首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation was conducted in which the stabilities of four structurally different biotin derivatives were assessed with regard to biotinamide bond hydrolysis by the enzyme biotinidase. The biotin derivatives studied contained an extra methylene in the valeric acid chain of biotin (i.e., homobiotin), or contained conjugated amino acids having hydroxymethylene, carboxylate, or acetate functionalities on a methylene alpha to the biotinamide bond. The biotinidase hydrolysis assay was conducted on biotin derivatives that were radioiodinated at high specific activity, and then subjected to diluted human serum at 37 degrees C for 2 h. After incubation, assessment of biotinamide bond hydrolysis by biotinidase was readily achieved by measuring the percentage of radioactivity that did not bind with avidin. As controls, an unsubstituted biotin derivative which is rapidly cleaved by biotinidase and an N-methyl-substituted biotin derivative which is stable to biotinidase cleavage were included in the study. The results indicate that increasing the distance from the biotin ring structure to the biotinamide bond by one methylene only decreases the rate of biotinidase cleavage, but does not block it. The data obtained also indicate that placing a hydroxymethylene, carboxylate, or acetate alpha to the biotinamide bond is effective in blocking the biotinamide hydrolysis reaction. These data, in combination with data previously obtained, which indicate that biotin derivatives containing hydroxymethylene or carboxylate moieties retain the slow dissociation rate of biotin from avidin and streptavidin [Wilbur, D. S., et al. (2000) Bioconjugate Chem. 11, 569-583], strongly support incorporation of these structural features into biotin derivatives being used for in vivo targeting applications.  相似文献   

2.
Multiple carboxylase deficiency   总被引:1,自引:0,他引:1  
1. The multiple carboxylase deficiencies are inborn errors in the metabolism of biotin in which there is defective activity of propionyl CoA carboxylase, 3-methylcrotonyl CoA carboxylase and pyruvate carboxylase. 2. Two distinct disorders have been described. 3. In one the fundamental defect is in the enzyme holocarboxylase synthetase which catalyzes the molecular activation of the apocarboxylase proteins. 4. In the other the fundamental defect is in biotinidase which catalyzes the reutilization of biotin and may be involved in its digestion and intestinal absorption.  相似文献   

3.
Newborn screening for biotinidase deficiency has identified children with profound biotinidase deficiency (<10% of mean normal serum activity) and those with partial biotinidase deficiency (10%–30% of mean normal serum activity). Children with partial biotinidase deficiency and who are not treated with biotin do not usually exhibit symptoms unless they are stressed (i.e., prolonged infection). We found that 18 of 19 randomly selected individuals with partial deficiency have the transversion missense mutation G1330>C, which substitutes a histidine for aspartic acid444 (D444H) in one allele of the biotinidase gene. We have previously estimated that the D444H mutation results in 48% of normal enzyme activity for that allele and occurs with an estimated frequency of 0.039 in the general population. The D444H mutation in biotinidase deficiency is similar to the Duarte variant in galactosemia. The D444H mutation in one allele in combination with a mutation for profound deficiency in the other allele is the common cause of partial biotinidase deficiency. Received: 8 December 1997 / Accepted: 22 January 1998  相似文献   

4.
J Oizumi  K Hayakawa  M Hosoya 《Biochimie》1989,71(11-12):1163-1169
Biotinidase was purified from human breast milk (4,000-fold), and was compared with human serum biotinidase (enriched 30,000-fold). The molecular weight of milk enzyme was 68,000 Da as determined by SDS-PAGE. It was definitely smaller than that of serum biotinidase (Mr = 76,000). Isoelectric point of milk biotinidase was 4.6, whereas that of serum biotinidase was 4.3. Sialic acid content in milk biotinidase was less than that found in serum enzyme. N-Acetyl-galactosamine was present in milk enzyme, whereas it was absent in serum enzyme. Milk biotinidase is O-glycosylated, whereas serum biotinidase is N-glycosylated. These differences in glycosylation suggest the existence of different types of excretion mechanisms between milk and serum biotinidase. Both biotinidases were found to be thiol-type enzyme, however, the extent of activation of the enzyme by 2-mercaptoethanol was 13-fold in milk, whilst the serum enzyme was activated only 1.5-fold. Km for biotinyl-4-amino-benzoate was 22 microM in milk enzyme and 50 microM in serum enzyme. Competitive inhibition by biotin (Ki) of milk enzyme was 43 microM and 1.3 mM for serum enzyme. These results suggest the structural differences at or near the active site of the each enzyme.  相似文献   

5.
Biotin is present in nature either free or as biocytin, which is only degraded under the action of a specific enzyme: biotinidase. This enzyme is not included in analytical assays generally used. A method for sample preparation using biotinidase was developed in our laboratory before analysis by ELISA. Three cows equipped with duodenal and ileal cannulae were used to compare the effects of methods of sample preparation on calculations of apparent ruminal synthesis and intestinal absorption of biotin. There was no apparent ruminal synthesis of biotin, no matter whether free or total biotin was measured (p = 0.84). Results also suggested that rumen microbes cannot utilize nor degrade biocytin present in the feed. Estimates of apparent intestinal absorption were influenced by the sample preparation method (p = 0.002). Analysis of free biotin caused an artefact, suggesting intestinal synthesis of this vitamin; whereas determination of total biotin concentrations showed that absorption was taking place in the small intestine.  相似文献   

6.
Role of human serum biotinidase as biotin-binding protein.   总被引:1,自引:0,他引:1       下载免费PDF全文
Biotinidase shows two binding sites for biotin, with Kd = 59 and 3 nM respectively, and requires tryptophan and cysteine residues of the biotinidase protein for biotin-binding activity. Analysis of human serum by various column-chromatographic techniques indicates that biotinidase is the only protein which exchanges with labelled (+)-biotin. It was shown previously that epileptic patients receiving a high average dose of anticonvulsants (containing a carbamide group) have lower biotin concentrations than those receiving a low dose. We have shown in human serum and with purified biotinidase that these anticonvulsant drugs compete with biotin for binding to the protein moiety.  相似文献   

7.
Abstract

Biotin is present in nature either free or as biocytin, which is only degraded under the action of a specific enzyme: biotinidase. This enzyme is not included in analytical assays generally used. A method for sample preparation using biotinidase was developed in our laboratory before analysis by ELISA. Three cows equipped with duodenal and ileal cannulae were used to compare the effects of methods of sample preparation on calculations of apparent ruminal synthesis and intestinal absorption of biotin. There was no apparent ruminal synthesis of biotin, no matter whether free or total biotin was measured (p = 0.84). Results also suggested that rumen microbes cannot utilize nor degrade biocytin present in the feed. Estimates of apparent intestinal absorption were influenced by the sample preparation method (p = 0.002). Analysis of free biotin caused an artefact, suggesting intestinal synthesis of this vitamin; whereas determination of total biotin concentrations showed that absorption was taking place in the small intestine.  相似文献   

8.
Determination of biocytin   总被引:1,自引:0,他引:1  
Biocytin (epsilon-N-[d-biotinyl]-L-lysine) is generally undetected in serum and other body fluids of normal healthy individuals in view of the ubiquitous distribution of biotinidase. It has been suggested that biocytin may be present in serum and urine of patients with inherited biotinidase deficiency. We have developed a noncompetitive assay for biocytin based on its interaction with avidin. Biocytin can be determined in biological samples containing both biotin and biocytin. Biotin from such samples is removed by an anion-exchange resin and the biocytin is determined by the avidin-binding assay. The effect of above-normal levels of biotin in the sample on the assay of biocytin is discussed.  相似文献   

9.
Biotinidase deficiency is an autosomal recessively inherited disorder in the recycling of the vitamin biotin. The most common mutation that causes profound biotinidase deficiency in symptomatic individuals is a deletion/insertion (G98:d7i3) that occurs in exon B of the biotinidase gene. We now report the second most common mutation, a C-to-T substitution (position 1612) in a CpG dinucleotide in exon D of the biotinidase gene. This mutation results in the substitution of a cysteine for arginine538 (designated R538C) and was found in 10 of 30 symptomatic children with profound biotinidase deficiency, 5 of whom also have the G98:d7i3 mutation. This mutation was not found in DNA samples from 32 individuals with normal biotinidase activity, but was found in one individual with enzyme activity in the heterozygous range. This mutation was not detected in 371 randomly selected, normal individuals using allele-specific oligonucleotide hybridization analysis. Aberrant biotinidase protein was not detectable in extracts of fibroblasts from a child who is homozygous for the R538C mutation, but was present in less than normal concentration in identical extracts treated with β-mercaptoethanol. Because there is no detectable biotinidase protein in sera of children who are homozygous for the R538C mutation and in combination with the deletion/insertion mutation, the R538C mutation likely results in inappropriate intra- or intermolecular disulfide bond formation, more rapid degradation of the aberrant enzyme, and failure to secrete the residual aberrant enzyme from the cells into blood. Received: 13 August 1996 / Revised: 13 November 1996  相似文献   

10.
Biotinidase cleaves biotin from biocytin, thereby recycling the vitamin. We have determined the structure of the human biotinidase gene. A genomic clone, containing three exons that code for the mature enzyme, was obtained by screening a human genomic bacteriophage library with the biotinidase cDNA by plaque hybridization. To obtain a clone containing the most 5′ exon of the biotinidase cDNA, a human PAC library by PCR was screened. The human biotinidase gene is organized into four exons and spans at least 23 kb. The 5′-flanking region of exon 1 contains a CCAAT element, three initiator sequences, an octamer sequence, three methylation consensus sites, two GC boxes, and one HNF-5 site, but has no TATA element. The region from nt −600 to +400 has features of a CpG island and resembles a housekeeping gene promoter. The structure and sequence of this gene are useful for identifying and characterizing mutations that cause biotinidase deficiency. Received: 30 September 1997 / Accepted: 5 December 1997  相似文献   

11.
An enzymatic mechanism has been proposed by which biotinidase may catalyze biotinylation of histones. Here, human cells were found to covalently bind biotin to histones H1, H2A, H2B, H3, and H4. Cells respond to proliferation with increased biotinylation of histones; biotinylation increases early in the cell cycle and remains increased during the cycle. Notwithstanding the catalytic role of biotinidase in biotinylation of histones, mRNA encoding biotinidase and biotinidase activity did not parallel the increased biotinylation of histones in proliferating cells. Biotinylation of histones might be regulated by enzymes other than biotinidase or by the rate of histone debiotinylation.  相似文献   

12.
An investigation was conducted to evaluate three biotin derivatives designed to block biotinidase cleavage of the biotinamide bond. Difficulties in multistep syntheses of molecules containing tert-butyl protected hydroxymethyl and carboxylate groups positioned alpha to a biotinamide bond led to the investigation of alternative biotinidase-blocking moieties that do not require protection and deprotection. The targeted biotin derivatives contained serine-O-methyl ether, 2-aminobutyric acid, and valine moieties conjugated to the biotin carboxylate functionality. Those derivatives were further modified with a radioiodinated aryl ring to study their biotinidase stability. As a comparison to previously studied biotin derivatives, radioiodinated versions of biotin conjugates that contained (a) no biotinidase stabilizing group, (b) an N-methyl (sarcosine) stabilizing group, (c) an alpha-carboxylate (aspartate) stabilizing group and hydroxymethyl (serine) stabilizing group were also prepared and tested. When tested in human serum, all of the radioiodinated biotinidase-stabilized biotin derivatives had <1% biotinamide cleavage. Thus, under the conditions studied, all of the tested biotinidase blocking moieties appeared to be equal with regards to protection from biotinidase cleavage. Further testing of the biotin derivatives included a HPLC assay to determine their relative dissociation from recombinant streptavidin (rSAv). The dissociation of cyanocobalamin (CN-Cbl) adducts of biotin-serine-O-methyl ether, biotin-aminobutyric acid, and biotin-valine were compared with the CN-Cbl adduct of biotin-sarcosine. The relative rates of dissociation found were biotin-sarcosine-CN-Cbl > biotin-valine-CN-Cbl > biotin-serine-O-methyl ether-CN-Cbl > biotin-aminobutyric acid-CN-Cbl. Due to the high cost of serine-O-ethyl ether (and its N-Boc derivative) and difficulty in syntheses of its biotin derivatives, that adduct is not an attractive candidate for application to compounds used in vivo. The higher lipophilicity and diminished binding of the biotin-valine adduct also makes its use in vivo less attractive. Thus, the biotin-aminobutyric acid adduct appears to be the best candidate for incorporation into biotin derivatives used in vivo, as it simplifies the synthetic procedures, has low cost, and provides effective blocking of biotinidase while retaining high binding affinity.  相似文献   

13.
Summary DL-ethionine increases the activity of liver biotinidase, an enzyme which hydrolyzes biotinylesters and biotinylpeptides. Chronic DL-ethionine feeding increases transiently the activity of biotinidase in mouse and rat liver, after which it remains elevated in the serum. In the present work we show that both isomers of DL-ethionine are equally good enhancers of the liver biotinidase, while, 3-ethylthiopropionate, the toxic metabolite of DL-ethionine, has no effect on the biotinidase activity of either liver or serum. We have also employed two different combinations of inhibitors of the hydrolytic pathway of SAH, a transmethylation product and potent inhibitor of methylation. It was found that these inhibitors (EHNA and Ara-A, 2-deoxycoformycin and adenosine) increase the activity of serum biotinidase as was the case with ethionine. Because SAH does not ethylate biomolecules, these changes in biotinidase activity, which can not be preveneted by adenine, biotin or lecithin are most probably related to the inhibition of methylation.Abbreviations Ara-A 9--D-arabinofuranosyladenine - EHNA erythro-9-(2-hydroxy-3-nonyl)adenine - SAE S-adenosylethionine - SAH S-adenosylhomocysteine - SAM S-adenosylmethionine  相似文献   

14.
15.
Enzyme kinetic parameters, such as K(m), V(max) (or V), k(cat)/K(m), and K(i) (by biotin or lipoic acid) for biotinidase and lipoamidase were determined in Lewis (LEW) rat and Lactobacillus casei (Shirota) using fluorimetric high-performance liquid chromatography (HPLC). It was found that the final protein concentration below 0.1mg/ml is sufficient to obtain linear hydrolytic reaction and to determine the Michaelis-Menten type kinetic parameters (K(m), V, K(i)). We applied this HPLC enzyme assay method onto the rat and some bacteria. The highest specific activities (Vs) for biotinidase were found in Lactobacillus casei (Shirota) and rat kidney. It was also found that the largest K(i) by product for biotinidase and lipoamidase were present in the Lactobacillus casei (Shirota). There has been found specie (between rat and mouse) differences and tissue (organ) differences, together with tissue region differences and sex differences in some tissues. Summary of the distributions of both enzymes in LEW rat was also presented. Therefore, this HPLC determination method for the enzyme kinetic parameters in tissues is expected to be an indispensable tool for the investigation of the various diseases in humans.  相似文献   

16.
The uptake of biotin and biocytin was investigated in rat intestine using the everted sac technique. It has been shown that at biotin and biocytin concentrations !ess than 40 and 50 nM respectively, absorption proceeds by a saturable process, whereas at higher concentrations uptake by passive diffusion predominates. Fractionation of solublized brush border preparations indicates that biotinidase is the only protein which binds biotin in this preparation.  相似文献   

17.
Biotinidase catalyzes the hydrolysis of N epsilon-biotinyllysine (biocytin) to form biotin and free lysine. The enzyme has been purified 4800-fold from outdated human plasma and was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to have a molecular weight of (76 +/- 2) X 10(3). The same molecular weight was found by molecular sieve chromatography under nondenaturing conditions, indicating biotinidase is a monomer. This value is in contrast to a molecular weight of 115 000 determined by Pispa [Pispa, J. (1965) Ann. Med. Exp. Biol. Fenn., Suppl. 5, 5-39] with an impure biotinidase. The Km for biocytin was 6.2 X 10(-6) M, and biotinidase was found to be sensitive to phenylmethanesulfonamide and iodoacetamide in agreement with earlier studies by Knappe and co-workers [Knappe, J., Brümmer, W., & Bierderbick, K. (1963) Biochem. Z. 338, 599-613], who suggested that serine hydroxyl groups and sulfhydryl groups are essential for enzymatic activity. The specificity of biotinidase was examined by using synthetic and natural biotinyl peptides isolated by specific proteolytic cleavage of the biotinyl subunit of transcarboxylase. It was found that the rate of hydrolysis of biocytin was 83-fold higher than that found for biotin-containing peptides 5-13 residues in length. Removal of methionine from either side of the conserved region around the biocytin did not greatly alter the rate of cleavage. Increasing the peptide to 65-123 residues in length decreased the rate 1200-fold compared to that of biocytin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Biotinidase deficiency is an autosomal recessive disorder of biotin metabolism leading to varying degrees of neurologic and cutaneous symptoms when untreated. In the present study, we report the clinical features and the molecular investigation of biotinidase deficiency in four unrelated consanguineous Algerian families including five patients with profound biotinidase deficiency and one child characterized as partial biotinidase deficiency. Mutation analysis revealed three novel mutations, c.del631C and c.1557T>G within exon 4 and c.324-325insTA in exon 3. Since newborn screening is not available in Algeria, cascade screening in affected families would be very helpful to identify at risk individuals.  相似文献   

19.
Biotinylation is a recent addition to the list of reported posttranslational modifications made to histones. Holocarboxylase synthetase (HCS) and biotinidase have been implicated as biotinylating enzymes. However, the details of the mechanism and the regulation of biotin transfer on and off histones remains unclear. Here we report that in a cell culture system low biotin availability reduces biotinylation of carboxylases, yet apparent biotinylation of histones is unaffected. This is despite biotin depletion having detrimental effects on cell viability and proliferation. Further analysis of the widely used method for detecting biotin on histones, streptavidin blotting, revealed that streptavidin interacts with histones independently of biotin binding. Preincubation of streptavidin with free biotin reduced binding to biotinylated carboxylases but did not block binding to histones. To investigate biotinylation of histones using an alternative detection method independent of streptavidin, incorporation of 14C biotin into biotinylated proteins was analyzed. Radiolabeled biotin was readily detectable on carboxylases but not on histones, implying very low levels of biotin in the nucleus attached to histone proteins (< 0.03% biotinylation). In conclusion, we would caution against the use of streptavidin for investigating histone biotinylation.  相似文献   

20.
The effects of a disulfide reducing agent and sulfhydryl blocking agents on the biotinidase activity in human serum and on the purified biotinidase have been extensively studied by using a newly developed HPLC assay method. This HPLC method directly measures the product (p-aminobenzoate, PAB), and is not interfered with by sulfhydryl-reactive agents. Further, because the substrate solution of this HPLC assay method contains only substrate (biotin 4-amidobenzoate) and phosphate buffer, accurate studies on the effects of sulfhydryl blocking reagents on the purified enzyme could be performed. Biotinidase activities in human sera (n = 83) were always enhanced by 2-mercaptoethanol (ME). The optimum concentration was found to be 1 mM. The degree of activation was variable (100 to 400% of the original) depending on the serum sample. Sulfhydryl blocking reagents such as organic mercurials were tested on fresh serum and purified enzyme. Mercuric agents were found to inhibit the activity of fresh serum and purified enzyme at 0.05 and 0.005 mM, respectively. Sulfhydryl alkylating agents, N-ethylmaleimide (NEM) and dithiobis(2-nitro)benzoic acid (DTNB), inhibited 100 and 64% of the activity of the purified enzyme at 0.1 and 1.0 mM, respectively. However, lower concentrations (less than 5 nM) of organic mercurials and mercuric ion exhibited a slight enhancement (20-30%) of the activity of the purified enzyme. These results indicate the presence of an essential sulfhydryl residue at the active center. The enzyme contains 2.5 sulfhydryls per molecule, as determined by using Ellman's assay method. Serine protease inhibitors such as phenylmethylsulfonyl fluoride (PMSF) and diisopropylfluorophosphate (DFP) did not inhibit the enzyme activity at 0.05 mM or higher concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号