首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the reaction between equimolar amounts of horseradish peroxidase and chlorite, the native enzyme is oxidized directly to Compound II (Hewson, W.D., and Hager, L.P. (1979) J. Biol. Chem. 254, 3175-3181). At acidic pH but not at alkaline values, this initial reaction is followed by oxidation of Compound II to Compound I. The highly pH-dependent chemistry of Compound II can be readily demonstrated by the reduction of Compound I, with ferrocyanide at acidic, neutral, and alkaline pH values. Titration at low pH yields very little Compound II, whereas at high pH, the yield is quantitative. Similarly, the reaction of horseradish peroxidase and chlorite at low pH yields Compound I while only Compound II is formed at high pH. At intermediate pH values both the ferrocyanide reduction and the chlorite reaction produce intermediate yields of Compound II. This behavior is explained in terms of acidic and basic forms of Compound II. The acidic form is reactive and unstable relative to the basic form. Compound II can be readily oxidized to Compound I by either chloride or chlorine dioxide in acidic solution. The oxidation does not occur in alkaline solution, nor will hydrogen peroxide cause the oxidation of Compound II, even at low pH.  相似文献   

2.
3.
M Santimone 《Biochimie》1975,57(3):265-270
The kinetics of compound II formation, obtained upon mixing a highly purified horseradish peroxidase and hydrogen peroxide, was spectrophotometrically studied at three wavelengths in the absence of an added reducing agent. Our experiments confirm George's finding that more than one mole of compound II is formed per mole of hydrogen peroxide added. The new mechanism that we propose, contrary to the mechanism of George, is only valid when compound II is obtained in the absence of an added donor. Moreover, it is not inconsistent with the classical Chance mechanism of oxidation of an added donor by the system peroxidase -- hydrogen peroxide. According to this new mechanism, in the absence of an added donor, compound II formation involved two pathways. The first pathway is the monomolecular reduction of compound I by the endogenous donor, and the second pathway is the formation of two moles of compound II through the oxidoreduction reaction between one mole of peroxidase and one mole of compound I.  相似文献   

4.
Oxidation of para substituted phenols by horseradish peroxidase compound II (HRP-II) and lactoperoxidase compound II (LPO-II) were studied using stopped flow technique. Apparent second order rate constants (kapp) of the reactions were determined. The kinetics of oxidation of phenols by HRP-II and LPO-II have been compared with the oxidation potentials of the substrates. Reorganization energies of electron-transfer of phenols to the enzymes were estimated from the variation of second order rate constants with the thermodynamic driving force.  相似文献   

5.
Compound I of horseradish peroxidase (donor: hydrogen-peroxide oxidoreductase EC 1.11.1.7) was studied by EPR at low temperatures. An asymmetric signal was found, about 15 Gauss wide and with a g-value of 1.995, which could be detected only at temperatures below 20 K and which had an intensity corresponding to about 1% of the heme content. In a titration with H2O2, the signal intensity was proportional to the concentration of Compound I, reaching a maximum when equivalent amounts of H2O2 were added. This indicates that the signal is not due to an impurity, and it is suggested that a free radical is formed, relaxed by a near-by fast-relaxing iron.  相似文献   

6.
Horseradish peroxidase catalyses the oxidation of NAD dimers, (NAD)2, to NAD+ in accordance with a reaction that is pH-dependent and requires 1 mol of O2 per 2 mol of (NAD)2. Horseradish peroxidase also catalyses the peroxidation of (NAD)2 to NAD+. In contrast, bacterial NADH peroxidase does not catalyse the peroxidation or the oxidation of (NAD)2. A free-radical mechanism is proposed for both horseradish-peroxidase-catalysed oxidation and peroxidation of (NAD)2.  相似文献   

7.
Stoichiometry of the reaction between horseradish peroxidase and p-cresol.   总被引:4,自引:0,他引:4  
Over a wide range of pH horseradish peroxidase compound I can be reduced quantitatively via compound II to the native enzyme by only 1 molar equivalent of p-cresol. Since 2 molar equivalents of electrons are required for the single turnover of the enzymatic cycle, p-cresol behaves as a 2-electron reductant. With p-cresol and compound I in a 1:1 ratio compound II and p-methylphenoxy radicals are obtained in the transient state. Compound II is then reduced to the native enzyme. A possible explanation for the facile reduction of compound II involves reaction with the dimerization product of these radicals, 1/2 molar equivalent of 2,2'-dihydroxy-5,5'-dimethylbiphenyl. If only 1/2 molar equivalent of p-cresol is present, than at high pH the reduction stops at compound II. The major steady state peroxidase oxidation product of p-cresol (with p-cresol in large excess compared to the enzyme concentration) is Pummerer's ketone. Pummerer's ketone is only reactive at pH values greater than about 9 where significant amounts of the enol can be formed via the enolate anion. Therefore, in alkaline solution it is reactive with compound I, but not with compound II, which is converted into an unreactive basic form. These results indicate that Pummerer's ketone cannot be the intermediate free radical product responsible for reducing compound II in the single turnover experiments. It is postulated that Pummerer's ketone is formed only in the steady state by the reaction of the p-methylphenoxy radical with excess p-cresol.  相似文献   

8.
9.
R Roman  H B Dumbord 《Biochemistry》1972,11(11):2076-2082
  相似文献   

10.
Theoretical studies of the electronic structure and spectra of models for the ferric resting state and Compound I intermediates of horseradish peroxidase (HRP-I) and catalase (CAT-I) have been performed using the INDO-RHF/CI method. The goals of these studies were twofold: i) to determine whether the axial ligand of HRP is best described as imidazole or imidazolate, and ii) to address the long-standing question of whether HRP-I and CAT-I are a1u and a2u tau cation radicals. Only the imidazolate HRP-I model led to a calculated electronic spectra consistent with the experimentally observed significant reduction in the intensity of the Soret band compared with the ferric resting state. These results provide compelling evidence for significant proton transfer to the conserved Asp residue by the proximal histidine. The origin of the observed reduction of the Soret band intensity in HRP-I and CAT-I spectra has been examined and found to be caused by the mixing of charge transfer transitions into the predominantly porphyrin tau-tau transitions. For both HRP-I and CAT-I, the a1u porphyrin tau cation state is the lowest energy, and it is further stabilized by both the anionic form of the ligand and the porphyrin ring substituents of protoporphyrin-IX. The calculated values of quadrupole-splitting observed in the Mossbauer resonance of HRP-I and CAT-I are similar for the a1u and a2u tau cation radicals. Electronic spectrum of the a1u tau cation radical of HRP-I are more similar to the observed spectra, whereas the spectra of both a1u tau and a2u tau cation radicals of CAT-I resemble the observed spectra. These results also indicate the limitations of using any one observable property to try to distinguish between these states. Taken together, comparison of calculated and observed properties indicate that there is no compelling reason to invoke the higher energy a2u tau cation radical as the favored state in HRP-I and CAT-I. Both ground-state properties and electronic spectra are consistent with the a1u tau cation radical.  相似文献   

11.
Strong electron-paramagnetic-resonance signals in the g = 2.00 region were detected after irradiation of horseradish peroxidase Compound I at temperatures of 10 and 100 K. These signals establish the presence of new free-radical species in the peroxidase system. The new species are interpreted in terms of a haem-photosensitized oxidation of the protein's peptide groups close to the Compound I radical site. On warming to room temperature, the radicals decayed irreversibly to a species having a weak asymmetric electron-paramagnetic-resonance signal at 100 K, which could still be observed after incubation at room temperature for more than 1 h.  相似文献   

12.
The effects of temperature (20 to -38 degrees C), pressure (normal pressures to 1.2 kbar) and solvent (water, 60% DMSO and 50% methanol) on the reaction of hydrogen peroxide or ethyl peroxide with horseradish peroxidase were studied. The formation of compound I was followed at 403 nm in a stopped flow apparatus adapted for high pressure and low temperature work. As with the alkaline form (Job and Dunford 1978), the neutral form of the peroxidase binds peroxide substrates in two steps. It was the combined use of organic solvents and low temperatures which revealed saturation kinetics: (Formula: see text) compound I, where E = horseradish peroxidase and S peroxide substrate. In water and organic solvents at temperatures above -10 degrees C, K1 was too small and k2 too large to be measured, here K1 X k2 was obtained. k-2 was too small for measurement under all conditions. Whereas K1 was insensitive to the peroxide substrate and solvent composition, k2 was very sensitive. The thermodynamic parameters delta H, delta S and delta V for K1 and k2 were obtained under different experimental conditions and the data are interpreted within the available thermodynamic theories.  相似文献   

13.
The magnetic circular dichroism spectrum of the compound I species of horseradish peroxidase, which contains an iron (IV) porphyrin pi-cation radical complex, has been measured between 273 K and 4.2 K. The spectrum is temperature independent between 273 K and 30 K. However, very strong temperature dependence is observed below 30 K. These data do not appear to fit the temperature dependence expected for the presence of a simple MCD C term, or combination of C terms, but suggest that an increase in the coupling between the S = 1 iron (IV), and the S = 1/2 porphyrin pi-cation radical occurs forming a degenerate ground state. This increase in coupling below 30 K may be the result of a phase change in the protein which in turn affects the electronic structure of the heme group.  相似文献   

14.
15.
M Chance  L Powers  T Poulos  B Chance 《Biochemistry》1986,25(6):1266-1270
X-ray absorption studies of compound ES of cytochrome c peroxidase show a short iron-oxygen distance of 1.67 +/- 0.04 A, an iron-histamine distance of 1.91 +/- 0.03 A, and an iron-pyrrole nitrogen average distance of 2.02 +/- 0.02 A. This is identical within the error with the reported structure of horseradish peroxidase compound I [Chance, B., Powers, L., Ching, Y., Poulos, T., Yamazaki, I., & Paul, K. G. (1984) Arch. Biochem. Biophys. 235, 596-611]. Comparisons of the structures of myoglobin peroxide [Chance, M., Powers, L., Kumar, C., & Chance, B. (1986) Biochemistry (preceding paper in this issue)], compound ES, and the intermediates of horseradish peroxidase reveal the possible mechanisms for the stabilization of the free radical species generated during catalysis. The proximal histidine regulates the structure and function of the pyrrole nitrogens and the heme, allowing for the formation and maintenance of the characteristic intermediates.  相似文献   

16.
The catalytic cycle of horseradish peroxidase (HRP; donor:hydrogen peroxide oxidoreductase; EC 1.11.1.7) is initiated by a rapid oxidation of it by hydrogen peroxide to give an enzyme intermediate, compound I, which reverts to the resting state via two successive single electron transfer reactions from reducing substrate molecules, the first yielding a second enzyme intermediate, compound II. To investigate the mechanism of action of horseradish peroxidase on catechol substrates we have studied the oxidation of both 4-tert-butylcatechol and dopamine catalysed by this enzyme. The different polarity of the side chains of both o-diphenol substrates could help in the understanding of the nature of the rate-limiting step in the oxidation of these substrates by the enzyme. The procedure used is based on the experimental data to the corresponding steady-state equations and permitted evaluation of the more significant individual rate constants involved in the corresponding reaction mechanism. The values obtained for the rate constants for each of the two substrates allow us to conclude that the reaction of horseradish peroxidase compound II with o-diphenols can be visualised as a two-step mechanism in which the first step corresponds to the formation of an enzyme-substrate complex, and the second to the electron transfer from the substrate to the iron atom. The size and hydrophobicity of the substrates control their access to the hydrophobic binding site of horseradish peroxidase, but electron density in the hydroxyl group of C-4 is the most important feature for the electron transfer step.  相似文献   

17.
From the temperature dependence of the Orbach relaxation rate of the paramagnetic center in horseradish peroxidase (HRP), we deduce an excited-state energy of 40.9 +/- 1.1 K. Similar studies on the broad EPR signal of HRP compound I indicate a much weaker Orbach relaxation process involving an excited state at 36.8 +/- 2.5 K. The strength of the Orbach process in HRP-I is weaker than one would normally estimate by 2-4 orders of magnitude. This fact lends support to the model of HRP-I involving a spin 1/2 free radical coupled to a spin 1 Fe4+ heme iron via a weak exchange interaction. Such a system should exhibit an Orbach relaxation process involving delta E, the excited state of the Fe4+ ion, but reduced in strength by (Jyy/delta E)2, where Jyy is related to the strength of the exchange interaction between the two spin systems.  相似文献   

18.
Horseradish peroxidase (HRP) compound I is photolabile at all temperatures between room temperature and 4 K. The photoredox reaction has been studied in frozen glassy solutions by using optical absorption and magnetic circular dichroism spectra following photolysis of HRP compound I with visible-wavelength light at 4.2 and 77 K. The photochemical process is characterized as a concerted two-electron transfer reaction which results in the conversion of the Fe(IV) heme pi-cation radical species of HRP compound I into a low-spin Fe(III) heme species. This reaction occurs even when photolysis is carried out at 4.2 K. Spectra recorded between 4.2 and 80 K for the low-spin ferric hydroxide complex of HRP closely resemble the data measured for the photochemical product. The proposed mechanism for the photoreaction is (formula; see text) No evidence is found for the formation of an Fe(II) heme at these temperatures.  相似文献   

19.
20.
The electron paramagnetic resonance (EPR) and M?ssbauer properties of native horseradish peroxidase have been compared with those of a synthetic derivative of the enzyme in which a mesohemin residue replaces the natural iron protoporphyrin IX heme prosthetic group. The oxyferryl pi cation radical intermediate, compound I, has been formed from both the native and synthetic enzyme, and the magnetic properties of both intermediates have been examined. The optical absorption characteristics of compound I prepared from mesoheme-substituted horseradish peroxidase are different from those of the compound I prepared from native enzyme [DiNello, R. K., & Dolphin, D. (1981) J. Biol. Chem. 256, 6903-6912]. By analogy to model-compound studies, it has been suggested that these optical absorption differences are due to the formation of an A2u and an A1u pi cation radical species, respectively. However, the EPR and M?ssbauer properties of the native and synthetic enzyme and of their oxidized intermediates are quite similar, if not identical, and the data favor an A2u radical for both compounds I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号