of the algR2 mutant in the presence of Tween 20, which inhibits other Ndk-like activities. 相似文献
10.
11.
Expression of the Pseudomonas aeruginosa PAK pilin gene in Escherichia coli. 总被引:3,自引:5,他引:3 下载免费PDF全文
Pseudomonas aeruginosa is a piliated opportunistic pathogen. We have recently reported the cloning of the structural gene for the pilus protein, pilin, from P. aeruginosa PAK (B. L. Pasloske, B. B. Finlay, and W. Paranchych, FEBS Lett. 183:408-412, 1985), and in this paper we present evidence that this chimera (pBP001) expresses P. aeruginosa PAK pilin in Escherichia coli independent of a vector promoter. The strength of the promoter for the PAK pilin gene was assayed, and the cellular location of the pilin protein within E. coli was examined. This protein was present mainly in the inner membrane fraction both with and without its six-amino-acid leader sequence, but it was not assembled into pili. 相似文献
12.
B. L. Pasloske M. R. Carpenter L. S. Frost B. B. Finlay W. Paranchych† † 《Molecular microbiology》1988,2(2):185-195
Previous work has demonstrated the expression of the cloned pilin gene of Pseudomonas aeruginosa PAK within Escherichia coli and has pinpointed this protein's localization exclusively to the cytoplasmic membrane (Finlay et al., 1986). To define regions of the pilin subunit necessary for its stability and transport within E. coli, we constructed six mutants of the pilin gene and studied their expression and localization using a T7 promoter system. Two of the mutants have either a 4- or 8-amino-acid deletion at the N-terminus and both were stably expressed and transported primarily to the cytoplasmic membrane of E. coli. The other four mutants are C-terminal truncations having between 36 and 56 amino acids of the N-terminal region of the unprocessed pilin. Studies with these truncated mutants revealed that only the first 36 residues of the unprocessed pilin subunit were required for insertion into the E. coli membrane. 相似文献
13.
14.
Cloning of a catabolite repression control (crc) gene from Pseudomonas aeruginosa, expression of the gene in Escherichia coli, and identification of the gene product in Pseudomonas aeruginosa. 下载免费PDF全文
Mutants which are defective in catabolite repression control (CRC) of multiple independently regulated catabolic pathways have been previously described. The mutations were mapped at 11 min on the Pseudomonas aeruginosa chromosome and designated crc. This report describes the cloning of a gene which restores normal CRC to these Crc- mutants in trans. The gene expressing this CRC activity was subcloned on a 2-kb piece of DNA. When this 2-kb fragment was placed in a plasmid behind a phage T7 promoter and transcribed by T7 RNA polymerase, a soluble protein with a molecular weight (MW) of about 30,000 was produced in Escherichia coli. A soluble protein of identical size was overproduced in a Crc- mutant when it contained the 2-kb fragment on a multicopy plasmid. This protein could not be detected in the mutant containing the vector without the 2-kb insert or with no plasmid. When a 0.3-kb AccI fragment was removed from the crc gene and replaced with a kanamycin resistance cassette, the interrupted crc gene no longer restored CRC to the mutant, and the mutant containing the interrupted gene no longer overproduced the 30,000-MW protein. Pools of intracellular cyclic AMP and the activities of adenylate cyclase and phosphodiesterase were measured in mutant and wild-type strains with and without a plasmid containing the crc gene. No consistent differences between any strains were found in any case. These results provide original evidence for a 30,000-MW protein encoded by crc+ that is required for wild-type CRC in P. aeruginosa and confirms earlier reports that the mode of CRC is cyclic AMP independent in this bacterium. 相似文献
15.
P A Castric 《Canadian journal of microbiology》1975,21(5):613-618
Seventy-four of 110 strains of Pseudomonas aeruginosa tested produced detectable amounts of HCN from growth in 2% peptone or nutrient agar. Of the 25 species of12 bacterial and fungal genera tested, other than P. aeruginosa, only P. fluorescens and P. polycolor gave positive HCN tests. Cyanide is produced after cessation of active growth. Iron was stimulatory to cyanogenesis in concentration above 1 muM, while copper, zinc, cobalt, and manganese at concentrations of 20 muM had no effect. Cyanogenesis id dependent on the temperature of incubation within ranges which allow complete growth. Inorganic phosphate in concentrations between 90 and 300 mM allows growth but inhibits HCN production. Growth of cells anaerobically, using nitrate as the electron acceptor, results in low cyanide yields, which can be partially reversed by subsequent aerobic incubation. These results indicate that HCN is a secondary metabolite of P. aeruginosa. 相似文献
16.
Characterization of the phospholipase C gene of Pseudomonas aeruginosa cloned in Escherichia coli 总被引:18,自引:0,他引:18
We have cloned a 4.9-kb fragment of Pseudomonas aeruginosa DNA containing the structural gene of phospholipase C (PLC), by inserting it into the BamHI site of plasmid pBR322. Strains of Escherichia coli carrying this recombinant plasmid produce PLC, but expression of the gene differs from that in P. aeruginosa in two respects: (i) synthesis of the enzyme appears to be constitutive, i.e., not repressible by the presence of inorganic phosphate in the growth medium, and (ii) most of the enzyme remains associated with the outer membrane instead of being secreted. Insertion mutagenesis at a unique restriction site within the PLC gene destroyed the ability of the plasmid to code, in maxicells, for phospholipase C activity and for an Mr 80000 polypeptide. 相似文献
17.
Effects of growth phase and boiling of enteropathogenic Escherichia coli strains on their interaction with Pseudomonas aeruginosa lectins 总被引:1,自引:0,他引:1
Escherichia coli strains from' serotypes O86, 0128 and O111 varied in their reactivity with Pseudomonas aeruginose lectins (PA-I with D-galactose specificity and PA-II which binds L-fucose, D-mannose, L-galactose and D-fructose). Generally, cells of O86 strains were agglutinated by PA-I, but not by PA-II, and those of O128 serotype were agglutinated by PA-II, and not by PA-I. Adsorption tests showed that cells of E. coli O86 strains adsorb PA-I to a greater extent than PA-II, while most E. coli O128 strains adsorbed higher amounts of PA-II. Cells of E. coli O111B4 which were not agglutinated by either Pseudomonas lectin could still adsorb both. Boiling of O86 and O128 cells frequently enhanced their agglutinability as well as their lectin adsorption capacity. The agglutinability enhancement was somewhat more prominent in boiled stationary phase cells than in log phase cells probably due to late synthesis of the O antigen components concomitantly with the heat-sensitive components (K antigens) which masked them. PA-I agglutinating activity was inhibited by the lipopolysaccharide (LPS) extracted from E. coli O86 cells, while PA-II was inhibited by the LPS extracted from E. coli O128 cells. These findings indicate that the receptors to the Pseudomonas lectins probably reside in the terminal part of the O-specific-polysaccharide of the LPSs of these bacteria. 相似文献
18.
Nucleotide sequence and expression in Escherichia coli of the Pseudomonas aeruginosa lasA gene. 总被引:4,自引:9,他引:4 下载免费PDF全文
Pseudomonas aeruginosa PAO-E64 is a mutant which produces parental levels of elastase antigen but has no elastolytic activity at 37 degrees C. The lesion (lasA1) in PAO-E64 is not a mutation in the structural gene for P. aeruginosa elastase (P.A. Schad, R.A. Bever, T.I. Nicas, F. Leduce, L.F. Hanne, and B.H. Iglewski, J. Bacteriol. 169: 2691-2696, 1987). A 1.7-kilobase segment of DNA that complements the lasA1 lesion was sequenced. Computer analysis of the DNA sequence showed that it contained an open reading frame which encoded a 41,111-dalton protein. The lasA gene was expressed under an inducible PT-7 promoter, and a 40,000-dalton protein was detected in Escherichia coli lysates. The lasA protein was localized in the outer membrane fraction of E. coli. This lasA protein produced in E. coli activated the extracellular elastase produced by the P. aeruginosa mutant, PAO-E64. 相似文献
19.
20.
利用抗生素对大肠埃希菌和铜绿假单胞菌的影响进行菌株区分 总被引:1,自引:0,他引:1
目的为了探讨抗生素对中心碳代谢的影响,我们研究了大肠埃希菌和铜绿假单胞菌在11种不同抗生素的刺激下,三羧酸循环相关有机酸的代谢变化。方法利用毛细管电泳技术对2种菌在不同抗生素作用下细胞内的主要有机酸进行检测,然后通过多变量统计分析对数据进行处理。结果通过多变量统计分析发现,2种细菌可以通过抗生素对其胞内有机酸的影响不同而得到区分。结论胞内有机酸的变化具有菌株特异性,可以用于细菌的区分。 相似文献