首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Intracellular heme concentrations are maintained in part by heme degradation, which is catalyzed by heme oxygenase. Heme oxygenase consists of two structurally related isozymes, HO-1 and HO-2. Recent studies have identified HO-2 as a potential oxygen sensor. To gain further insights into the regulatory role of HO-2 in heme homeostasis, we analyzed the expression profiles of HO-2 and the biochemical consequences of HO-2 knockdown with specific short interfering RNA (siRNA) in human cells. Both HO-2 mRNA and protein are expressed in the eight human cancer cell lines examined, and HO-1 expression is detectable in five of the cell lines, including HeLa cervical cancer and HepG2 hepatoma. Down-regulation of HO-2 expression with siRNA against HO-2 (siHO-2) caused induction of HO-1 expression at both mRNA and protein levels in HeLa and HepG2 cells. In contrast, knockdown of HO-1 expression did not noticeably influence HO-2 expression. HO-2 knockdown prolonged the half-life of HO-1 mRNA twofold in HeLa cells. Transient transfection assays in HeLa cells revealed that the 4.5-kb human HO-1 gene promoter was activated with selective knockdown of HO-2 in a sequence-dependent manner. Moreover, HO-2 knockdown caused heme accumulation in HeLa and HepG2 cells only when exposed to exogenous hemin. HO-2 knockdown may mimic a certain physiological change that is important in the maintenance of cellular heme homeostasis. These results suggest that HO-2 may down-regulate the expression of HO-1, thereby directing the co-ordinated expression of HO-1 and HO-2.  相似文献   

2.
CBA/JXDBA/2J murine abortion is known to be associated with increased local and peripheral Th1-cytokines levels. The role of the pro-inflammatory interleukin-6 (IL-6) in murine abortion remains unclear. In humans, IL-6 was reported to be elevated at the onset of spontaneous abortion. The aim of our study was to evaluate the levels of IL-6 during murine pregnancy in (1) the normal murine pregnancy combination CBA/JXBALB/c and in (2) the CBA/JXDBA/2J abortion prone mating combination. We measured IL-6 serum levels by ELISA and local (placental and decidual) IL-6 levels by flow cytometry and immunohistochemistry. The expression of the IL-6 receptor gp80 was further analyzed. We additionally evaluated the number of mast cells and macrophages at the feto-maternal interface as a putative IL-6 source in reproductive tissues. IL-6 and gp80 were expressed in decidual cells as well as in different trophoblast types. Flow cytometry analysis showed increased numbers of IL-6+ cells in abortion placentas and deciduas compared to control pregnant mice. We observed an elevated number of mast cells and macrophages at the feto-maternal interface from abortion mice in comparison to control mice. Interestingly, we found very high numbers of mast cells, macrophages and IL-6+ cells in resorption tissue compared to control tissues. Flow cytometry studies confirmed that macrophages are being an important source of IL-6 at the feto-maternal interface. The mRNA IL-6 levels were also enhanced in placenta and decidua from mice with high abortion rate compared to normal pregnant mice, as analyzed by RT-PCR. Our results suggest that IL-6 produced not only by immunocompetent cells such as macrophages and mast cells, but also by trophoblasts and decidua cells, is directly involved in the pathology of abortion.  相似文献   

3.
4.
Induction of the "delay phenomenon" by chronic ischemia is an established clinical procedure, but the mechanisms conferring tissue protection are still incompletely understood. To elucidate the role of heme oxygenase-1 [HO-1 or heat shock protein-32 (HSP-32)] in delay, we examined in the skin-flap model of the ear of the hairless mouse, 1) whether chronic ischemia (delay) is capable to induce expression of HO-1, and 2) whether delay-induced HO-1 affects skin-flap microcirculation and survival by either its carbon monoxide-associated vasodilatory action or its biliverdin-associated anti-oxidative mechanism. Chronic ischemia was induced by transsection of the central feeding vessel of the ear 7 days before flap creation. The flap was finally raised by an incision through four-fifths of the base of the ear. Microcirculatory dysfunction and tissue necrosis were studied with the use of laser Doppler fluxmetry and intravital fluorescence microscopy. HO-1 protein expression was determined with Western blot analysis. Seven days of chronic ischemia (delay) induced a marked expression of HO-1. This was paralleled by a significant improvement (P <0.05) of microvascular perfusion and a reduction (P <0.05) of flap necrosis when compared with nondelayed controls. Importantly, blockade of HO-1 activity by tin protoporhyrin-IX completely blunted the protection of microcirculation and the improvement of tissue survival. Additional administration of the vitamin E analog trolox after blockade of HO-1 to mimic exclusively the anti-oxidative action of the heat shock protein did not restore the HO-1-associated microcirculatory improvement and only transiently attenuated the manifestation of flap necrosis. Thus our data indicate that the delay-induced protection from tissue necrosis is mediated by HO-1, predominantly through its carbon monoxide-associated action of adequately maintaining nutritive capillary perfusion.  相似文献   

5.
We report the crystal structure of heme oxygenase from the pathogenic bacterium Neisseria meningitidis at 1.5 A and compare and contrast it with known structures of heme oxygenase-1 from mammalian sources. Both the bacterial and mammalian enzymes share the same overall fold, with a histidine contributing a ligand to the proximal side of the heme iron and a kinked alpha-helix defining the distal pocket. The distal helix differs noticeably in both sequence and conformation, and the distal pocket of the Neisseria enzyme is substantially smaller than in the mammalian enzyme. Key glycine residues provide the flexibility for the helical kink, allow close contact of the helix backbone with the heme, and may interact directly with heme ligands.  相似文献   

6.
ObjectiveWe evaluated the relationship between the HO1 genotype, ferritin levels and the risk of type-2 diabetes and inflammation.Research methodsEight hundred thirty-five individuals were evaluated and classified according to their nutritional status and the presence of type-2 diabetes: 153 overweight (OW); 62 obese (OB); 55 type-2 diabetes mellitus (DM); 202 OWDM; 239 OBDM and 124 controls (C). We studied biochemical (glycemia, insulin, lipid profile, liver enzyme, creatinine, hsCRP), hematological (hemoglobin, free erythrocyte protoporphyrin, transferrin receptor and serum Fe and ferritin) and oxidative stress (SOD, GHS and TBARS) parameters. We determined heme oxygenase activity and the (GT)n polymorphism in its gene promoter.ResultsIndividuals with diabetes, independent of nutritional status, showed high levels of ferritin and HO activity compared to control subjects. Allelic frequency was not different between the groups (Chi2, NS) however, genotypes were different (Chi2, P < 0.001). The SS (short-short) genotype was higher in all DM individuals compared to controls and MM was higher in controls. SM (short-medium) genotype was an independent risk factor for DM in logistic regression analysis. We observed high risk for type-2 diabetes mellitus in the presence of SM genotype and high levels of ferritin (OR adjusted: 2.7; 1.9–3.6; p < 0.001; compared to control group). It was also significantly related to inflammation.ConclusionThe SM genotype in HO1 gene promoter and ferritin levels were associated with higher risk for type-2 diabetes and for having a higher marker of inflammation, which is the main risk factor for the development of chronic diseases.  相似文献   

7.
IntroductionHIV-1 RNA can be found at higher levels in cerebrospinal fluid (CSF) than in plasma, termed CSF/plasma discordance. The clinical significance of CSF/plasma discordance is not known and the degree of discordance considered important varies. We aimed to determine whether a panel of CSF cytokines, chemokines and associated mediators were raised in patients with CSF/plasma discordance at different levels.MethodsA nested case-control study of 40 CSF samples from the PARTITION study. We used a cytometric bead array to measure CSF mediator concentrations in 19 discordant and 21 non-discordant samples matched for plasma HIV-1 RNA. Discordant samples were subdivided into ‘high discordance’ (>1log10) and ‘low discordance’ (0.5–1log10, or ultrasensitive discordance). CSF mediators significant in univariate analysis went forward to two-way unsupervised hierarchical clustering based on the patterns of relative mediator concentrations.ResultsIn univariate analysis 19 of 21 CSF mediators were significantly higher in discordant than non-discordant samples. There were no significant differences between samples with high versus low discordance. The samples grouped into two clusters which corresponded to CSF/plasma discordance (p < 0.0001). In cluster one all mediators had relatively high abundance; this included 18 discordant samples and three non-discordant samples. In cluster two all mediators had relatively low abundance; this included 18 non-discordant samples and one non-discordant sample with ultrasensitive discordance only.ConclusionsCSF/plasma discordance is associated with potentially damaging neuroinflammatory process. Patients with discordance at lower levels (ie. 0.5–1log10) should also be investigated as mediator profiles were similar to those with discordance >1log10. Sensitive testing may have a role to determine whether ultrasensitive discordance is present in those with low level CSF escape.  相似文献   

8.
The tumor suppressor gene p53 regulates apoptotic cell death and the cell cycle. In this study, we investigated the role of p53 in nitric oxide (NO)-induced apoptosis in vascular smooth muscle cells (VSMCs). We found that the NO donor S-nitroso-N-acetylpenicillamine (SNAP) increased apoptotic cell death in p53-deficient VSMCs compared with wild-type cells. The heme oxygenase (HO) inhibitor tin protoporphyrin IX reduced the resistance of wild-type VSMCs to SNAP-induced cell death. SNAP promoted HO-1 expression in both cell types. HO-2 protein was increased only in wild-type VSMCs following SNAP treatment; however, similar levels of HO-2 mRNA were detected in both cell types. SNAP significantly increased the levels of non-heme-iron and dinitrosyl iron-sulfur clusters in wild-type VSMCs compared with p53-deficient VSMCs. Moreover, pretreatment with FeSO4 and the carbon monoxide donor CORM-2, but not biliverdin, significantly protected p53-deficient cells from SNAP-induced cell death compared with normal cells. These results suggest that wild-type VSMCs are more resistant to NO-mediated apoptosis than p53-deficient VSMCs through p53-dependent up-regulation of HO-2.  相似文献   

9.
10.
Heme oxygenase converts heme to biliverdin, iron, and CO in a reaction with two established intermediates, alpha-meso-hydroxyheme and verdoheme. Transient kinetic studies show that the conversion of Fe(3+)-heme to Fe(3+)-verdoheme is biphasic. Electron transfer to the heme (0.11 s(-1) at 4 degrees C and 0.49 s(-1) at 25 degrees C) followed by rapid O(2) binding yields the ferrous dioxy complex. Transfer of an electron (0.056 s(-1) at 4 degrees C and 0.21 s(-1) at 25 degrees C) to this complex triggers the formation of alpha-meso-hydroxyheme and its subsequent O(2)-dependent fragmentation to Fe(3+)-verdoheme. The conversion of Fe(3+)-verdoheme to Fe(3+)-biliverdin is also biphasic. Thus, reduction of Fe(3+) to Fe(2+)-verdoheme (0.15 s(-1) at 4 degrees C and 0.55 s(-1) at 25 degrees C) followed by O(2) binding and an electron transfer produces Fe(3+)-biliverdin (0.025 s(-1) at 4 degrees C and 0.10 s(-1) at 25 degrees C). The conversion of Fe(3+)-biliverdin to free biliverdin is triphasic. Reduction of Fe(3+)-biliverdin (0.035 s(-1) at 4 degrees C and 0.15 s(-1) at 25 degrees C), followed by rapid release of Fe(2+) (0.19 s(-1) at 4 degrees C and 0.39 s(-1) at 25 degrees C), yields the biliverdin-enzyme complex from which biliverdin slowly dissociates (0.007 s(-1) at 4 degrees C and 0.03 s(-1) at 25 degrees C). The rate of Fe(2+) release agrees with the rate of Fe(3+)-biliverdin reduction. Fe(2+) release clearly precedes biliverdin dissociation. In the absence of biliverdin reductase, biliverdin release is the rate-limiting step, but in its presence biliverdin release is accelerated and the overall rate of heme degradation is limited by the conversion of Fe(2+)-verdoheme to the Fe(3+)-biliverdin.  相似文献   

11.
Heme oxygenase (HO) catalyzes the oxidative degradation of heme utilizing molecular oxygen and reducing equivalents. In photosynthetic organisms, HO functions in the biosynthesis of such open-chain tetrapyrroles as phyto-chromobilin and phycobilins, which are involved in the signal transduction for light responses and light harvesting for photosynthesis, respectively. We have determined the first crystal structure of a HO-1 from a photosynthetic organism, Synechocystis sp. PCC 6803 (Syn HO-1), in complex with heme at 2.5 A resolution. Heme-Syn HO-1 shares a common folding with other heme-HOs. Although the heme pocket of heme-Syn HO-1 is, for the most part, similar to that of mammalian HO-1, they differ in such features as the flexibility of the distal helix and hydrophobicity. In addition, 2-propanol derived from the crystallization solution occupied the hydrophobic cavity, which is proposed to be a CO trapping site in rat HO-1 that suppresses product inhibition. Although Syn HO-1 and mammalian HO-1 are similar in overall structure and amino acid sequence (57% similarity vs. human HO-1), their molecular surfaces differ in charge distribution. The surfaces of the heme binding sides are both positively charged, but this patch of Syn HO-1 is narrow compared to that of mammalian HO-1. This feature is suited to the selective binding of ferredoxin, the physiological redox partner of Syn HO-1; the molecular size of ferredoxin is approximately 10 kDa whereas the size of NADPH-cytochrome P450 reductase, a reducing partner of mammalian HO-1, is approximately 77 kDa. A docking model of heme-Syn HO-1 and ferredoxin suggests indirect electron transfer from an iron-sulfur cluster in ferredoxin to the heme iron of heme-Syn HO-1.  相似文献   

12.
13.
Heme oxygenase (HO) catalyzes physiological heme degradation consisting of three sequential oxidation steps that use dioxygen molecules and reducing equivalents. We determined the crystal structure of rat HO-1 in complex with heme and azide (HO-heme-N(3)(-)) at 1.9-A resolution. The azide, whose terminal nitrogen atom is coordinated to the ferric heme iron, is situated nearly parallel to the heme plane, and its other end is directed toward the alpha-meso position of the heme. Based on resonance Raman spectroscopic analysis of HO-heme bound to dioxygen, this parallel coordination mode suggests that the azide is an analog of dioxygen. The azide is surrounded by residues of the distal F-helix with only the direction to the alpha-meso carbon being open. This indicates that regiospecific oxygenation of the heme is primarily caused by the steric constraint between the dioxygen bound to heme and the F-helix. The azide interacts with Asp-140, Arg-136, and Thr-135 through a hydrogen bond network involving five water molecules on the distal side of the heme. This network, also present in HO-heme, may function in dioxygen activation in the first hydroxylation step. From the orientation of azide in HO-heme-N(3)(-), the dioxygen or hydroperoxide bound to HO-heme, the active oxygen species of the first reaction, is inferred to have a similar orientation suitable for a direct attack on the alpha-meso carbon.  相似文献   

14.
NK cells are important for the clearance of tumors, parasites, and virus-infected cells. Thus, factors that control NK cell numbers and function are critical for the innate immune response. A subset of NK cells express the inhibitory killer cell lectin-like receptor G1 (KLRG1). In this study, we identify that KLRG1 expression is acquired during periods of NK cell division such as development and homeostatic proliferation. KLRG1(+) NK cells are mature in phenotype, and we show for the first time that these cells have a slower in vivo turnover rate, reduced proliferative response to IL-15, and poorer homeostatic expansion potential compared with mature NK cells lacking KLRG1. Transfer into lymphopenic recipients indicate that KLRG1(-) NK cells are precursors of KLRG1(+) NK cells and KLRG1 expression accumulates following cell division. Furthermore, KLRG1(+) NK cells represent a significantly greater proportion of NK cells in mice with enhanced NK cell numbers such as Cd45(-/-) mice. These data indicate that NK cells acquire KLRG1 on their surface during development, and this expression correlates with functional distinctions from other peripheral NK cells in vivo.  相似文献   

15.
16.
17.
Concerns have arisen that pre-existing immunity to dengue virus (DENV) could enhance Zika virus (ZIKV) disease, due to the homology between ZIKV and DENV and the observation of antibody-dependent enhancement (ADE) among DENV serotypes. To date, no study has examined the impact of pre-existing DENV immunity on ZIKV pathogenesis during pregnancy in a translational non-human primate model. Here we show that macaques with a prior DENV-2 exposure had a higher burden of ZIKV vRNA in maternal-fetal interface tissues as compared to DENV-naive macaques. However, pre-existing DENV immunity had no detectable impact on ZIKV replication kinetics in maternal plasma, and all pregnancies progressed to term without adverse outcomes or gross fetal abnormalities detectable at delivery. Understanding the risks of ADE to pregnant women worldwide is critical as vaccines against DENV and ZIKV are developed and licensed and as DENV and ZIKV continue to circulate.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号